AN OPTIMUM PROPERTY OF CONFIDENCE REGIONS ASSOCIATED
WITH THE LIKELIHOOD FUNCTION'

By S. S. WiLks anp J. F. DALy

One of the authors [1] has recently established a connection between the
method of maximum likelihood and shortest average confidence intervals for the
case of one unknown parameter, and has reported a generalization [2] of this
result for the case of several parameters. It is the object of this paper to consider
the several-parameter problem in greater detail and at the same time to make the
previously obtained result slightly stronger, particularly in the one-parameter
case.

Let = denote a set of random variables, and 8 a set of parameters 8, --- , ;.
Suppose I, is a population with the cumulative distribution function F(z, 6,) =
Fo say. Then the logarithm of the likelihood associated with the population
Iy of random samples On:z;, 22, --- , Z» drawn from IIy is

L'z, 6) = 2 log dF (z., 6).
a=1

For a given sample 0, we shall say tha* a set of functions H{ (z, ) is of class K
if there exists a domain R of parameter pcints 8: (6;, --- , 6) in a 6-space such
that for each 6yin R:

(i) HY(z, ) = Hlis of the form 2 hi(za, 0);
a=]

(ii) hi(z, 80) = hi exists for all z except possibly for a set of zero probability;
(iii) Eo[hi] = 0, where E, means that the expected value is taken for the popula-
tion I, ;

(@iv) || Eo[hwh;] || exists and is non-singular;

(v) the moments Ey[kioh johio] are all finite.

(Here and throughout the remainder of the paper, the indices 7, j, k, I have the
range 1, ..., h.) If, in addition,

(iii") Ey[hi)] can be differentiated under the integral sign;

(iv’) the moments Eo[hih ;o] are differentiable with respect to the ’s;

the H; will be said to be of class K'.

We shall need the following lemma, which is very closely related to Theorem 1’

and Theorem 2 in [1] and which can be proved by the method of characteristic
functions.

1 Incorporated in this paper is a note presented by one of us (c.f. [2]) at a meeting of
the Institute of Mathematical Statistics, December 27, 1938.
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LemMmA: Let H7 (x, 8) be of class K for each n, and put
n 1 n n
ij0 = ﬁEO[HiOHjO] = Eo[hahj].

Let || b0 || be the positive definite matriz satisfying the equation

10750 I* = | BEo ||
and write

165 117" = 1156
Then for any potnt 8y in R the functions

n 1 e nij ryn
(1) Pi0 = —= Z bo ’Hjo

Vn i=t

computed from II; have a joint distribution which converges in large samples to
normality, with the density function

lh 2
z Pio

1
2=

h
2r) Ze

Now whenever we are justified in assuming a definite functional form for
F(z, 6), and have a set of functions ¢;(z, 6) whose distribution under this last
assumption is known and is independent of the 6’s, as is the case in the limit for
the functions (1), we can obtain, from a sample, information about the values of
the 6’s. For, given any region S in the space of the functions ¢;, we can deter-
mine the probability Po{¢i C S} that in samples from IT, the point (¢, - - - , ¢r0)
will fall in the region S, even though we do not know the population values 6, .
Suppose, then, that we pick a region S such that Po{e:w C S} > .95, and agree
that each time we encounter such a problem we shall substitute the observed
z’s into the ¢’s, and call the set of all points (6;, -- -, 6x) for which ¢i(z, ) C S
the confidence region T. If this procedure is followed consistently, we can assert
that the probability is more than .95 that the region 7' thus determined contains
the true parameter point 6o .

Evidently the size of the confidence region, i.e., the accuracy with which it
serves to locate the true parameter point 6, depends upon our choice of the
auxiliary functions ¢; . Consider now the case in which there is but one param-
eter 9, and let o(z, 8) and ¢*(z, 6) be two, functions with the same distribution
D(w), where D(u) does not depend on 6. For the set S of the above discussion
take the interval w < u < @. Then

Poleo C S} = Po{qo: CcS} =«
where o = .95, say. Given a set of observed z’s, ¢(z, ) will map S into a
confidence region 7', while ¢*(z, 6) will map it into a confidence region T*.

Both 7" and 7* may he expected to contain the true value 6 in 959, of the cases;
hence a reasonable way to compare the size of 7' with that of 7* is to compare the
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t 3
quantities gg (z, 60) and aaio (z, 6o); for these derivatives give an indication of the

amount of change one can make in 6 without forcing ¢ or ¢* out of the interval S.
The result obtalned in [1] in this connection may now be stated as follows:

Let H = — be of class K’, and let H* = Z h(z., 6) be any other function of
class K’. Then in large samples from II, both
H
¢ = 3 29\ 3
and
H*

o = BTG 01D

are distributed almost normally with zero mean and unit variance. But the
confidence regions obtained from ¢ will, on the average, be smaller than those
from ¢*, in the sense that, for large samples the inequality

® CERCEl

will hold (unless h(z, 6) = cg‘-’ log dF, in which case alone the inequality (2)

becomes an equality).
Now let us return to the several-parameter case. One method of attack which
suggests itself is to consider the jacobian determinant

dpin
36,
for this bears the same relation to the area of the region dS which maps into the
region

dT: 6y — 3d6 < 6 < 6 + 3d6

as does the derivative % in the one parameter case. To this end, let us put

n

Li(z, 8) = % and for each n and for-each 6, in R assume that

(a) Liy is defined for all z except perhaps on a set of probability 0;
(b) Eo[Li] = 0;
(c) Eo[L,] can be differentiated under the integral sign;
(d) || Eo[LioL7o] || exists and is non-singular;
(e) Eo[LisLjo)is differentiable in the 8’s.
Let H} (z, 6) be any other set of functions satisfying the same conditions. Set

Eo[L?oL?o] = nA?jo Eo[H?oH?O] = nB?jO
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and define the matrices
lafo | =11 A% |l llas™]l = |l afo|l™
o5 |l* =11 Bl [16s% ]| = || bf |l

Now consider the normalized functions

h
no__ nijrn
0 = Z Qo 70

i=1

h
I7n nijyn
H.'o = Zbo 70

=1
We then have
18L% _ g~ 0a5" ap¥i. L 0L
®) n o6 ,z;i 3, n +,§ n s
and by virtue of assumptions (b) and (c) it follows that (c.f. [1], pp. 171-2)
1 aL}% ni
E, [n ETA ] = - gao ’Eo[L,oLko]
In similar fashion
1 aﬁ:‘o _ ru: n
Consequently
1 8L, »
@ (0| B L] = 4z
and
1 0H%, -
® (0| B 220 = gL L

We can find a relation between these two determinants by going over to the
matrix

I BolZz L 11| BolLE |
I Bo[His Lol [| || EolHio Hol ||

This matrix is positive definite unless there is a linear relation with constant
coefficients, say Z (esLi + d:H;) = 0, which holds for all 2’s except a set of zero
probability; and in this event it is positive semidefinite. From the theory of
compound matrices [3] we can then conclude that the matrix whose elements
are the h-th order minors of M, arranged in lexicographic order on both row and
column indices has the same property, so that

| Eo[LisL]o) |-| Bo[H7oH o) | > | Eo[LiH ] |°
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The relations (4) and (5) then imply that

18L% 1 8HY
® o B L0 3 o [ 22

It may be observed that no use has been made of the assumption of linearity
(i) in deriving (6). And since in the one parameter case the determinants have
but one row and column, we see that in this case the result in [1] remains valid
for functions of an even more general type than those of class K’. In order to
give the inequality a statistical meaning it seems necessary, however, to require

not only that H and L satisfy (a), - - . (e) but also that in large samples ;/l—ﬁﬁ 1

and \/—Lﬁ L? tend to be distributed independently of 6, with the same (though not

necessarily normal) distribution.

For the case of several parameters the transition from the above determinants
of expected values to the jacobian determinants requires further argument and
further assumptions. To begin with, suppose that the L] and H{ areof class K’,
and that

(vi) the moments E, [ah‘° Ohio

26; 96, ] are all finite,

with a corresponding condition on the variances and covariances of 555
s 00;

dF(z, 6)). Let us put
’ ,_=16H?0_E[16H]
YT 0 o6 n 96;

_ Ohio 0hso

The characteristic function of the Y7} is

enlti, -+, tw) = en(®) = Eolexp (¢ 2 t;Yy)]

- (s [ow ( Zo)

Expanding the exponential in powers of the ¢’s and using (vi), we find that

D)

lim ¢a(f) = 1

n —+00

log

so that we have

uniformly in every finite interval | t;; | < M. A basic theorem on sequences of
characteristic functions [4] then guarantees that for any ¢ > 0

. 10H} 1 8HY,
l ’_ — il =
,.I_I.r:., Po{n a9; Eo[n a0; ] > E} 0
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that is to say, that % aggm converges stochastically to its expected value. Under
i
the assumptions of this paragraph the same type of reasoning may be used to

show that the quantities;l ?o’rlz D, a

their respective mean values. It will then follow from equation (3) that the

. 1oLk 18L7% .
t = .
functions 50 %, ] In fact, it

7
can be shown [5] that any polynomial in these functions must converge stochasti-

cally to the same polynomial in their expected values. Hence, given any
laZ”
06;

by more than e can be made arbitrarily

converge stochastically to the values E, [

e > 0, the probability that the determinant |=
1 dL%
E°[ %; ]

small by taking n sufficiently large. Similarly, the determinant

Eo[l of%y ] .
n 00;

Thus, given any two positive num-
bers ¢, ¢/, we have the relation

P{IGL —e}>l—e’

n 80;
(where + indicates the absolute values of the determinants), provided = is
sufficiently large.

As in the one parameter case, the restrictions which have been put on the class
of functions L and H are not entirely necessary. But it is difficult to replace
them by any other set of conditions which are not obviously ad hoc. Let us
now summarize the above results.

TueorEM 1. If the functions Li and HY satisfy the conditions (a), - - - (e), and if

18L} 1 0H7,

differs in samples from

II, from the determinant

n 06;

converges stochastically to

n 89;

(f) the functions n 06, ® and - —a? converge stochastically to their mean values;
(g) the large sample distribution of the functions % L7y is the same as that of the

Sfunctions ——lﬁ HZ and s independent of the 6y’s;

then in large samples the confidence regions derwed from the L’s will almost certainly
be smaller than those derived from the H’s, i1 the sense that

+
lim P, {H oL } =1

n—0 n 60,
unless there vs linear dependence between the L's and H's.
Tueorem 2. The assumptions of Theorem 1 will be satisfied if the L; and H
are of class K', are linearly independent, and satisfy vi).

1 0H7%

n 96;
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THEOREM 3. For the case of only one unknown parameter, the relation

=[] > =5

n

(equality holding only in case HY = ¢ %) can be derived under assumptions (a),
1

-, (e) alone. Its interpretation in terms of smallest average confidence intervals
depends, however, on whether or not (g) is satisfied.
At first sight it may appear that the functions

1 &
w=— 2 b"H}
v \/th-lb !

to which these theorems apply are too complicated to be of any practical use,
involving as they do the square root of the inverse of the matrix

n 1 n n
1B | = 1| B )l

But in employing the method of fiducial argument in the several parameter case
there is no need to take the region S in the Y space to be an interval

vi < ¥ < ¥

Instead, we may take S to be the interior of the sphere

h
) 2 V<R
=1
This enables us to avoid the computation of the "*/; for

h
2oV =

=1

h
VUV HIEE = 1 Y B HTHE

h
i,7,k=1 N j k=1

S|=

where || B"* || is the inverse of || B} || .
To indicate more precisely how the function Z ¥h: may be used to determine
i=1
confidence regions for the parameter point 6, we note that if the distribution
law of the y,; tends to the form

W
(2r) EPRLis

.7

tributed according to the x* law with h degrees of freedom. We then have

h
then 2 y%., which is identically equal to % D> B"HTH?},is approximately dis-
=1

®) P(l S BYHIH! < xi) = a

%)
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approximately, where x, is given by the relation

1 Xe nHh—1 —dx? 5 2 _
mfo (%X)hle dx" = a.

The confidence region T corresponding to a particular sample 0,: z;, 22,

..., x, consists of those points in the @ space for Whichl > B"HIH! < x%
i

when the z’s are substituted in the H’s. Since the region T' depends on the
sample, it is essentially a random variable and the probability is « that T will
include the point 6y , that is, the point in the 6-space corresponding to the values
of the #’s in the population.

For example, suppose the population II is known to have the multinomial
distribution law
Th

J@o, -+, Th;Po, -, p8) =P - Dh

In this case each x has but two possible values, 0 and 1, and
9 2+ - Fan=1, P+ - Fp=1

The likelihood function for random samples 0, drawn from IT has for its logarithm
h
L"= 2 nlog Dy
ye=(

where n, = 2 Z,a , Ta being the value of z, for the a-th observation. Because

a=1

of (9) there are only & independent parameters, say p; ( = 1, --. , k). Thus

r=Tu_"
om Do
and
an =841
Ds Po

where 8;; is unity if ¢ = j and 0 if ¢ # j. It is not necessary to compute the
a™, for, as we have seen,

h n
SehNt=1> ALy
=1 n 1

1,j=
And one can immediately verify that

A™ = 5up: — pip;

h
Gope — B .)(@ _ @)(ﬁ_ n_o>
m‘z=1 iP P:pi Pi Do/ \Pi Do

so that we have

I

5
(10) ZA:I Yhi =
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Since in this case the L; satisfy the conditions of the lemma, we know that
h

> i, is distributed, in large samples, approximately like x* with & degrees of
=]

freedom.

As a matter of fact, (10) is precisely the Pearson x* which is ordinarily used,
in connection with the problem of deciding whether a sample supports the
hypothesis that the population from which it has been drawn has specified values
of the p’s. For, making use of the fact that

1
Z} (ni — np;) + (no — npo) = 0
we find that

h
n; ) n
— ——— = A'. . ;  — .
% Do ’; i ("4 np,)

h
so that Zupi; reduces to

i=1

h h
}HJZ_IAZ‘,-(n.- — np) (n; — np;) = Z_% (n — np,)*/np,
which is the familiar form. Thus in particular the Pearson x is the best fiducial
function of its type which can be formed from H'’s satisfying Theorem 1, in the
sense that for sufficiently large samples its constituent functions L will almost
certainly have a greater jacobian with respect to the parameters p; than will
the corresponding A} computed from a set of H} independent of the L7 .

The confidence regions determined by (8) when the H are replaced by the
L? have an associated optimum property which may be stated as

THEOREM 4: Let Ag denote the differential of 711 > B™HIHT with respect to the 6,
i

evaluated at the true parameter point 8, . Let As be the corresponding differential
when the H are replaced by the L} . Let the H{ and L} satisfy conditions (i),
@ii), - - -, (vi) and let the mean value of the product of two, three or.four factors

taken from the set { hq, ahio} be finite, no product containing more than two factors

6
of the type aaio’o Let similar assumptions hold for the set {lio, %{9—'9} where Ly =

7 (]

d log dF,
a0

(11) E, (1 A:2> - Ey (1 A%) >0
n n

The equality in (11) will hold for all differential vectors if and only if each ho is @
linear function of the l,o .

Then if n is sufficiently large
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This theorem can be proved in a straightforward manner by using the follow-
ing characteristic functions

h n
<pn=exp< Zt. Hi+1i D, .-,aH—'o)

1,0=1 30
= [exp( Z tihio 41 Z Us; %())]
1,7=1 a9,
n oL;
¢L=exp< ZtsL +1Zuu >
1,i=1 80,
. . oo\ |
= | exp tZteleo+t Z wii—11,
i=1 ig=1  06;

where u;; = u;;. Now

h nij h
=139 H?H;'dok+§ > B'""’H' H? db,

N i k=1 00 1,7, k=1

with a similar expression for Ag . The problem of finding the mean values
E (1 > and E( 0 > is a matter of evaluating a set of fourth order deriva-

tives of px and ¢, at t; = 0, u;; = 0.
If the appropriate differentiations are carried out it is found that

Ey(4a}) = 4”[”2“ B Crio Cijo d8:d; + 0 <%>]
Ey(As") = 4n[ Z Ao do:ds; + 0( )]

where Ai,'o = Eo[ iol,'o], Buo = Eo[hkohzo], Ckio = Eo[hko ) lio]. Denoting
E, <l Ay 2) — Ey (l Aﬁ) by &, we have
n n

o = 4{2 Mo d6:d6; + 0(%)}
where || Mij || = || Aijo — E Bt'CiiCijo ||.  If the hy and Iy are linearly inde-

pendent then || Mo || is a pos1t1ve definite matrix and hence Z M;jodb;do; =8¢

say, will be non-negative and can vanish only when all d0 are zero. If each
hio is a linear combination of the l;; and if the Ay are linearly independent, then
cach Iy is a linear combination of the Ay . In this case it can be readily shown
that every element in || Mo || will vanish, and hence §' = 0.

In case some of the ki are linearly dependent on the l;o, it can be shown that
¢’ is positive semidefinite, that is, there exists no differential vector for which &’
is negative, although there will exist non-zero differential vectors for which &’
is zero.
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It can be shown under the assumptions made in Theorem 4 that %L @A’ — Ad)
actually converges stochastically to 4¢’, and thus if the Ay and I, are linearly
independent, the difference 1%(&,"2 — A7) converges stochastically to a positive
number. Stated in another way: for sufficiently large samples, the square of

the differential change in % S A™LILY, for a given change df; in the 6; from
: i

the values 6i, will almost certainly exceed that of }LZ B""H}H}. The sta-
i

tistical interpretation of this result amounts to the following: by taking suffi-

ciently large samples, we can make it as certain as we please that the confidence

regions for locating 6, determined by using % Z A™LILY in (8) will be smaller

4

than those determined by using ! Z B"H!H? in (8).

)
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