THE COMPUTATION OF MOMENTS WITH THE USE
OF CUMULATIVE TOTALS

By PavL S. Dwygr

1. Introduction. Various authors have shown how the moments of a fre-
quency distribution may be computed from cumulated frequencies.'! In order
to make clear to the reader the type of technique under discussion there is
presented an illustration which is, essentially, that used by Hardy, [2, p. 59].
The value Zf, = 729 is the last entry in column 4.

We use C} to denote the entry in column 4 which is opposite the smallest
variate (or class mark if the distribution is grouped). Similarly C3 is the entry
above Ci, and C} the entry to the right of C} , ete. In this notation the diagonal
entries, the ones underscored in Table I, are C}, C3, Cs, C1, Cs.

The moments® about the smallest variate can be expressed in terms of the
cumulations of Table I in different ways. One method utilizes the diagonal
entries and the differences of zero. Thus

6 6
Daf. = Ch =2916; > 2, = C3 + 203 = 12535;
[1) 0

6

2 &'f, = C; + 6Cs + 6Ci = 57996;

0

6

> 2, = O3 + 14C3 + 360 + 24C; = 278316, etc.

0

A second method utilizes the entries in the next to the last row and the differ-
ences of zero. Thus

6 6
2oafe=C;=2916; 2 af. = —C; + 2C3 = 12636;
0 0

6

> 2. = C3 — 6C3 + 6Cs = 57996;
0

6

> a'fe = — C3 + 14C; — 3603 + 24C5 = 278316, etc.

[]

1 The reader is referred to reference [1] ... [15], at end of paper.
2 [t is to be noted that we are not talking about moments per unit frequency. We are
using the term in the sense used for example by Whittaker and Robinson. See [20, p. 18].
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A third method, which seems to have escaped previous attention, involves
columnar entries and multipliers whose determination and properties are a chief
concern of this paper. Thus’

6 6
Zoj zf, = Cy = 2916; D 2. = C3 + C} = 12636;
)

6

> &Y. = Ch + 4Ch + C! = 57996;

0
6

2 z'f. = C3 + 11C5 + 11C5 + C = 278316, etc.
0
It is possible also to obtain formulas when the cumulations are made from the
smallest variate to the largest variate and, indeed, the whole theory of the
present paper could be duplicated with such a theory of cumulation.

TABLE I
Successive Frequency Cumulations

(1) (2) 3) 4 (5) (6) )] (8)

X z F, Ct C? C? Ct Cs
a-+ 6 6 64 64 %64 64 64 64
a+f5 5 192 256 320 384 448 512
a+ 4 4 240 496 816 1200 1648 2160
a+ 3 3 160 656 1472 2672 4320 6480
a+ 2 2 60 716 2188 4860 9180 15660
a+1 1 12 728 2916 7776 16956 32616
a 0 1 729 3645 11421 28377 60993

It is possible to obtain the columnar formulas from the well known diagonal
formulas. From the construction of Table I it is clear that

4)) Ci=Cly+Ci

s0 that

C;=C3;Ch+20=C+C3;  Ch+6C5 +6Ci = C; + 4C3 + Ci;
C3 + 14C3 + 3605 + 24C: = C3 + 11C5 + 11C5 + C.

Formula (1) can be used similarly in deriving columnar formulas from row
formulas, diagonal formulas from row formulas, etc.

The columnar method is here recommended as a useful substitute for the
usual elementary method of computing moments. The many multiplications
involved in the usual process are replaced by continued addition. The chief

)
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disadvantage of the method is the continual recording, although this obstacle
is surmounted with an adding machine equipped with a recording tape. The
resulting moments are easily checked with an adaptation of Charlier’s check,
as is shown in section 8, and methods are given by which the multipliers are
easily obtained. The method is also well adapted to the use of Hollerith
machines.

The introduction of such columnar multipliers tends to give a different empha-
sis to the cumulative totals technique. The use of diagonal entries led logically
to an emphasis upon factorial moments, while the columnar method tends to
emphasize the more familiar power moments. The primary application here
indicated is not to elaborate and specialized techniques, but rather to the simple,
though often tedious, problem of the computation of power moments.

The aims of this paper are then:

(1) To show how moments may be computed from the columnar values of the

successive cumulations,

(2) To discover the properties of the columnar multipliers,

(3) To present a general theory for computation of moments using cumulative

totals.

2. The Basic Cumulative Theorem. The use of (1) is not satisfactory in
getting precise formulas for the columnar multipliers so we derive the columnar
cumulative theory directly from first principles. We first prove

TaEOREM I. Let x be any real number and let u, be a real function of x which s
0 when z < a and when x > a + k and which is not infinite for x = a, a + 1,
a+ 2 --.,a+ k. Letv,beareal function of x and v, , called range v. , a func-
tion such that v, = v, when z = a,ka +1,...,a + k and v, = 0 ¢t all points

-+
outside the range a to a + k. If - ws is indicated by Cu, and vz — v, by V v,

Uz — Vz1 by V v, then
o+k a+k a+k

3) Z UzVy = E Uz = Z CuVy, .

The values u. , v, , Cu,, Vu, are presented in Table II.
The theorem is proved by forming
atk

E Cquvz = Ua+kVatk + e + Ua4i Va4 + e + Uaq Vs
a
at+k atk

E‘Z Ul = Z Uz Vz.
a

Theorem I can also be written as

k k
(4) ; UatzVatz = ; Cu.,+,V1_).,+,
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3. The Successive Cumulation Theorem.

Tueorem I1.  If C*u, = C[Cu,) and V "y, = V(Vy,), etc., then

at+k atk

a+k
1 1
D Uals = D Ut = D, O, V.
a a a

This theorem follows readily from Theorem I. If

291

U,=Cu, and V, = Vy,, then
a+k a+k a+k a+k atk )
Zuzvz = Zuzvz— ZU V.= ZCU VY. = 2 Cu. V..
a
This process can be extended as many times as desired so that
at+k a+k atk L
(5) > Upv, = Z Us¥e = 2 C o, vy,
a a
TABLE 11
Values of x, u. , v, , Cu, , and Vy, .
z Uz s Cus
a+k Uatk Vatk Uatk Vark — Vapk—1
a+k— 1| Uspra Vapk—1 | Uatk + Uapk-1 Vatk—1 — Vatk—2
a+ 1 Uati Vayti Uapk + *++ + Uags Vayi — Vajpial
a+1 Uay1 Vat1 Uagk + * 0+ Uayi + 00+ Uapn Vay1 — Vs
a Ua Vo Usgk + o0+ Uapi + o0+ Uspr + Ua | Ve

This can also be written as

(6) é Uatzlatz = 2:: Uatzlats = i C ™ Uz V' s
In order to determine the values V'*'v,,., 0 < z < k, we note that
™ e = 3 0 (T o,

so that

8 s+lQa+z = E (- l)t <8 + 1)720+z—t-
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We also know that, 2 < k

©) Vatz—t = UVgtz—t whent < z
Vatz—t = 0 whent > z
so that
(10) vty Z -pr (!
Yat+z = Vatz—t, 0 S z S 8
(11) H‘17)a+:: = Z ( 1) (s 1) va+z—t = V‘+~lva+z, S < x S k.

The formula (6) can then be written
a+k

k 3 k
+1 +1 +1 1
(12) Z UV = ; ua+zva+: = ; Ca ua+:cvbI Qa+z + § C, ua+zV3+ va+z'
) 8

4. Moments from the Cumulated Frequencies. If w,. = foy. and
vy = (@ + z)*, then (6) gives

13 k
(13) ; (a/ + x),fa-}-z = ; C‘+1f¢+zvs+l(a + x)'.

A more useful formula, obtained from (12), is
k 3
(19) 2 @+ 2)'fars = 20 C 7 fureV" @ £ 2,
0
since V'*' (@ + z)° = 0. We have then
TaeoreM III. The values of the s-th moments can be obtained from the last

s + 1 entries of the (s + 1)st cumulation of the frequencies. The multipliers are
the values

(15) vH(a + ) = OZ (—1)* (s ”tf 1> @+ z— 0

Cor.1. When a = 0, i.e., when the moments are measured about the smallest
variate, the multipliers are

(16) v = Z( 1)’ (s+ 1)( - 0.
Cor. 2. When a = 1, the multipliers are
(17) v+ 2)* = ; (—1) (s + 1) 1+ 2z — 0.

Cor. 3. If the moments are measured about a fixed value, p, then the new
smallest variate is @ — p = o’ and the multipliers are V'™ (a/ + z)°.
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Cor. 4. If p is the mean, m, then ¢’ = ¢ — m. If in addition a = 0, then
o’ = —mand the multipliers giving moments about the mean are V**' (z — m)’.

Now

k
Zo: & cryro 4 2L 2
m = % = =

Ct T or
Z fz 1 1
0
It follows that the multipliers giving the moments about the mean are
02 8
18 v (:c — J) .
a8) Ci

It is to be noted that the moments about different points are obtained by
applying different multipliers to the same cumulated frequencies.

5. Values of the multipliers. The values of the multipliers may be computed
from (15). Thus V(@ + 1)’ = (@ + 1)* — 3¢’ = —2a’ + 2a + 1. This be-
comes 2ab + 1 when 1 — a is set equal to b. Values of the multipliers for the
most common values of s and z are presented in Table III.

TABLE III
Values of v**! (a + z)*

\1\3 0 1 2 3 4
AN
4 [
3 b 4b%a + 642 + 4b + 1
2 b? 3b%a + 3b + 1| 6a2b? + 12adb + 11
1 b 2ab 4+ 1| 3a? +3a + 1| 4a% + 6a2 4+ 4a + 1
0 1 a a? a® at

Whena = 0,b = 1 and the multipliersare1; 0, 1,1;0,1,4,1;0, 1, 11, 11, 1;
etc. as indicated in section 1. When a = 1, b = 0 and the multipliers are 1;
1,0;1,4,1,0;1, 11, 11, 1, 0; etc. When the moments are measured about a
fixed point, p, it is only necessary to compute ¢’ = ¢ — p and to use a’ for a
and b’ = 1 — a’ for b in Table III. ,

We illustrate the use of the multipliers by application to the problem of

Table I. The moments about the smallest variate are computed in section 1.
6

8
The moments, when a = 1 are Z (@ + 1)f. = C] = 3654; Z (x + 1), =
0

0
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6 6
C} + €3 = 19197, }o: (x + 1%, = Ci + 4Cs + Ch = 105381; 2 (z + 1*f, =
0
Cs + 11C5 + 11C% + €% = 598509,

The moments about the mean are found by forming ((::2 2792196
1

= —4 and the multipliers are 1; —4, 5; 16, —39, 25; —64, 229, —284, 125;
6 6 6

256, —1199, 2171, — 1829, 625; etc. so that Z f, = 0; }: f, = 972; > i =
0 0 0

= 4, Then a

6
—324; > 3'f, = 3564.
(1]

Since the values of V'

(x — C3/CY)* are expressible in terms of C} and C3, it
k

follows that the values of ) &'f, are expressible in terms of cumulations. For
0

example a formula for the second moment about the mean, which is essentially
one given by Whittaker and Robinson [7, p. 193] is

a+k 2
(19) Z if, = C3 4+ 205 — (g’)

1

However the general method described above, supplemented with the tech-
niques of succeeding sections, is preferred to the development and use of such
formulas.

6. Recursion Property of the Multipliers. It is not readily apparent from
Table III how the multipliers of the (s + 1)-th cumulations can be obtained

from the multipliers of the s-th cumulations. It is possible to establish a re-
cursion formula which is useful for this purpose. Now,a < z <5,

v'+l<a+x>'=<a+x>’+2:‘:<—1>‘(8+1)<a+x 0’

@+ oV'@+2)™" =(@+2)+ ; (—1)" (f) @+z—8)""a+ 2
+1l-a-oV@+z-1"

= ij(—l)‘“‘(t N 1) @+z—0""(s+1—a—2)
and since

(:)(a-*_x)—(tjl)(s'*'l“a—x)=<s+l)(a+z—t)

it follows that
(20) A““(a_—i_—_f) (@ + 2)V'(a+ = )+ s+ 1l—a—-a)V'(@+z -1
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When a = 0 we have

(21) V’Hai’ = xV'ai“l +(s+1—-2)V(@ - 1)L

Formulas (20) and (21), though somewhat formidable in appearance, are easy
to apply. Thus V’(a@ + 2)* = (@ 4+ 2)V(@ + 2) + (1 — a)V’(a + 1). The
recursion formula is especially useful in building up tables of multipliers. The
following form is recommended :

As successive columnar headings use the values a, a 4+ 1, a + 2, etc. and as
successive row headingsusel — a,2 — a,3 — a, etc. Then Va® = 1 is placed
in the upper left cell, V’a directly below Va?®, V’a + 1 to the right of V’a’, etc.
The values of V’(a + z)® are placed in the next diagonal, etc. If this process is
continued the entry V°*'(a 4 z)° will have the entry V’(a + x)* directly above
it and the entry V'(a + z — 1)"™ on its left. Also the columnar heading is
a + z and the row heading s + 1 — a — z so that any entry is obtained by
adding the product of the entry above it and the columnar heading to the
product of the entry to the left and the row heading. The values of V**'g’
are obtained by placing a = 0. They are presented, in Table IV, through s = 8.

TABLE IV
Values of vetize

\\\x
s+l-‘\x\ 0 1 2 3 4 5 6 7 8
1 1] 1 1 1 1 1 1 1| 1
2 0|1 4 11 2% | 57| 120 | 247
3 0| 1 11 66 | 302 | 1191 | 4293
4 o | 1| 2 | 302 | 2416 | 15619
5 o | 1| 57 | 1101 | 15619
6 0| 1| 120 | 4203
7 0| 1 | 247
8 0| 1

The table is easily extended to higher values of s. If a table of values of v***
(x 4+ 1)* is constructed, it will be found to be like Table IV with columns and

rows interchanged. Hence the values of V**'(z + 1)’ are obtained from Table
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IV by reading the multipliers down the diagonal. Thus the values V’(z + 1)
are 1,4, 1, 0, ete.

The ease with which the multipliers may be computed is illustrated with
a = —4. In this case we have

TABLE V
Values of v*+! (x + a)® witha = —4
\\ a+
T
N
AN —4 -3 -2 -1 0
s+ 1— \\
a—=x
5 1 5 25 125 625
6 -4 -39 —284 —1829
7 16 229 2171
8 —64 —1199
9 256

These values agree with those computed more laboriously in section 5.

k
7. Value of ; V'*(z + a)’. Tt is to be noted in Tables III, IV, V that the

sum of the entries in the diagonal having s + 1 terms is s! This is generally
true and results from the fact that

(22) Z:I vz + a)® = ;‘ vz + a)' = s!

k k
In obtaining the values of 2_ V***(z + a)**' from the value of Z}V'“(w + a)’
0 - 0 —

it is noted that V*"'(z + a)® is used but twice. Once it is multiplied by a + =
and once by s + 1 — a — z so that the net result is a multiplication by s 4 1.
k 3 k

It follows that 2 V' (z + )" = (s + 1) ; v**(z + a)° and since 2;_: Viz +1)
- T d) AL S

k k
=1, 2. V(z + a)* = 2!s0 that in general J_ V'*(z + a)' = s!
0 % e/

This property is useful in checking the values of the computed multipliers.

8. The adaptation of the Charlier check. An adaptation of the Charlier
check serves as an excellent check for the computed moments. It is recalled

that the Charlier check gives

atk 5. /s ok
3) S+ =3(0) S

t= z=a
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The components of the right hand member are computed by cumulative totals

as indicated above. The left hand member is obtained by applying different
at+k k

multipliers to the same cumulated frequencies. Thus S+ Df=2(x+a
a 0

+ 1)’f.+a and the multipliers of the cumulated frequencies are V”“(ic_ + a')°
where o/ = a + 1. If a = 0 the Charlier check multipliers are the values

6
v'*(z 4 1)° which can be read from Table IV. For example > (x4 Y. =
A 0
6 6
C% + 11C% + 11C% + C% = 598509 and this checks with 2_ ', + 4 2 z*f. +
0 0

6 6 6
G;xsf,+4zo:xf,+;f,.

9. Application to factorial moments. When u, = f,, v, = 2 = z(z — 1)
xz—=—2)---(z—s4+1) '

k k
zo: x(.)fr — Z Ca+1fzvt+l 27(‘)
0

and since V''z” is O when s < z < k,is s! when s = z,isOwhen 0 < z < s,
k k

(24) >0 = 2 29f, = s! 0.
0 8

It follows that the underscored terms of Table I, when multiplied by s!, give
the factorial moments. Factorial moments, first used by Sheppard [4], have
since come into prominence largely because of this ease of computation.

(s)
The coefficients of (a + b)” are 1, z, x(xz—'- 1) S, xs—" ... If we define
s+1

E () 3
the binomial moment by B, = 2, a_;T f=[6, p. 278] then B, = 5 > 29f, = Cil.
0 . 0

It is also possible to show that the entries under the main diagonal are bi-
nomial moments. In Table I, for example, we let @ = 1 and add the additional
row a = 0 with 0 frequency. Then C} = 729, C3 = 729, Ci = 729 + 3645 =
4374, etc. The new diagonal terms are directly under the old diagonal terms and

7 6
give Boy= 2. 2% =2, (z + 1)“%. . In general the terms B, are given [
1 0

rows below the terms B, and the factorial moments are s! B, ;. Then

(25) F’a,l = 3! :i}—l-

9
For example in the problem of Table I, Fy 3 = Z z*f, = 41C5 = 782,784. The
3

method is especially adapted to the use of Hollerith machines, for positive
integral valyes of I, since it is only necessary to have the machine continue its
cumulation.
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10. The cumulations of zf,. It is possible to use the cumulations of zf, in
securing the values of the moments. Now

a+k k k
; 2, = ; @+ @) fere = 2 @ + Oferale + a)°

(26) ,
= ; C' (@ + a)fora V' (z + a).

When a = 0, (26) becomes

k 8
(27) 22 = 20 e, vy
0 0

We compute the cumulations of zf for the problem of Table I. These are given
in Table VI.

TABLE VI
Cumulations of zf,
z fx zfx Cct C? Cs Ct
6 64 384 384 384 384 384
5 192 960 1344 1728 2112 2496
4 240 960 2304 4032 6144 8640
3 160 480 2784 6816 12960 21600
2 60 120 2904 9720 22680 44280
1 12 12 2916 12636 35316 79596
0 1 1 2916 15552 50868 130464
so that

[ (] 8

> af. = 2916; D, 2. = 12636; D 2°f. = 35316 + 22680 = 57996;

0 0 0
[

> &'f, = 79596 + 4(44280) + 21600 = 278316.

0

In getting moments about the mean from the cumulations of zf , the follow-
ing method is recommended.

(28) i j8+1fr = i ja(x - m)fa: = z:: j‘xfz -m z:: :E. z
and |
(29) z:: Taf, = Z:: C M (@f )V (& — m).

k

k A
When s = 1, (28) gives > Bf, = > Zzf, — m > Zfs and
o 0 ‘

0
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k k
(30) ; izfz = Z jxfx.
0
In the illustrative problem ¢ = —4 so that

zo: Zxf,

—4(15552) + 5(12636) = 972

16(50868) — 39(35316) + 25(22680) = 3564

2268

6
Z izxf,
0

6
; a‘:“xf
and

6
; 2f, = 972; X i, = 3564 — 4(972) = —324; X #'f. = 3564.

k
Formula (30) is of note since it permits the determination of > #f, directly from
0

the cumulations of zf .
The factorial moments are also related to the cumulations of zf,. Thus

(31) ix(a)fz - i (x - 1)(._1)$fz — Z: C'(:cf,)V'(:c _ 1)(0—-1)

k
which results in 3, . = (s — 1)!Ci(zf.).
0

It follows that
C:(xf.t) = SC:I}(f:)- )

For example, the underscored terms of Table VI are respectively 1, 2, 3, 4 times
underscored terms of Table I.

In general the cumulations of zf, , rather than of f,, are recommended since
C(zf;) can be computed and recorded almost as quickly as C(f:), since one less
cumulation is needed to obtain a specific moment, and since the multipliers
needed to get a specific moment are smaller. A technique based on the cumu-
lations of zf is especially adapted to the use of Hollerith machines. Let us take
z. to represent the sum of the z’s for all items in the distribution having the
same value of z. Then zf, = z, and we have

atk atk atk

(32) Z xaf: = Z x""lx, - E C'(x,)V'(x'—l).
If the cards are sorted for z and the tabulator is wired to print cumulative totals
each time z changes, the recording tape gives the successive values of C(z.).
(Care must be taken that there are no blank values of z.)

If a summary punch is available, these cumulations are punched. on cards as
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they are cumulated and these summary cards are used in getting higher cumu-
lations.
If no summary punch is available, it is possible to obtain >, 2f, by the applica-
tion of Theorem I. Thus
atk a+k a+k

22, = ; zz, = Za: C(z)V(2),

a
a+k

-1 when z > a, it follows that E z'fz

and since V(z) = a when z = a and V(z)

can be obtained by adding the entries above the last and then adding the last
entry multiplied by a. This is essentially the Mendenhall-Warren-Hollerith
method of getting 2 z*f= [9, p. 27].

In case ¢ = 0 the technique amounts simply to adding all the entries above
the bottom one.

The value 2 2, can be obtained similarly from the first order cumulations.
Thus

a+k a+k atk
(33) 22 = 22w = 2 C@)V()
and since V(:c_z) = o’ when z = q, V(:c_z) = 2z — 1 when z > a, it follows that
a+k a+k
(34) 2 2 f. = d’Ci(z) + X Cla) (22 — 1).
a a+1

When a = 0, (34) becomes
35) 4:: 2f, = 21: Clz)(2z — 1)

so that the multipliers are the successive odd integers. Thus from the first
order cuinulations of Table VI we have
6 6 6

2 zf. = 2916; D of. = 12636; D 2°f. = 57996.
0 0 0
The cumulative method can also be applied to the method of digiting [17,
p. 425].
It is also possible to obtain the moments from the cumulations of z’f. , z*f.,
etc., since
a+k a+k a4+

Z xc+2fz — E xax2f‘ _ Z Ca+l(x2fz)va+l@

a+k atk atk

Z xa+3 = Z xsxaf; _ Z Ca+1(x3fz)va+1§x—a)
but the cumulations of zf, are preferable for most purposes. The Charlier check
works in all cases. It should be noted that the indicated Hollerith technique
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i
demands onl)L the customary tabulator and not the expensive, time consuming,
card punching, multiplier, [16].

11. Product Moments. Correlation. It is possible to apply the cumulative
technique in getting product moments involving two variables. If we let y.
be the sum of all the values of y having the same value of z, then

a+k

(36) E ' Yfay = Z Yex' = ;’ C.+l(yz)v.+l(i_1’_._)

so that the multipliers are the same as those previously used. When Hol-
lerith machines are used, it is only necessary to sort the cards for x and to wire
the machine to give cumulations on variables z, y, z, etc. If the machine is
adjusted to take totals with each change in x, the tape records simultaneously
the values of C(z.), C(yz), C(2.), etc. With a summary punch it is possible to
form successive cumulations easily. The values Zz**', Zz'y, Z2', etc. are then
obtained by applying the multipliers. When s = 1, (36) becomes

atk
(37) Z TYfay = za: Cz(yz)vz(@)

so that the multipliers are a, 1 — a, 0, 0, etc. When a = 0, the multipliers are
0, 1,0, 0, etc. and when @ = 1, they are 1, 0, 0, etc.
When no summary punch is available, it is necessary to obtain the values of
the moments from the first order cumulations. Using Theorem I
ats

a+k
(38) 2 ayfey = ; C(y)v(2) = aCiy.) + ,.+Zl C(y.).

This formula serves as the basis of the Mendenhall-Warren-Hollerith Correlation
Method, [9, p. 27].
It can be shown in similar fashion that
a+s

(39) 2 Dyfey = ’Cl + g Cly.)(2x — 1)
and when ¢ = 0

(40) 2 D Yfey = Zl: C(y.) 2z — 1).

The method is also adapted to the common problem of finding correlation
coefficients from grouped data when Hollerith machines are not available and
this method is recommended for the determination of these coefficients.

An illustration is presented in Table VII which shows the correlation existing
between college first semester average, X, and preparatory school average, Y, for
1126 students entering the College of Literature, Science and the Arts of the
University of Michigan in 1928. The coded values of X and Y are indicated by
z and y and are positive integers beginning with 0. The coded values are given
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in descending order beginning with the upper left hand corner of the chart.
The values of the cumulations are placed at the right hand side and at the bot-
tom of the chart.

TABLE VII
Correlation with cumulative totals

@@ [@|e|e|o]e] @ w|an|a]| as) ]| a

X 3.99 (3.49 (2.99 (2.49 {1.99 |1.49 | .99 | .49

Y 4.00 |3.50-(3.00—-|2.50-(2.00-|1.50~|1.00-| .50~ .00
- aadl NEN BN

Y 8 7 6 5 4 3 2 1 0

f=

Ty 13 | 50 107| 220 341 179| 121 60| 35| Cz, | Cyy
6 18 5 2 5 5 1 113 lOSL

5 106 2|19 29 27 20 7 1 1] 673] 638

4 178 3| 12 35| 563 44 18 6 5 27 1503| 1350

270 3] 10 20| 55 103 33 27| 11 8L 2568 2160

8%)88|38|88| 385|888

2 330 6 11| 54| 114 67, 46] 19| 13| 3714| 2820

(e

1 173 1 5 19| 45 44| 34| 18 7| 4244| 2993

et

0 .51 2 7 14 10 8 6 4] 4399 2993

Cy. | 61| 259 | 661 1330 2194| 2578 2809, 2923| 2993 12815| 10069

Cz. | 104 | 454 | 1096 2196 3560 4097 4339| 4399| 4399 20245 1126

The lower right hand corner has the entries

Xz 2y
E Z Z 2 where Z zy, Z y, and Z z are obtained by adding
y vy y the cumulations in the columns or rows involved.
Yz 22 2Xf=N

The values C(y,) are easily computed from columns (2) and (3). The values
of C(z,) are computed by forming the cumulated product of the row frequency
and x. The values are recorded when the products contributed by a given row
have been computed. The values C(y.) and C(z;) are obtained similarly.

The value of r is easily obtained from the lower right hand entries. The value
A, = NZzy — (Z7)(Zy) is obtained from diagonal entries, 4, . = NZ2°* — (2z)’
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is obtained from entries in the last row, 4,, = N2y’ — (Zy)® is obtained from

Ay
the last column, and r = \T— is easily computed. In the above problem

z EAII Y
r = .441.
The values M, , M, , 0., o, are also easily obtained from the lower right hand
entries. The successive steps are indicated by the form

Zz Zy M,
Zy Zxy Zy?
zz a2 N Az
Au v Azy \/Au v Oy

VA: | VA.Ay,

M. Oz r

Recent methods of applying cumulative totals theory to correlation are found in
references [9], [14], [17], [18], [19].

The third order moments are obtained by multiplying the entries of C(z,),
C(y), C(z.), Cy.) by 1, 3, 5, etc. as indicated by (40). Thus Zz’f, = 4399 + 3
(4339)+ ete. = 102, 103; Z2’yf., = 63121; Szy’f., = 46047; Zy’f, = 38,633.
It is hence possible to compute the skewness of each marginal distribution from
Table VII. See also [18, p. 657].

12. Conclusion. This paper presents an outline of the computation of
moments with the use of cumulative totals and columnar multipliers. Basic
general theorems are derived and applications are made to one variable and two
variable distributions both with and without punched card equipment. The
formulas assume that the distance between successive variates (or class marks)
is unity, but the reader should have no trouble in adapting the formulas to more
general problems.

In the interest of brevity the development is limited to the descending cumu-
lations. It is possible to parallel the development here by deriving formulas in
terms of ascending cumulations. It is also possible to work out formulas show-
ing relations between columnar, row, and diagonal multipliers. There are

other applications such as to the evaluation of 3" z°, which are of interest. It is
1

possible also that applications may be found for the general theory of sections
2 and 3 which do not demand that », be a power function.

THE UNIVERSITY OF MICHIGAN.
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