ON SOME PROPERTIES OF MULTIDIMENSIONAL DISTRIBUTIONS

By J. LuroMskI

If, in a system of random variables z,, 3, - - - , &, some variables are con-
nected by a functional (exact) dependence, the n-dimensional distribution
law has a degenerated character. In other words, in this case the probability
is not distributed over the whole n-dimensional space, but is concentrated on a
manifold of a smaller number of dimensions which may be called the skeleton
of the distribution.

The character and the dimensionality of this manifold are determined by the
character and the number of functional connections between the variables
Xy, &2, -+, Z,. If all these connections are linear, the skeleton will be a linear
manifold (hyperplane). The investigation of the skeleton of distribution
represents obviously an interest from the theoretical as well as from the practical
point of view.

In the present paper we establish some criteria which enable us to determine,
for any distribution possessing finite moments of the first and second order, the
linear skeleton and to find the variations of the dimensionality of this manifold
when the variables are subjected to a linear transformation.'

We also apply the obtained results to the case of a multidimensional normal
distribution (generalized by H. Cramér to the case of linear dependence between
variables).

§1
Let
(1) T1,%z, ", Tn

be a system of random variables defined in the n-dimensional euclidean space
R, by the multidimensional distribution function F(z;, z;, -.-, z,). The
function F is defined on all Borel sets in R,. We assume the existence of the
following moments:

E(x;) =ffj; zidd - dF (x1, 22, -+ 2,) =0

E(x;x,»)=//---fk:c;xjddu-dF(xl,xQ,u-x,.)=pi,~

where the integrals are to be understood in the sense of Lebesgue-Radon.

1The questions of degeneracy of a statistical distribution were for the first time
considered—from a somewhat different point of view--by R. Frisch [1].
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If the variables z, , ., - - - , 2, are connected by a relation of the form Cyz;, +
Cozy + - -+ + Coza= 0 (2C* 5 0) (are linearly dependent), we call this relation
a linear bond of the distribution F.

We shall call a system of linear bond of the distribution F complete, if all
bonds of the system are linearly independent and every linear bond of the
distribution depends linearly on the bonds of the system.

By the (linear) decrement of the distribution F (we denote it by k(F) or simply
k) we understand the number of bonds in a complete system. We may, cor-
respondingly, call the difference between the number of variables and the
decrement of the distribution the (linear) rank of the distribution, or the dimen-
sionality of the linear skeleton.

The decrement (rank) is given by the following

TureoreM 1.° The decrement (rank) of the distribution F is equal to the decre-
ment® (rank) of the matriz

el 45=12-..mn
of the moments of the second order of this distribution; that ts
2 k(F) = k(|| wi; ), L,j=12..-n
Proor. Consider the form
3) v = b1+ bt + .- - + .7,
where &, t2, - - - , I, are arbitrary real numbers, not all equal to zero. Let

Q= EG) =ff _/;n(tlxl'i‘tzxz-i‘ coo +toza)?dd ...

4) cor dF (21, 22, -+ - Z0)

E ts't,'ff f rvizidd - dF (21, 22, -+ 2,) = tit; i .
$,7=1 Rn 3 1

=

@’ is a non-negative quadratic form in the variables &, &2, -+, .. The
system of values t;, f2, --- , ¢, , for which the expression (3) becomes zero is a
double point of the form @°.

The coordinates of the double point can be found from the system of homo-
geneous equations:

puby + prate + -+ + paats = 0
(5) porty + pots + -+ F paals = 0

pntlt + pnote + -+« 4 pantn = 0.

2 This theorem was proved by a different method by R. Frisch [1].
3 By the decrement of a (rectangular) matrix we call, after B. Kagan, the difference
between the number of its rows and its rank.
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It is, however, known that the number of the independent double points of the
form, @, i.e. the number of linearly independent untrivial solutions of the
system (5) is equal to the decrement of the matrix || ui; ||, 4,5 =1,2, - - - n.

Consequently, there exist only k(|| u:;||) independent linear connections
between the variables x;, #3, - - - , . , which proves the theorem.

Hence it follows that the variables z,, z2, - - -, z, are linearly independent
(k(F) = 0) if and only if the form @ is positive definite and, consequently, the
discriminant | u;; | of the form is positive.

The following two theorems may be used for determination of a complete
system of linear bonds. The first of them is a special case of the second, but is
stated separately in order to simplify the proof.

TuEOREM 2. If k(F) = 1, we obtain the linear bond of the distribution by re-
placing in the determinant on the left hand side of the equation

M1l M12 c ¢ Mia
(6) M21 M2 ¢ v Men 0

.............

Mnl  Mn2 *°° Mnn

the elements of one (arbitrary) row by x1, a2, - - - , Tn respectively.
For instance, replacing the first row, we have

Ty X2 - Tn
(7) M21 M2+ Mon | 0.

.............

Mnl  Mn2 **° Mnn

Proor. Since the decrement of the matrix || ui; ||, 3,5 = 1, 2, - - - nis equal
to 1, for the unique nontrivial independent solution of the system (5) (4,
ta, -+, l,) may be taken, as we know, the system of algebraical supplements
of the elements of any row of the determinant | u;; |, 7,7 = 1,2, --- n. (Among
the algebraical supplements of elements of each row there is at least one different
from zero, since the algebraical supplements of corresponding elements of any
pair of rows are proportional to each other.)

Hence, since tix; + fxe + - -+ + tuz. = 0, the theorem follows.

TueoreMm 3. If k(F) > 0, we obtain a complete system of linear bonds of the
distribution F replacing in each of the k equations

Mki Mkl 2 Mkn
(8) Me4+1,6  MEk+1,k41 ¢ *° Mk4l,n - 0, i = 1’ 2’ e k
Mns Mnk+1  *°° Man
one (arbitrary) row of the determinant respectively by x:, Tky1, -+, Tn, Where
Tky1, - -+ , Ty are chosen tn such a way that

MEk+1,k+1 * * ¢ Mk+l,n
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Replacing, for example, the first rows, we obtain:

T Te41 o Tn

ME+L1 MeAlk+1 000 Meln | 0
Mnl Mnk41 *°° Mnn
(] Trt1 o+ Tn

ME41,2  ME41,k41 **° MEk4ln |

@ =0

Mn2 Mn, k41 Man
Ty T4l o+ Tn

ME+1,k ME41,k41 ¢ * ¢ Mel,n | 0
Mnk Mn k41 Mnn

Proor. The theorem is already proved for k(F) = 1 (Theorem 2). We have
to prove it for k(F) > 1.

Let us in the first place show that the matrix || ui; ]|, 4,7 = 1, 2, - -+ n pos-
sesses at least one positive chief algebraical supplement of the order n — k.

In fact, in the system of n variables z;, 22, .- -, ., connected by & inde-
pendent linear relations there must exist a subsystem of n — & linearly inde-
pendent variables. Let these variables be ki1, k42, -+, 2. The deter-
minant of the moments of the second order of this subsystem: | ui; |, ¢, j =
k+ 1, ..., n is different from zero and, by the property of Gramm’s determi-
nants, is positive. Further, each of the subsystems z;, %41, -+, Za, is sub-
jected to the distribution law Fi(x;, k41, - -+ , Zs) with the decrement k; = 1
and, consequently, by Theorem 2, the relations (9) are satisfied. (Arguing
as before we find that any (not necessarily the first) row in each of the deter-
minants in (8) may be replaced by ;, Tis1, - -+ Tn).

In order to show the independence of the relations (9), write the system (9)
in the form:
9" 2 Cijz; =0, i=1,2--,k

i=1
and consider the matrix of its coefficients:

Cll 0 ... 0 Cl.k-t—l Cl.k+2 e Cln
0 C22 -+ 0 C2,k+l C2.k+2 cte C2n

(10)

0 Cou-.--- 0
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belonging to the matrix, is positive; this follows from
Cll=C22="‘=Ckk=Il-‘ii|>0y i,j::k-l—l’...’n.

Thus the independence of the relations (9) is proved and the theorem is
established.

§2

In this section we consider the question of the variation of decrement of the
distribution in the case when the variables are subjected to a linear trans-
formation.

Let 21, 22, - - - , . be a system (1) of random variables and

U = a1 + @t + -+ + 1.2,

(11) U = au%1 + Gm%2 + .- + G2aTn

..............................

Um = QmT1 + AmaTz + - -+ + Cmala

a system of linear forms in the variables (1).

The distribution function of the variables u;, uz, - - , um We denote by Fy,
the decrement of the distribution by k(Fy), or, shorter, by & .

The two systems of equations (11) and (9) form together the system:

U =anTy + Gtz + -+ + G2
Um = Gmi®1  + GmeTz  + -+ + GmaZn
(12)
0 = @n11%1 + AGmpr2%2 + -+ + CGmi1,n%n

0 = @mikaT1 + Gmik2T2 + .- 4 ikt

where the last k equations represent, in new notation, the equations (9).

We call the matrix of the coefficients of the variables in the system (12):
laijlli=1,2 ---,m+k;j=1,2, ... ,n, the elongated matriz of the trans-
formation.

We prove the following

THEOREM 4. The decrement of the distribution Fi(uy, uz, - - - Un) ts equal to the
decrement of the elongated matriz of the transformation.

(13) k(F1) = k(|| a:; |]).
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Proor. Consider a system of forms in arbitrary linearly independent param-
eters &1, &2, -, én:

n=anft +apk + ---+ anéa

(14) Vm = AGmél + amabs + oo 4 Amnéa
Umi1 = am+l.l£l + am+1.2£2 + e + am+1.n£n
Umik = Omikafl + Gmyk2be + - + Gmiknéa

such that the matrix of the system (14) coincides with the elongated matrix of

the transformation.
For

(15) Umi1 =0,  Vmie=0,---,  Ompp =0

the system (14) reduces to the system (12).

If the decrement of the matrix of the system is equal to s, there exist only
m + k — s linearly independent forms v; , and each of the remaining s forms is
a linear combination of the first.

By Steinitz’s theorem we can always include in a subsystem of independent
forms the forms vmi1, « -+, ¥myx (since these forms are independent).

Denoting all forms of the subsystem by 941, -+« , ¥m, Umtr, -+« 5 Umir, let
us write the s relations connecting each of the remaining forms with the forms
of our subsystem in the form:

guvy + g1,e410e41 + - - - + J1imUm + grmi¥mi1 + o0+ G mimVmir = 0
(16) 9avs + @ettVerr + oo+ GomUm + G2mitWnsr + - + G2,miimir = 0

@ o 6 6 8 s 4 s 4 s s s s s e e 5 6 s s s s s e s s s s s s s s s s s s wde e s s s s s s s e s s s s e s e e e s s

JssVs + Js,8+10s+1 + e + FsmUm + Js,m+10mx1 + e + Js,m+i¥0m4-k = 0

where g, g2, -+, gse # 0.
Assigning to the variables in these equations the values (15) we clearly
obtain s linear relations between the variables u, uz, -+ - , Un

gut1 + gre41%er1 + -+ - + GimUm = 0
(17) g2us + g2,041Uer1 + « -+ + Gomlm = 0

JssUs + Js,s+1Us+1 + o + JemUm = 0.

The equations (17) are linearly independent, since the matrix of the sys-
tem (17)
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gu 0 .- 0 gres1:: Jim
0 g2+ 0 gost1-- gom

.........................

0 0 "’gn g:,n+l"‘g:m

has the rank s; this follows from the fact that it contains the determinant

lgu 0 --- 0

0

gn ...... = gu-gz Gas
0 0 * gu

of the order s, which is different from zero.

We proceed now to prove that there exists no other linear relation between
the variables u; linearly independent of the relations (17).

From the equations (17) the variables w;, s, - - , , may be determined as
linear combinations of the variables .41, - -+, Um (We suppose that m > s,
since for m = s the proposition under consideration is trivial).

It is thus to be proved that the variables %41, - -+ , Un are linearly inde-
pendent (since every new linear relation between the variables uy , uz, - - - , Um,
independent of (17) must, after corresponding substitutions, lead to a linear
relation between 41, - -+ , Um).

In the equations (12) the linearly independent variables %s1, - - - , Umr are
linear forms in n linearly independent parameters &, &, ---, éa.

We may instead of the &, &, -- -, £, take for the system of linearly inde-
pendent parameters vmi1, -+ , Umik, fk41, - - , &a (changing the indices of the
£ in an appropriate manner), defining £, &, ---, & by the system of
equations

Umt1 = am-rl'l'fl + .-+ am+l,n£n
Vm+k = am—*—k,lgl + e + am+k.n£n
which is always possible, since the forms vm41, - - - , ¥mts are independent.
Substituting the expressions obtained for the &, &, - -, & into the forms
Vey1, -+, Um, we find
Vor1 = Qop1(Vmy1, « - - Vmir) + Vor1(Ebgr, - - - £n)

(I8)  eeenten
Um = ¢m(vm+1 g e vm+k) + ‘I’m(ék+l; . e gn)

where ¢ and ¢ are linear forms in the corresponding arguments.
The variables v,41, - -+ , ¥m remain, of course, independent.

¢ The indices of the # adequately chosen.
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Performing in the equations (18) the substitution (15), we obtain:

Us41 = ‘I/e+l(£k+ly s En)
(19)
Um = ¢M(£k+1y te Eﬂ)
If there exists a linear dependence between the w,1, -« -, un, we can find
Qgt1, +++ , am , DOt all equal to zero, such that
(20) . Olgy1Us1 + e + AmUm = 0. ;
Multiplying the equations (18) by the coefficients a1, - - - , @n respectively,
and adding, we obtain, by virtue of (19) and (20)
QUsitWsi1 F -+ Wnln = W 10e1(Wmsr, +* Umer) + -+ + Un@m(Vmi1, * o Vmik)
i.e. the variables v,41, - - - , Umyx are linearly dependent, which contradicts the
assumption.

The required proposition is thus proved.

It follows that the s equations (17) form a complete system of bonds of the
distribution F,, which proves our theorem.

The moments of the second order of the distribution F; are connected with
the moments of the distribution F by the following formulae

E(ww) = E [(; a,',x,><§ a,w.,)]

n n
: Qir Ajs E(xr xs) =

Vij
(21)

] Qir Qjs firs (lyj =12 ...m).

r,8= r,8=

§3
Let the normal law of distribution G (generalized by H. Cramér) be given
by its multidimensional characteristic function [2], [3]:

Sl toy oo t) = ff f gltmtiantthml g q G, o, - - @)
Rn

—3102
_eio

(22)

where Q* = X cCrbids (e = Csr) 18 a non-negative quadratic form in the real

r,8=1
variables &, &, ---,t,. (The integrals, as above, to be understood in the
sense of Lebesgue-Radon.)
As is easily seen, the coefficients ¢,, are the moments of the second order of
the distribution @ for which

2 8°f
=F =4 = .
Mrs (xr xa) 1 [ a0 ta]z rimo Crs

If @ is positive definite, we have a proper normal distribution.
If @ is non-negative, the distribution G possesses a positive decrement.
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The decrement and the linear bonds of the distribution may be determined
from the matrix of the coefficients || ¢, || 7, s = 1, 2, ..., n on ground of the
general theorems of §1.

Let, as before,

U = an®y + Q% + -+ + Gt
(11) U = %1 + Gy + - + G2nZs

..............................

Un = ATt + AmeZ2 + - -+ + AmnZa

be a system of linear forms in the variables z;, #2, -+, .. We shall prove
the following

TueoREM 5. The variables uy, us, -+, um are subject to the generalized
normal distribution law the decrement of which is equal to the decrement of the
elongated matriz of the transformation

am1 Am2  **°* Qmn
Am41,1 Am41,2 *** Gmiln

Amik)l Qmik?2 *°°* Amikn

Proor. Consider the characteristic function of the distribution Gy(u,,
'“'2) DY um),

(23) fl(tl, tz, oo tm) = ff oo f e"(llu1+tgug+...+tmum) dd v dGl(ul,u2 e, um)-
Rm
Performing in this expression the substitution (11), we obtain
fl(tl, t?; e tm)

n 0‘ n
_ j‘j‘ . j‘ e‘(tx JZpeimitty B ezttt T amiz:) dd ...
RBn
(24) n n n
-+ dGh z; a1;%;, Z} @iy, 21 Ui
1= ,- . ’- y

m m m
= f f .o f ei(zx g2 itoten B apatpteootan B a’”‘t”) dd
Ry

e dG(xla Xo, xﬂ)~

(dd--. dG(x,, 22, - -+ x,) in the expression (24) does not, in general, coincide
with dd ... dG(z1, x2, - -+ z,) in the expression (22)).
Taking into account (22), we obtain

fl = e—iQf
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Q= ri_l {cr. (,,‘i a,,,tp> (; Qgs tq>}

(26) = Z {cra E aprQqatptq}
p.q=1

r8=1

where

Z {tﬂtq E apraqscn} = E tptqf)pq.

Pig=1 r,8m=1 Pig=1

Q} is a non-negative quadratic form in &, t, --- ,tm, the coefficients of
which coincide with the moments of the second order of the distribution
Gi(ur, uz, «++ Um).

Consequently, the distribution G, is a generalized normal distribution.

By Theorem 4 the decrement of the distribution G, is equal to the decrement
of the matrix || apr || p = 1,2, --- ,m + k;r = 1, 2, ..., n, the last k rows
of which consist of the coefficients of the complete system of linear bonds of
the distribution G.

Let now z;, x2, ---, 2, be a system of random variables subjected to a
proper Gaussian law. The density function of the distribution of the system is

1 n 2 ' Ty
y=0 = e -ir(E R 2 T T Ry ]
@0 11 Vi VE THom e v

pe=]

where
1 7o Tin
Ta 1 r
R = 2n
Tnl T2n 1
. . Mij 9 . "
R;; are the algebraical supplements in R, r;; = \/— , and x~ is a positive
it Mjj
definite quadratic form in the variables z,, zz, --- , 2.
Again let w;, uz2, - -, un be a system of linear forms in the variables
Ty, Za,y o0, Tn
U = aufy + % + -0+ GinZa

Uy = Q%1 + QT + - - + A2aZn

Um = Am1T1 + A m2T2 + e + A mnln.

(11)

Then from Theorem 5 follows the
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CoroLLARY. The random variables uy, Uz, ---, Un are subject to the m-
dimensional properly normal distribution law of Gauss if and only if the matrix

. Q2 e+ Qin
Qg1 Qg2 *°° O2n

esesescscsesscsccsn e

Am1 Qm2 **° Qmn

of the system of forms (11) has the rank m.
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