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The proof consists in integrating f(z)F(y)dzdy over the area bounded by the
two linesz + y = sand z + y = s + As, as shown in Figure 3. '

THEOREM 4. If x obeys a law [ Sf(@)dz = 1, and y obeys a law [ F(y)dy =1,
then the difference, w = z — y, will obey the law [ R(w)dw = 1, where R(w)

= [ 100 + 0 Fa a.

The proof consists in integrating f(x)F(y)dzdy over the area bounded by the
two linesz — y = wand £ —~ y = w 4+ Aw, as shown in Figure 4.
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MOMENTS ABOUT THE ARITHMETIC MEAN OF A
HYPERGEOMETRIC FREQUENCY DISTRIBUTION

By HaroLp D. LARSEN

In a recent paper' Kirkman has developed a method of continuation for
obtaining the moments of a binomial distribution. Although other investi-
gators’ have found various methods which are perhaps superior from the
standpoint of elegance and compactness, Kirkman’s method is of some impor-
tance inasmuch as it is adaptable to use in a course in elementary statistics.
With this thought in mind, we shall extend Kirkman’s method to obtain the
moments of the hypergeometric distribution of Table 1.

TABLE 1
Variate Relative Frequency
v v
0 nCoa(O)ﬂ(n) /N(n)
1 2C1aMBB=D / N ()
2 ,,,Cga(2)ﬁ(”_2) /N(n)
n ACra™B® /N

1W. J. Kirkman, ‘“Moments About the Arithmetic Mean of a Binomial Frequency
Distribution,’’ Ann. Math. Statist., vol. vi, no. 2, June, 1935, pp. 96-101.

2 For example, J. Riordan, “Moment Recurrence Relations for Binomial, Poisson and
Hypergeometric Frequency Distributions,”” Ann. Math. Statist., vol. viii, no. 2, June,

1937, pp. 103-111.
3 For the Poisson distribution, this method degenerates into the application of a well-

known recursion formula.
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The hypergeometric distribution above can be conceived as being generated
in the following manner. From an urn containing N balls, « = Np white and
B = Ngq black, n balls are drawn without replacements. The probability that
exactly v of the balls are white is

P, = .C. a(v)ﬂ(n—v) /N(n)
n )
where
™ =ala—1)(a—2) - (@ —v+1),
o® =1, ete.

It may be noted in passing that the hypergeometric distribution reduces to a
binomial distribution when n = 1, or N = .

For the distribution of Table I, let m; denote the kth moment about the
origin, and let u; denote the kth moment about the arithmetic mean. Then
by definition

n
my = E:v"P.,,
vl
and
= k
Mr = E(v—ml) P,.
v=0

It is apparent that these moments are functions of the parameters «, 8, n and N.
In particular,

my = F(ay B, n, N)'

We shall have need of the hypergeometric distribution of Table II. For the
latter distribution, let v, denote the kth moment about the origin; i.e.,

n—1
Ve = E ka;.
v=0
TABLE II
v P:
0 wiColee — DOBED/(N — 1)
1 n—1CI(Ol —_ 1)(l)ﬁ(n—2)/(N _ 1)(n—l)
2 n1Ce(@ — 1)@= /(N — 1)=D
n—1 wiCasl — 1)-DBO/(N — 1)0—0

Comparing Table I with Table II, we see at once that
1) w=Fa—-18n—1N—-1).
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In other words, »; is equal to the expression obtained from m; upon replac-
ing @, n, and N respectively by « — 1, n — 1, and N — 1.
Now consider

n
k
mp = Ev P,
ve=0

= Z v P,.

v=1

Replacing » by v + 1, we have

n—1

me =2, 0+ 1)*-Pop
v=0

_ na nol 1 (n — 1) (a — ne ﬂ(n—v—l)
- N Z‘o‘f @+1D vlin — v — 1)1 (N = 1)»D

n—1

=5 L0+ DR,
whence, expanding the binomial and summing term by term,
2 me = n_; {ve—1 + £-1C1va—2 + 1x1Covis + - -+ + 1}.

By repeated use of (1) and (2), we can obtain quite readily the moments
about the origin for the distribution of Table I. It follows by definition that

moe = E P, =1,
=0
and, similarly,
n—1
w=2 P =1
v=0

Setting k = 1 in (2), we have

m = ’I’V_"‘-yo = na/N.

Setting k = 2, and then using (1), we obtain

W=P—;{V1+Vo}

_nafn— Da—1)
—w{—'zv_—l‘“}

n(z) a(2) na

= 7o Tx
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In a similar manner,

mz = %a{llz + 21!1 + Vo}
_ nha (n — 1)(2)(a - 1)(2) n—1Da-1)
_W{ w-—n® T3 x_1  T!
n(a) a(a) ,n(2) a(2) ne
=m0 T3 je Tty

The coefficients are seen to follow the same law as for the binomial distri-
bution. As a matter of fact, if we replace «”/N® by p” in the above m’s,
we obtain precisely the corresponding formulae for the binomial distribution.
The coeficients for some of the higher moments are

my = {17 6) 77 1}
ms = {1, 10, 25, 15, 1}
{1, 15, 65, 90, 31, 1}.

The moments about the arithmetic mean can now be determined from the
foregoing m’s by means of the semi-recursion formula

3
[

3) we = my — Cuspymy — :Copr_ami — - -

I have tried several formulae for this purpose, but it seems impossible to avoid
a great deal of tedious reduction. Since the reduction in any case only involves
algebraic manipulation, the details will be omitted. The formulae for the first
few moments follow:

po =1
m =20
w = npg y—

~ (N — n)(N — 2n)
us = npglg — p) N-DN=-2"

If the higher moments are required in a practical problem, it appears to be the
best course to first calculate the values of the m’s, and then use (3).
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