ON THE DISTRIBUTION OF THE “STUDENT” RATIO FOR SMALL
SAMPLES FROM CERTAIN NON-NORMAL POPULATIONS'

By H. L. RieTz

Much of interest in the theory and practice of statistical methods has been
developed around the distribution function,

(1) I'(N/2)
w*P(N — 1) (A + 2

2
of the “Student’ ratio, z = a:__—_—g_r_n’ where Z denotes the mean, s the standard

deviation of a sample of N items, say 1, «2, - -+, T, taken at random from a
normally distributed parent population of mean, m.

The investigations of certain non-normal parent distributions by Shewhart
and Winters [1], Rider [2], E. S. Pearson [3], M. S. Bartlett (4], and R. C. Geary
[6] indicate that applications of the ‘“Student” theory give more satisfactory
results than the classical theory for a considerable variety of non-normal parent
distributions, but some of these investigators find that the theory fails in certain
cases to describe the facts to an extent that suggests further experimental
sampling investigations along this line whenever suitable data are available.
Others infer that a completely satisfactory analysis of the position of the “Stu-
dent” z-test will be possible only if the theoretical distribution of z in samples
from the non-normal distribution in question becomes known. Several of the
above named statisticians have attributed the failures of the distribution (1)
to describe their data, in large part, to the correlation between £ = & — m and s.
For this reason, there is considerable interest in the degree of correlation between
r = & — mand s, and especially in the nature of the regression of s or of s* on z.

The present paper gives an analysis of data obtained by experimental sampling
from two non-normal distributions whose sources we shall now describe. The
parent distributions with which the paper is concerned arc theoretical distribu-
tions resulting from certain urn schemata devised [6] by the writersome years ago.

In 1925, Leone E. Chesire, in an unpublished thesis for the degree, Master of
Science, at the University of Iowa, obtained data by experimental sampling,
that seem to be appropriate material for a study of the correlation of mean and
standard deviation for small samples from certain non-normal distributions.

One of the original bivariate parent populations, whose marginal totals we are

! Presented in part before the American Mathematical Society under a somewhat
different title, November 26, 1937.
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266 H. L. RIETZ

using, exhibited linear regression while the other exhibited non-linear regression.
For convenience in distinguishing between the two cases, we shall speak of
material from the linear case as Case I and that from the non-linear case as
Case II. After devising a scheme for drawing pairs of variates at random,
5,000 pairs were drawn in sets of five for each of the two cases.

While the primary purpose of this experimental sampling was to study the
distributions of means, standard deviations, and correlation coefficients [7] for
small samples from the non-normal populations, we have as a by-product, in the
marginal totals of the correlation tables, four sets of 1,000 pairs of means and
standard deviations. However, since three of the four sets of marginal totals
of the two theoretical parent correlations tables are alike, we have actually
only two significantly different sets to consider.

Case I. For the case of linear regression of y on z in the bivariate parent
population, the parent distribution from the marginal totals may be very simply
described by showing the frequency distribution in Table 1.

TABLE 1
Sums in second throw of dice-values
of stochastic variable............... 2 3| 4| 5| 6| 7| 8| 9|10 11|12
Frequency................. ... ... ... 6 |12 118 12430 36|30|24 18|12 6

The moment coefficients and B’s which characterize the distribution given in
Table 1 are:

Mean = 7, pe = 53, us = 0, ps = 80.5, B =0, B = 27%%.

Each of the 1000 sets of five drawn from the distribution in Table 1, yields a
mean § and a standard deviation, s, , which we shall denote by w to make our
notation simpler to write. Table 2 is the correlation table of the pairs (7, w).
The correlation coefficient r.;, between mean 7 and standard deviation s, = w
has a value

Twy = —0.020 £ 0.021

which differs insignificantly from zero.
The uncorrected value of the correlation ratio of w on § is

Ty = 0.182.

When we remember that the correlation ratio is not free to vary in the negative
direction from 0, and apply the Pearson correction [8] for this situation together
with the ‘“‘Student” correction [9] for grouping, we obtain for the corrected,
7wy , the value 0.133.

It becomes fairly obvious that significant correlation exists and that the
regression is non-linear. Indeed, it has been shown recently by Geary [5,
pp. 178-9] that normality in the parent distribution is both a necessary and
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TABLE 2
Correlation of mean §, and standard deviation s, = w, of samples of five items for Case I.
Mean of 7’s = § = 7.141. Correlation coefficient rwy = —0.020 £ 0.021,
8y = w = 2.079. Correlation ratio of w on §, nwy = 0.182 (uncorrected).
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sufficient condition for the independence of the mean and standard deviation
in samples.

Since the number of correlated items, N = 1000, is fairly large, we cxamine
into the significance of 7.; = 0.182 under the assumption that Nn%; is approxi-
mately distributed [10] as x* with @ — 1 = 16 degrees of freedom. This criterion
gives odds in favor of significant correlation on approximately a 100 to 1 level of
probability.

Next, the means of arrays, @, , were plotted to scale on Table 2 to give a
general notion of the nature of the regression of w = s, on §. The location of
these means of arrays of w’s affords at least a suggestion of parabolic regression
[11] with the curvature concave downward as is to he expected when 8, — 8 —
3 < 0, where the §8’s relate to the parent distribution.
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The next step taken was to analyze the variance, as indicated partly in Table 3,
where w; ( = 1,2, ..., N). denotes the stochastic variates, a the number of
arrays of w’s, W,the mean of the N values of w; , n,(p = 1, 2, - .. , a) the number
of variates in an array marked p, @, the mean of the array marked p, and where
the class interval in Table 2, is taken as the unit.

TABLE 3

Sum of squares

For deviations of means of arrays c _ —Ng
Of W8, ‘;n,,(w,——-w)’—%o a—1=16
For deviations of variates from _ N,
i — =11 —a =
the means of their arrays........ Z Z (wi = @) /098 N —a =98
N
Total............oooiiiiii.. 2 (wy — D)? = 11,478 N —1=0999

t=1

In the exhibit given in Table 3, we use the usual algebraic identity

N a
2) 2 (= o) = Xony(w, — W) + 20 2 (i — W),
1= p=
where the double sum is made up of a sum of N squares.
By dividing the members of (2) by N, we have

N a
®  yR-w =g Y am, -0+ T - )
t=1 p=1

The writer has used the identity (3) for many years in lectures to beginners in
statistics in proving the equivalence of two definitions of the correlation [12]
ratio and is strongly of the opinion that the equality in form (3) appeals more
readily to the intuitions of many readers, because of their acquaintance with
statements in the language of averages, than does the equivalent equality (2)
in the language of sums of squares.

In an extended and more compact form, the analysis is shown in the standard
form in Table 4.

TABLE 4
Variance Dirtedom | squares | square s-test
Between arrays....... 16 380 23.75 $ log. 23.75 = 1.584
Within arrays......... 983 11,098 11.29 3 log, 11.29 = 1.212
Total............... 999 11,478 Difference = 0.372

When the sum of squares equal to 380 associated with variance between arrays
is further analyzed into a part which could be represented by linear regression,
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and a part which represents deviations of the calculated means of arrays of w's
from a straight regression line of w on #, the deviations being measured parallel
to the w-axis, we find that the part of the amount 380 represented by linear
regression is given by

Nrigsh = 1000 (.00040)(11.487) = 4.3.

Since both r = .020 = 0.021 and the small value, 4.3, as part of the sum of
squares amounting to 380, may well be regarded as sampling fluctuations, we
revert to the figures in Table 3 and apply the Fisher z-test. It turns out that the
correlation is significant on practically the 100 to 1 level of probability which
conforms well with the above inference based on the assumption that N Moy 1S
distributed as x*, with a — 1 degrees of freedom.

Next, we computed 1000 values of the “Student’ ratio z = (§ — 7)/w, for
CaseI. One of these 1000 valucs was of the indeterminate form (6) A frequency
distribution of the 999 determinate ratios is shown in column (3), Table 5.

By grouping together the class frequencies at the tails of the theoretical dis-
tributions until each of the end class frequencies is not less than 5, and calculating
x’ for the observed distribution in column (3) in comparison with the theoretical
distribution in column (6) as found from the “Student” theory in samplesof 5
items from a normal distribution, we obtain x* = 3.728 with 11 degrees of
freedom.

Thus, the differences between the distribution in column (3) and the “Student”
distribution for N = 5 shown in column (6) are not only insignificant under the
x’-test, but are so small as to be expected in a relatively small percentage of
statistical experiments even if the “Student’ z-distribution were the theoreti-
cally exact distribution of our ratios.

The usual moment coefficients of the distribution of observed 2’s in column (3),
Table 5, are:

pr = 0.033533,  pu; = 0.254383, B, = 0.55955,
8 = v/ps = 0.69799, us = 2.22504, B: = 9.37353.

Since the value, 0.69799, of the standard deviation of the observed distribution
differs very little from 1/4/N — 3 = 0.70711, the normal curve fitted by using
the standard deviation of the observed distribution (column 4, Table 5) differs
very little from the normal curve with the origin at the population mean and
standard deviation, 4/2/2, (column 5). Furthermore, the application of the
x-test to columns (4) and (5) of Table 5 with class frequencies in the “tails”
grouped as above gives x* = 2.91 with 9 degrees of freedom.

The moment coefficients of the observed distribution indicate a markedly
leptokurtic and somewhat skew distribution but the indications of skewness
may be traced mainly and perhaps entirely to the presence of the two extreme
variates at the upper end of the distribution and separated about three times the
standard deviation from the next class frequency that differs from zero. By
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TABLE 5
Distribution of the ratios, z = (§ — 7)/w in sam?)les of N = 5 for Case 1.
(¢V] (2) 3) 4) (6) (8)
Normal distri-
o Normal distri- butloln of S'D'l From the Student
e=@-ne | RN QR | Pohaved © T VA3~ VB distrigution for
column (3) in same units as N=
z (measured from
population mean)

-6.0 -12 0.1
-5.5 —11 0.1
-5.0 —10 0.1
—4.5 -9 0.2
—4.0 -8 0.3
-3.5 -7 0.6
-3.0 —6 2 0.05 0.1 1.3
—2.5 -5 1 0.75 0.4 2.7
—2.0 —4 5 3.6 6.2 7.0
—-1.5 -3 17 27.7 32.0 21.0
-1.0 -2 67 98.5 105.9 70.5
—-0.5 -1 216 210.8 217.2 217.5
0 0 357 279.3 275.4 356.2
0.5 1 226 225.7 217.2 217.5
1.0 2 75 111.7 105.9 70.5
1.5 3 22 33.7 32.0 21.0
2.0 4 5 6.2 6.2 7.0
2.5 5 1 0.75 0.4 2.7
3.0 6 3 0.05 0.1 1.3
3.5 7 0 0.6
4.0 8 0 0.3
4.5 9 0 0.2
5.0 10 2 0.1
5.5 11 0.1
6.0 12 0.1
999 998.8 999.0 999.0

excluding these two variates from our

moment coefficients:

S =

u1 = 0.023571,

i = 0.662202,

us = 0.022264,
pe = 1.009673.

In the observed distribution thus mddified, by excluding the extreme upper
class frequency 2, the evidence of skewness has disappeared.

B
B2

calculations, we obtain the following

0.0058786,
5.2507062.

Case II. For our Case II we have a frequency distribution as shown in
Table 6.
TABLE 6
Totals in sccond throws of two dice- |
values of the stochastic variable....| 2 | 3| 4| 5| 6| 7| 8| 9|10 |11 |12
Frequency . ..... ..... .. ... 1|49 (16]25|36|35]|32 | 27 120 | 11
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Again, since with the uncorrected #,; , Table 6, we have Nn; = 31.5, and
since Nn3; is approximately distributed as x* witha — 1 = 17 degree of freedom,
we have odds of the order of 100 to 1 against so large a value being a mere
sampling fluctuation.

TABLE 7°

Correlation of mean 4, and standard deviation s = v, of five items for Case 11, mean of
4 = 4 = 6.971, Correlation coefficient ro5z = —0.012 % 0.020.
. v =8y = 2.044. Correlation ratio of v on 4, nvz = 0.177 (uncorrected).

T
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Now proceeding to the analysis of variance, we substitute our numerical values
derived from Table 7 in the identity

«

4) é (i —)° = pZ np@, — ) + 22 2 (v — )"

=1
and obtain, in terms of class intervals as units,
10,871 = 340 4 10,531.

An outline of the analysis is exhibited in Table 8
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TABLE 8
. D f f M
Varisnce Tooton | squares | square 2-test
Between arrays....... 17 340 20.00 4 log. 20.00 = 1.50
Within arrays......... 982 10,531 10.72 4 log, 10.72 = 1.18
Total............... 999 | 10,871 Diff. = 0.32

The moment coefficients and 8’s which characterize the distribution in Table 6
are:

Mean = 7.972, = 4.888,  ps = —1.755,  p = 58.724,
Br= 00264, ps = 2.449.

As in the linear case, samples of 5000 pairs of variates were drawn in sets of
five by Miss Chesire. Analogous to Case I, our first concern is with the regres-
sion of the standard deviation, s, = v, of u from a sample of five on its mean
value, 4.

The correlation table for values of % and v is shown in Table 7. The correla-
tion coefficient is
Tz = —0.012 = £0.021, but the uncorrected correlation ratio of » on 4 is given
by

Ma = 0177
After applying the Pearson and Student corrections, we obtain the corrected
7s = 0.131.

When the sum of squares, 340, associated with variance between arrays is
further analyzed into a part which could be represented by linear regression,
and a part which represents deviations of the calculated means of arrays of
v’s from a straight regression line of v on %, the deviations being measured parallel
to the v-axis, we find that the part of the amount 340 represented by linear
regression, would be only Nr’s; = 1000 (.000144)(10.871) = 1.6.

Since both r,5 = —0.012 & 0.021 and the small value, 1.6, as part of the sum
of squares 340, may well be regarded as sampling fluctuations, we revert to the
figures of Table 8.

The difference of the logarithms in the last column of Table 8, is 0.32, which
corresponds to a level of significance of the general order of 100 to 1. Next,
we calculate and plot on Table 7 the means of arrays of v’s to give a general
notion of the regression of von 4. The location of these means of arrays suggests
rather strongly that the regression of v on # is parabolic with the curvature
concave downward as we should expect from the fact that B — g1 — 3 < 0,
where the 8’s pertain to the parent distribution.

Next, we computed 1000 values of the “Student” ratio, z = (u — 7.972)/v,
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for Case II. One of these ratios was infinite. A frequency distribution of the
999 determinate ratios is shown in column 3, Table 9.

The observed distribution (column 3) and the “Student”’ distribution (column
6) of Table 9, to be expected in samples of N = 5, when samples are drawn from
a normal distribution, are in close agreement. In fact, when we group together
the tail frequencies of the theoretical distribution until each of them is not less
than 5, the result of testing the goodness of fit gives x* = 17.187 with 11 degrees
of freedom. This gives a value in the neighborhood of 0.1 for the probability,
P, that as large or larger deviations than that experienced will occur, due to
chance fluctuations, in a single repetition of the experiment. In other words,
on the basis of this test, the indications are that we should have in the long run,
as large or larger deviations than we have experienced in this case, in about
10 per cent of a large number of sets of sampling of 1000 per set even when the
sampling is from a normal distribution.

TABLE 9
Distribution of the ratio, (4 — 7.972)/v in samples of five for Case 11.
1) 2) 3) 4) (5) (6)
Normal distri Ni;)‘:gl:,l, evi?:ll;i- Student's z-dis-~
ormal distri- et
r=(@—1.9T/ | t= 3?/ N-1 Observed bution fitted to | 5y = DI A i
= Column (3). d ri\/iN ; 8 po ulat‘i:n
and origin a with N =5
population mean
—-5.5 —11 1 0.1
—-5.0 —10 0.1
—4.5 -9 0.2
—4.0 -8 0.3
-3.5 -7 0.6
-3.0 —6 0.1 0.1 1.3
—-2.5 -5 2 0.4 0.4 2.7
-2.0 —4 3 4.3 6.2 7.0
-1.5 -3 23 25.4 32.0 21.0
-1.0 -2 48 92.0 105.9 70.5
-0.5 -1 203 205.3 217.2 217.5
-0.0 0 380 278.4 275.4 356.2
0.5 1 226 231.4 217.2 217.5
1.0 2 72 117.5 105.9 70.5
1.5 3 24 36.5 32.0 21.0
2.0 4 9 6.9 6.2 7.0
2.5 5 3 0.8 0.4 2.7
3.0 6 4 0.1 0.1 1.3
3.5 7 1 .6
4.0 8 .3
4.5 9 .2
.1
Bt
.1
Total 999 999.1 999.0 999.0
© o 1 !
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SUMMARY

1. The linear correlation coefficient, r, of the mean and standard deviation
differs insignificantly from 0 in each case.

2. The correlation ratio of the standard deviation on the mean differs sig-
nificantly from 0, and the regression of the standard deviation on the mean
conforms, in its general aspects, to expectation under the theory of Neyman [12].

3. The indeterminate “Student’ ratio of the form, g, in Case I and that of the

form, (constant)/0, in Case II are probably due in part to grouping into class
intervals, but the infinite ratio would undoubtedly have had such a large value
that it would be excluded from calculations under any one of the known criteria
for rejection of extreme observations.

4. Although the rejection of one indeterminate ratio in each of the two cases is
slightly disturbing, the evidence presented by our analysis of the experimental
sampling lends support to the view that the results of the “Student’’ theory are
almost certainly applicable, for many purposes, when the parent distributions
are of such non-normal types as are involved in our sampling.
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