ON THE MATHEMATICS OF THE REPRESENTATIVE METHOD
OF SAMPLING'

By ALLeN T. Cralg

1. Introduction. This paper is designed to present certain topics in mathe-
matical statistics which find application in some of the problems that arise in
what has been termed the representative method of sampling.

For descriptive purposes, it seems convenient to consider two aspects of the
representative method. The first of these may be called the method of pur-
posive selection. This method can be roughly characterized by saying that it is
the method employed when the samples are chosen in such a way that each
sample will possess one or more characters, say certain averages, which are
identical with the corresponding characters in the population from which the
samples are drawn. The mathematical conditions which underlie this method
are rather stringent, and both theoretical and practical investigations seem to
have proved that in general no great amount of confidence can be placed in the
results obtained.

The second aspect of the representative method has been styled the method
of random sampling. This method can take either of two forms which we may
call the method of unrestricted random sampling and stratified random sampling.
The first of these is the classical method of procedure. That is, a sample is
drawn at random from a given population and on the basis of these data infer-
ences are made concerning the nature of the population. On the other hand,
when the method of stratified random sampling is used, the population is first
separated into a large number of parts, called strata, and the sample consists
of an equally large number of “partial samples,” each partial sample being
drawn from a different stratum. It appears, both from theoretical and prac-
tical results, that this method of stratified random sampling enjoys many
advantages not shared by the other methods.

We now turn to the main purpose of this paper, namely that of enumerating
some of the theorems and methods of mathematical statistics which serve useful
purposes in this theory. Discussion of how these theorems find application in
the method itself has been reserved for other participants on this program.

2. Estimates. From our preliminary remarks, it is apparent that the repre-
sentative method is much concerned with the problem of estimating certain

1 Presented, at the invitation of the program committee, to a joint session of the Insti-
tute of Mathematical Statistics and the American Statistical Association on December
29, 1938.
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unknown parameters of a statistical population. On this account, we first con-
sider the problem of estimates.

Consider a population with arithmetic mean m and standard deviation o.
Let 21, 22, --- , %a, be n independent items drawn from this population and
let ¢1, ¢z, -+, ¢, be any finite real constants, not all zero to avoid the trivial
case. Writey = cix1 + ¢tz + -+ + ¢azn. Then the expected or arithmetic
mean value of y is

§=E@ =mla+c+ - +d),
and the variance of y is
oy =E{ly —9)") =i + --- + ).
Suppose we inquire into the probability that y will have a value which is within
a preassigned e of its expected value. To this end, let C be the numerical
value of the numerically greatest of the set ¢, --- , ca, 50 that o} < ne’C*.
Then by Tchebycheff’s inequality p, the probability that |y — § | < ¢, where €

is an arbitrarily small positive number, is such that
2

o,
PZI—:;',
or
22
ne'C
p=1— a

o M?

M/n®*, M independent of n, § > 0, then p > 1 — o and by increasing n
the right member can be made as near to one as we please. This means then
that if we have a population with a finite variance and if we construct a linear
function of the observations with coefficients of the nature indicated, we can,
by increasing the size of the sample, make the probability approach one that
the linear function will have a value arbitrarily close to its expected value.?
Now suppose that instead of constructing an arbitrary linear function we
attempt to construct a function which will be an estimate of some particular
parameter of the population. If the estimate is to be most serviceable, we
should like to be able, by governing the size of the sample, to be as certain as
we like that the estimate will have a value arbitrarilynear that of the parameter.
The preceding discussion shows that we can best achieve this by requiring that
the expected value of the estimate be equal to the parameter sought. An
estimate such as that just described is frequently called an unbiased estimate.
The use of such estimates in statistical problems makes it possible to avoid
systematic errors in estimating parameters. In general, unique unbiased esti-
mates of a parameter do not exist. For example, the arithmetic mean m of

In general, this inequality will have little interest. But if C is of the form
1+38

2 Under these conditions, the function of the observations is said to converge stochasti-
cally to its expected value.
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the population can be estimated from the sample x;, ... , z, by any one of a

large number of unbiased estimates such as (z1 + 22 + - - - + £.)/n, (X1 + 2.)/2,

4, and so on without limit. Thus it becomes necessary to make a choice of

the unbiased estimate to be used.. An appropriate criterion is that the unbiased

estimate whose distribution has the smallest variance is the best to use. The
2

reason for this can be seen by examining the preceding formula p > 1 — ‘—7—2’1 .
€

For if y;, and y. are two unbiased estimates of the same parameter and if

2 2

o, < o, ,théeninp, > 1 — %‘andpz >1 - %?we see that 1 — ”—";ismore
€
2
nearly equal to one than is 1 — ‘{? . Because of this fact we prefer, at least
€

in most problems, to use y; rather than y, as an estimate of the unknown
parameter. An unbiased estimate whose sampling variance is a minimum is
sometimes called a best estimate.’® It should not be inferred that the word
“best’’ has any implications other than those stated explicitly in the definition.

The question very naturally arises as to whether we can determine these
best estimates in particular cases. In general we can not determine them, but
under certain conditions we can find best estimates if we are dealing with linear
functions of the observations. A method and the conditions are set forth in
an important theorem due to Markoff. We now consider his method.

3. Markoff’s Method. Let there be given n statistical populations with
arithmetic means m,, m,, --., m, and standard deviations ¢y, o2, ---, 0n
respectively. We assume that no correlation exists between any of the popula-
tions. Furthermore, suppose that each of the n arithmetic means can be
expressed linearly in terms of k unknown, but unique, parameters, say
21,2,---,2. Thus

my = on21 + Gw2e + -+ 4+ aunzk

me = a1 + Qooze 4+ - - -+ Qo2

(1)
My = An12) + Qnole + e + Ankk o

where the a’s are known constants. Likewise, let 7" be a parameter which is
expressible linearly in termhs of the same %k unknown parameters, say T =
biz1 + bazz + - - - + bizi, where the b’s are given constants. We draw a sample
of n independent items, z;, 2, - - - , , , in which one item is drawn from each

3 An estimate of a parameter which converges stochastically (cf. footnote (2)) to that
parameter is called a consistent estimate of the parameter. If a consistent estimate has a
distribution which is normal for large samples and if the variance of that distribution is
smaller than the'variance of any other consistent estimate which also has a normal dis-
tribution for large samples, then the estimate is called efficient. It should be observed that
our definition of best estimate requires an unbiased estimate, whereas consistent and
efficient estimates may be biased.
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of the n populations. On the basis of this sample we seek to determine a set
of numbers A1, Ae, .-+, Aq such that 77 = M2 + Ntz + - - - + AaZa is the
best estimate of T'.

Before attempting to find the solution, if one exists, let us first examine the
mathematical implicatiens of the problem. In the first place, in order that
parameters z;, --- , 2; may exist, it is necessary and sufficient that the ma-
trices A and B, where

G Gy --- Quk QGu Qi -+ QGix My

A=l Om-ccom| o ap_ |0 Gm -0 m

Qn1 Qp2 « ¢« Qng Gn1 Qpg + <+ Ak My

have the same rank. Thus we require that A and B have the common rank R.
This being satisfied, we note further that if & > n, there will be infinitely many
values of the z’s which will satisfy the equations (1). Thus we require in addi-
tion that ¥ < n. Finally, we note that if the common rank R is less than k,
there will be infinitely many values of the 2’s which will satisfy the system (1).
Hence we must have R = k < n.
We now turn to a consideration of the solution of the problem. Whatever
the values of the \’s, we have for the mean value and the variance of 7’
E(T,) = Nm 4+ .-+ 4+ Aamy
= X;Ea;,-z,- + .-+ )\,.Ea,.,-z,-,
and
o = Noi + «-- + \idh,
respectively. Since E(T’) must equal T as a part of the condition for a best
estimate, then
MZayiz; + oo+ MZaniz; = bz + -+ bz
identically in the 2’s. That is, the coefficients of 2, - - . , 2 in the left member
must equal the corresponding coefficient in the right member. Accordingly,

auM + aade + -+ + @G = by

) M + Gl + -+ + Anahn = b2

®

auM + Geh + <o+ F Gl = bi.

If these equations are to have solutions for A\;, ..., N, we must make the
additional assumption that the matrix C, where

an Gy +-- G by

C = a’m Oga -+ Qnz b

Gk Ogk +++ Guk Dy
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has the same rank as the matrix of the coefficients, namely R. If this condition
is satisfied we can write equations (2) in the form

auhi+ - F @G = b1 — @GNk — 0 — Gl
® :

audi+ -- F @M = br — Gy N1 — <o — Gnkla
.and solve for A;, - - . , Ax in terms of the a’s, the b’s, and Agy1, -+ , An. Here,
without any essential loss of generality, we take the non-vanishing k-rowed
determinant to be that of the coefficients of A1, - - . , Ax in equations (2). Thus
for arbitrarily assigned values of Ai1, - -+, Aa, We can compute the values of

A1, -+, A and these n values of the N’s will give us a T’ which is an unbiased
estimate of T. That there will be, in general, an unlimited number of sets of
values of the \’s is in keeping with our previous observation that unique unbiased
estimates usually do not exist.

The next part of the problem will consist in determining which, if any,
of the above sets of A’s will make ¢%/ a minimum. We recall that o}, =
Mol + ...+ Ao2. In ok let us replace A1, ---, A by their values (in
terms of Ax1, -+ - , A\s) Which we obtained by solving the system (3). Then
o7+ will be expressed in terms of o1, - - - , o, the a’s, the b’s, and g1, -+« , Ma.
We next take the partial derivative of % with respect to each of Axy1, +++ , An.
On equating these partial derivatives to zero we will have a system of n — &k
linear equations in the n — k unknowns Mgy, ---,A.. If these equations
yield unique values for Mey1, ---,As, they will in turn determine unique
values of Ay, -+, A\x. This gives us a unique set of N’s such that at one and
the same time

E(T") = T and o7 is a minimum.

The procedure which we have just outlined is most tedious to carry out in a
particular case. Because of the insight of Markoff, a much better scheme is
available for finding the best estimate of 7. Consider the function of

21 )yt y 2k ,
2
F(zy, -+ ,21) = E(x,_—_m,)
4]
— Z <x,- — Q121 — - — aijlc)2
(73 )
oF oF . oL -
Evaluate 2 and equate these partial derivatives to zero. This yields
1 %

the following system of k linear equations in the k unknowns 21, .-, 2x .

2
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If the system (4) yields unique values for the 2’s, these values, when substituted
in T, yield exactly the same estimate of T as was found by substituting for
the M's in 7".

Perhaps an illustration will make this clearer. Suppose we have n = 2
populations and that the means m; and m. are expressible linearly in terms of
k = 1 parameter z; . Our equations (1) become

m = Guz
1"

me = A2121 .

Similarly, we have T = biz; and T’ = A1 + Nex2. We first determine the
Ns such that T is the best estimate of 7. In accordance with the preceding
steps, equations (2) become

2" anM + azd: = by,

and the system (3) becomes

(3 VL Sl SO
an
Then
o1 = Mol + M3
by — am\
_ (-1__“*21_3) o+ Mok,
an
because of (3'). Thus
2 2
9o _ — 2021 (bs 2— a1 he)o1 + 2ot
oA an

2

.« 2 . a(T ’
and for a minimum o7, we write 6_)\{ = 0 so that
2

A= — a;z;b;o‘i 3°
a1102 + G2101
Since
M = (b1 — au)e)/au,
then

2

biano:
2 32 2 2°
a1103 + 02101

A=

Our best estimate of T is found from 7" and it is

2
_ blano'gflh + biaai012:

2 2 2 2
a0z + Gz101

TI
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By Markoff’s method we would form the function

2 2 2
F(z) = E (xi —aflilz1> _ (xl —61a1121) + (112 —G:lzlzl) )
7

The system (4) reduces to merely

2 2

4 110221 + Q210122

CY) = 7 2 2 & *
a1102 + G2107

We substitute this value of z; in T = bs2; and obtain

2 2

_ bianoar: + biamoi®:
- 2 2 2 2
a1103 + az101

J
which is the estimated value T' above.

4. Neyman’s modification of Markoff’s Method. We are indebted to Ney-
man for a modification and adaptation of the Markoff method so as to make
the method applicable to some of the problems of stratified random sampling.
One of his examples will best illustrate the method.

Suppose that a given population is divided into n strata. Let the jth stratum
contain M; items and let these items be uj, uz, -+ -, ujx; . The mean and
the variance of this stratum are then

_ 1 1 _
= 0, ; up and of = i, ; (ue — ;)%

Let T be the parameter T = My, + Myi, + --- + M,u,, so that
T

of the means of the n strata. We draw at random a sample of N items, the

sample consisting of n partial samples, one partial sample being drawn from

each of the n strata. Suppose there are n; items in the partial sample from

the first stratum, 7, from the second, and soon. Thusn;+ns+ - +n, =N

and the entire sample consists of the n partial samples

the mean of the population, is expressed as a linear function-

Z11y, T12y * ** 5 T,
To1, X2z, =+ , Lan,
xnl,xrﬂ, e ,xrmno

From these N data we propose constructing an estimate
T =Mou+ --- + Mg Zing + o0+ AuaZm + <o+ Mg, Ton,
which will be the best estimate of 7. Now the expected value of 7" is
E[T] = E’[; Zk: )\,-kxjk] = ,Z ; Nix B (zn)
= ; ; Niw il
= ; u; ; ik
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which, by hypothesis, must equal 7. Thus
n nj n
D SVES

identically in the %’s. Hence Za;(M; — Z\;) = 0 which requires that the

coefficients of 4, , @2, --- , 4, must be zero. That is
ny
Z AN = M,
1
Nn ’
; Mk = M.

Of course there are infinitely many A’s which will satisfy these equations. But
we can eliminate all but one set by imposing the condition that o7 shall be a
minimum. The algebra of mathematical expectation can be used to show that

> Min; —nl (1 : M; 1 ’

1 M;

2
which will be a minimum when > ()\jk — 7% > )\ik> =0,j=1,2,.-.,n. Since
i
this is a sum of real squares, each term in the sum must be zero. Thus,

Niw = ?% > Nix. Since Y \jx must equal M; in order that E(T’) = T, then
i

N = % which uniquely determines the A’s and hence our best estimate of 7".

1
It is important to observe that Neyman’s adaptation does not assume that

the various strata are uncorrelated nor that there are necessarily replacements
after each drawing in taking the sample.

5. Estimation of Ratios. In certain problems in representative sampling it
may be necessary to estimate both the numerator and the denominator of a
fraction, say T/U. If T' and U’ are linear estimates of T and U then for large
samples both 7’ and U’ will be approximately normally distributed in most
cases. Further, if T’ and U’ are correlated, they will usually be approximately
normally correlated. Geary has proved that if we write

_b+T
a+ U’
where a and b are constants and U’ and T are measured from their expected

values, then
aV — b

= 2 z
\/Vzo'U, — 2rVopou + a7

is approximately normally distributed with mean zero and unit variance pro-
vided @ > 30y-. Here r is the correlation coefficient between T’ and U’. For

14
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large samples this provides a convenient method of testing the significance of
the difference between an observed and a hypothetical ratio of two linear
estimates.

6. Fiducial Inference. After an estimate of a parameter has been made, it
is usually desirable to make some inference about the true value of the pa-
rameter. For many years the concept of probable error was used in this con-
nection. But the use of the probable error involves the assumption that all
values of the unknown parameter are equally likely. This assumption is
questionable and efforts to avoid making the assumption have led to a theory
called fiductal inference. This method of statistical inference has broad implica-
tions but limitations on our time do not permit our discussing the topic. At
the close of this paper, we give certain references to the subject, including some
of an expository nature.

7. Conclusion. As stated in the introduction, this paper purports to give
an exposition of some of the topics in mathematical statistics which find applica-~
tion in the representative method of sampling. Necessarily considerable
selection of material had to be made. We believe, however, that the problem
of the best estimate and an appropriate method of obtaining such an estimate
are fundamental, and we hope that our exposition has helped to make clear
these concepts of mathematical statistics which have proved so useful in the
representative method.
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