A STUDY OF A UNIVERSE OF n FINITE POPULATIONS WITH
APPLICATION TO MOMENT-FUNCTION ADJUSTMENTS
FOR GROUPED DATA

By JosepH A. PIERCE

The object of this paper is to study the case of a universe of n finite popula-
tions, considering both the expectations of population moment-functions and
the moments of sample moments, and to make applications of the results which
may be of interest to mathematical statisticians. The sampling formulas which
are derived reduce to the usual infinite or finite sampling formulas, under
appropriate assumptions. Also a method is given whereby finite sampling
formulas may be transformed into the corresponding infinite sampling formulas.

The general methods and formulas which are given in Part I for the expecta-
tions of population moment-functions are used, in Part II, to find the expecta-
tions of moments of a distribution of discrete data grouped in “k groupings
of k”.

I. A StTupy oF A UNIVERSE OF n FINITE POPULATIONS

Let U » be a universe composed of the set of populations X, (r = 1,2, --- , n)
each population ,X consisting of a finite number of discrete variates Z;,
(6=1,2 ---,N), (N >n). Thetth moment of X is denoted by ,u;. The
tth central moment of ,X is denoted by i, . The tth moment and the ¢th central
moment of .U« are respectively denoted by ucand i, . The expected value of a
variable  is denoted by E(y). We have

¢ 1« 1 v
rit = E(rxt) = ]‘V Zl Ly e = E(rxi - rﬂl)‘ = = Zl (rxt' - rll-l)‘,

1< 1
(l.l) Mip, = E(rﬂ't) = —ﬁrgl ity Mg, = E(rﬁt) = ;&Z; rite

—_ 81 82 8y
Hsyag: - syime pe pe, — E("ll‘h'z""‘z s "ul"tv):
_8y

. - - — -81 -82 .
Mayog: - sy ey he, — E("xl"tl rolhtg **° 'ul"fu)'

We also note that peys, ..oy pey -, MBY be written pu...Luflugz. - uiy -

1. The expected value of moments and central moments. It follows easily
from (1.1) that

(1.2) Mg, = M.
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312 JOSEPH A. PIERCE
From the usual formula for central moments in terms of moments, we get
t
ift
(1.3) BLa, = z; (=1) (’L) MBitipgps—y »

Terms of the form piu, ., _; may be evaluated by use of the well known formulas
[20; p. 58] for changing from moments to central moments in the case of a multi-
variate distribution. Two of these formulas are given below.

Bllipgny, = Milipguy — B10:paupH01iugup
Fllipgupue = Mlliugupue — M110:pappmoM00L naups
(1.4)
Rl 0 (0 PTTNTO L TR TS Pl ) FETPOTTNTN 8 T (TP TT ST
F 2 1100:0 10 H010: g1 HO0L: g pip s <
We find that
i! - P2 T2
(1~5) Mitiprpg—y = Prr1ipipe—s Mlipg Blipg—g »

2 ittt ®

where p;p2 is a two-part partition of 2 and 7, + r; = 1.
Using (1.3) and (1.5), we get

(1.6) Bugy = P2 — Bay, -
1.7 Prgs = Bz — i, + Oz, + 2isy, .
(18) Mg, = + 6(112 - 2[‘%) Pey — 12“11132#1 + 12“117'11:#1‘42

— 4fipgpy + Ob21, — Bfay, -
ete.
If the n» populations are identical, it is evident from the definition of u;,
that, for all finite ¢,
,“I:ﬁ‘ = ﬁt .
2. The expected value of Thiele seminvariants. If the tth Thiele sem-
invariant is denoted by A., then

_ (=11 — 1)!
(1-9) Mg = 2z 81!82! . 8,!(2!)"(3’)" . (v!).” Megag. . 8yipypgecopy )

the summation being taken for all positive integers s;(z = 1, 2, - - . v), for which

v v
p=218§, t=z’i8¢.
=

i=1
Terms of the form py,s, .. .s,:u3, - - -u, ar€ €valuated by (1.4). We have

(1.10) Mg, = )\2 - ﬁz:“l .
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(1.11) g = Ng — Bfanugu, + OMia, + 2y, .
(1.12) pia, = Mo+ 120 — 2N] iz, — 24Maiin, + 24N
— 4f1ugey + 12800000, — b2, — Ofay, -
ete.
If the n populations are identical then, for all finite ¢,

M, = Ae.

3. Generalized sampling. It follows from definition that all rational isobaric
moment-functions have the property that they may be expressed in terms of
power sums and power product sums with certain coefficients. Of the power
sums and power product sums which enter a sampling formula only the power
product sums take different forms depending on the law of variate selection.
Now, there are two possible courses which may be followed by one who wishes to
derive sampling formulas for the case of a single population.

1. One may decide in advance on the law which he wishes to govern the
selection of variates which enter the sample. Then he may apply this law in
the evaluation, in terms of moments, of every power product term as it occurs
in each formula which is derived.

2. One may derive the formulas for sampling under the condition that the
law is unspecified, thereby obtaining formulas which are capable of being
interpreted in terms of laws that are decided upon later.

We illustrate the two possible courses by considering the formula,

2r(r — 1)

S(E—1) o

(1.13) s = = 28 +
which Carver [12; p. 102] obtains for the case of finite sampling without replace-
ments. Here r = the number in the sample, s = the number in the parent
population and z; = the algegraic sum of the variates of sth sample. Later,
by evaluating 2 and Z#:i; in terms of moments, he finds

(1.14) ;2 = 1‘(8: {) P2z«

(It should be noted that Carver [12; p. 115] obtained the corresponding formula
for infinite sampling by letting s — ).

The preceding development is entirely in accord with the first of the courses
stated above. It is also the standard procedure and is the course followed by
such writers as Isserles [2], Neyman [6], Church [7], Pepper [11] and Dwyer [20],
in deriving finite sampling formulas. Also, it is the course followed by such
authors as ‘‘Student” [1], Tchouproff [3], Church [5], Craig [9], Fisher [10], and
Georgesque [13] for the case of sampling from an infinite population.
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However, in (1.13), it is possible to employ the definition,

2 -
ss—1) 2%

T = .
Then (1.14) becomes
(1.15) fia:e = Ty + r(r — 1)1 .

Formula (1.15) may be interpreted as holding for either finite or infinite
sampling, depending on the interpretation which is given to 1. It may be

—1 iz and
s—1
(1.15) reduces to (1.14). If the sampling is from an infinite supply, i1,: becomes
@i and therefore

easily shown that, if the sampling is from a limited supply, i1 =

B2z = Tz,
which is the formula [12; p. 115] that corresponds, in the infinite case, to (1.14).

Thus, either of the two courses is possible in the case of sampling from a single
population. However, if one wishes to get general formulas which hold for both
infinite and finite sampling, he should follow the second course. Similarly, in
order to obtain generalized sampling formulas where the relations between the
variates are unspecified and the populations are assumed to be different, the
second course should be followed.

It appears that Tchouproff [3], [4] was the first to approach the sampling
problem from such a general point of view. However, his methods of derivation
are quite complicated and his results, in general, are difficult to apply to a given
problem [5], [8].

Samples of n are formed from ,U y by chosing one variate from each of the n
populations. A typical sample is

15y 5 2Tiy 5 8%ig y =0 5+ Ty v 00y 4y .

We define [4; p. 472]

1 < ¢ ¢ t t t t

1 2 [ b1 b2 ‘v
k— L. Z "lxir1 T2xir2 e Tux‘l:rv - E(Tlx'rlfzz‘rz et "vxtr")

Trpirg st ir,~1
Tk
(1.16) = rprgeeery Mgty oty
> - &8 -
nw i rirge s Ty Mertge ooty n® v 117y croMeytye ety HKeyege--ty)

where k represents the number of possible terms of the given form; S, means v
times the sum for unequal values of r,7: ... 7, and 2 =nn—-1)...

(n—v+1).

4. Moments and product moments of sample moments. The {th moment of
the jth sample is denoted by ;m;. The sth moment of ;m, for all j is denoted by
’ie:m, Where the prime indicates that the moments of the universe are measured
about a fixed point. It follows that



FINITE POPULATIONS 315

(1-17) ime = %E rxﬁ, and 'lia:m, = E[jmtla-

r=1

Also, the general product moment, in which the variates of both the sample
and the universe are measured about a fixed point, is defined by

(1.18) ,”3132"‘311:7”!1'”!2"'7”!” = E[mi;mi; - - mesl.
As an illustration of the methods used to derive the formulas of this scction,
consider a special case of (1.18) whens; = 2ands; =0,(1 = 2,3, - .- ,»). Then

1 n . 2
Iﬂ2:m, = EE[Z rxi,-:l

r=1
1 n
2t t t
= Z2E[Zl T3, + S2 "lxirl rgxi,-z]
r=

n

1
= ;{2[2 iz + Se rlrzl‘M:I'

r=1

Therefore, by (1.1), (1.2) and (1.16), we get
1
(1.19) "uoim, = ;2"2'[’"/#2: + n® .

Using the formulas [20; p. 34] relating products of power sums and power
products to expand expressions of the type E(;m;! ;m;? . .. ;m;®), we give, in the
tables below, formulas for moments and product moments of sample moments
through weight six. The number in a cell and the coefficient, in the same
column, at the top of the table should be taken as the coefficient of the moment
which is found in the same vertical division. The coefficients in the vertical
division are coefficients of the entire right members of the formulas for the
respective moments.

Terms of the form p¢y...,, if &t = o = ... = {, = {, are sometimes written
tr gy ety

The numbers in the cells of the tables are identical with the numbers in the
cells of the tables given by Dwyer [19; p. 30] for the expected value of partition
products.

5. Moments of central moments of samples of n. The tth central moment of
the jth sample is denoted by ;7. Then, ‘

1 n
(1.20) iMe = - (s, — )’
and

(1:21) '”,,:;“ = ‘E[% Zl (,:c;, b iml)t] .
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TABLE 1
(1) (2) (3)
Coef. | n Coef. | n | n® Coef. | n | n® | n®
H1 K2 K12 K3 | M2,1 | 13
"U1smy n-t 1 "U1ime nt 1 "i1ims nt 1
"waimy n~? 1 1 "1 1 myma n-? 1 1
"B 3imy n3 1 3 1
(5)
Coef.| n | n®| n®| G | #B | RW| RE
Bo| pao1] pa,2f pa.2| pety | pa.| p 4)
'primg n71 |1 Coef.| n | n®@| n®| n®| n®
‘wimmg | 77 | 1] 1 Ba | B3| B2.2 #2'.1’ :14_
"Mitimems | M2 |1 1 "1:me nt |1
‘worimms | W3 |1 2 | 1 1 "Mitmme | M2 | 1] 1
‘rgmme | WY |1 1| 2 1 ' l2ims n? |1 17
‘wstimme | w4 | 1] 83 4| 3 31 ‘motmme | W31 2] 1|1
"psimy n® | 1|5 |10 10.] 15 [ 10| 1  'uem nt |1 43|61
(6)
Coef.] n | 2n® | n® | n® | #® | n® | 2® | g0 | RO | G | RO
Mo | Mo.1 | M42 | M3.3 | K412 | B3.2,1 | B2Y | M313 | M22,0% | M2t | M®
"U1:me n1 1
'p1r:mamg n? | 1 1
'p11:mamy n2| 1 1
'Waimg n? 1 1
"uarimime n-3 1 2 1 1 B
w111 mimamg n3 1 1 1 1 1
"ph3:ms n3 | 1 3 1
'p31:mums nt |1 3 3 1 3 3 1
'p29: myms n 1 2 3 2 1 4 1 1
'Barimame ns | 1 4 7 4 6 16 3 4 6 1
'peim nt | 1 6 |15 |10 | 15 60 15 | 20 45 15 1




FINITE POPULATIONS 317

After writing (v;, — ;my)’ as the sum of the general term of a binomial series
and then expanding the resulting right member of (1.21) as a product of power
sums [20; p. 19], we get

s! . ¢ 'l(t>'=
Mg, = -1 . .
Heime 27‘1!7‘2! e rplmlmel ... .i,.i_z.-z--.'ﬁo ( ) (’h) ]

(1.22) T17higphe o phiy
t\”

. (’h) '#rn'z---rup:"u—.'lm‘—i,---'n:—.',,"u

where E ri = 8§, Z i;r; = pand m, m, - - - are the numbers of the repeated
=1 =1
parts of s.
The mean of the {th central moment takes the following simple form,
¢ A t

(1.23) ’ﬂl:;?., = ;o (=1) (1.) ’#li:m:—;m”

where the moments in the right member of (1.23) through weight six are given
in the tables of section four. Also,

(1.24) ‘waiy = "waimy — 2 pimymy + 'btim, -

(1.25) "us:img = "wamy — 3 Morimymy + 3 Matimimy — "Hoimy .

(1.26) "wany = "Maimy + Vrzimimy + beimy — 6'B111mymym,
4+ Ypsnimemg — 12/ paimym, -

After substituting from the tables of section four, (1.23) through (1.26) become

(12)) iy = "o s — ]
. Kizmg = -’;2" 2 M1,1].

n(s)

(1.28) 'upw, = ) [us — Buz1 + 2u1s).

"wrim, = ;1—4[72(2)("2 — 3n + 3)(w — 4us1) + 3n®(2n — s,

(1.29)
+ 30 (2uz1: — 1)l
'Fuﬁ. = #[n(a)(nz —2n 4+ 2)(us — 5#4.1) + IOnm(n — 2)usa
(1.30) 4+ 100®P(m + 1)(n — Dusas — 30nP (0 — 2pass

- 10n“)(3n — 4)pz,p + 4‘n(5)ms].
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o %[nz(nf — 5n® + 107’ — 10n + 5)(us — us.)
+ 150 (0 — 40’ + Tn — B)pss — 100 (20 — 6n + 5)use
(1.31) + 150 (n* — 40’ + 6n — 5)uge — 60n® (0 — 4n + 5)usan
+ 15n®(3n — 5)ues — 200 (n* — 3n + B)uss
+ 450 (2n — 5)uazz + 150 (n — 8)pae — 50 e,

(1.32)  ‘pai, = ;t;[n(z)(n — D(w — 4ps1) + 2% + Dpas — n°Cusar — mo)l.

"Maiy = ,%E[nm(n = 1)(ks — 6psa) + 3n®(n — (0" — 20 + Bl
— 20?30 — 6n + Buss + 0P (0’ — 3n® + 9 — 15)puss
(1.33) = 3% — D = B — 1207(° — dn + Busaa
+ 4n®(3n — 5)usas — 3P0 — 6n + 15)ps,1e
+ n®(Bug,e — puae)].

"y = ;laln% — 1%(n — 2)(us — 6ps) — 3n®(n — 2)"(2n — 5)ues

+ nP(n — 2)'(0* — 2n + 10)uss

(1.34) — 6n%(n — 2)(n* — 6n + 20)ps2a + 80P (0 — 2)(Tn — 10)pg
+ 3n®3n® — 120 + 20)ms + 409 — 2)(n — 10)ps1s
+ n@(n’ — 8n + 20)uss,12 — 40 (Bug,u — pao)].

6. The variance of the variance of samples of n. The variance of the variance
of samples of 7, when the moments of the universe are measured about a fixed

point, is defined as
(135) ,ﬂ2:ﬁl2 = ,ﬂzzﬁtg - [/I‘l:rhzlz'
Therefore, from (1.27) and (1.32),

1
"Man, = E[n‘”(n — (s — 4pa) + 1% — Dpe — 0¥ Qugaz — pa)]

(1.36) - <n ; 1)2(;42 — ma)

Tchouproff [4; p. 492] gave a formula (8) for the variance of the sample
variance but his result is unwieldy due to the fact that moments of the universe

are measured about the mean.




FINITE POPULATIONS 319

7. Conventional infinite sampling formulas derived from generalized sampling
formulas. The term ‘‘infinite sampling” is to be interpreted as meaning:
sampling from an unlimited supply or sampling from a limited supply with repeti-
tions permitted. In each of these situations the variates are independent [5; p. 79].

First, it is assured that the n populations are identical, that is, 1. X = X = ...
= ,X. This assumption results in the fact that, for a fixed ¢, ju; = ape = ... =
e and i, = ofi;, = ... = ,fi;. Therefore, under the assumption of identical
populations, every moment may be interpreted as either the moment of n identi-
cal populations or as the moment of a single population. The only other as-
sumption is that the sampling is “infinite”.

From the condition of independence [3; p. 141], we have

Bz}, id oo xir ) = (Boail B2l - oo (B o200 ).
Therefore,

rirg e rpMhtytg ety T 1Mty rolbty c 0 0 roMt, o

Combining the condition of independence with that of identical populations, we
have

1 1
(1.37) o) Sy rirg. . rolbtrty ety = pore) Sy rilhey rolbty + o0 robbt, = Mty Bty 00 Be, .

By (1.16) and (1.37), we may write
(138) Meytg ooty = MtgMeg * Mty .

Since the only terms of the generalized sampling formu:ias . .~ e affected
by the assumption of “infinite sampling’’ are those of the form pq,q,....,, the
problem of obtaining conventional infinite sampling formulas from generalized
sampling formulas is, in practice, a mechanical one. Simply write terms of the
form ¢, ...., which appearin a generalized sampling formula, as pyue - -+ pe,
and one automatically obtains the corresponding infinite sampling formula,

As an illustration of the method, consider the generalized sampling formula
(1.36) for the variance of the sample variance. When (1.38) is utilized to change
it into the corresponding infinite sampling formula, (1.36) becomes

(2)
(139) Basiy = o [(n — 1)(e — dpap) — (n — )i + 2(2n — 3)(2pansd — )]

which is the usual formula [20; p. 75] for the variance of the sample variance
when the moments of the universe are measured about a fixed point. If it is
assumed that the moments of ,U y are measured about the mean, formula (1.39)

becomes
)

(1.40) g = o (0 = Dii — (n = 3,

which was published by “Student’” [1; p. 3]in 1908.
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8. Conventional finite sampling formulas derived from generalized sampling
formulas. The term ‘“finite sampling’’ is to be interpreted as meaning: sampling
Sfrom a limated supply when repetitions are not permitted.

In order to reduce generalized sampling formulas to the corresponding formulas
for finite sampling, the assumptions are made that the n populations are identical
and that N and n are finite, N > n. The selection of variates which enter each
sample is restricted in the following manner. If a variate having a given post-
subsecript is chosen, then no other variate having the same post-subseript may be
chosen for the same sample.

Now it is evident that terms of the form u,,s,....., must be redefined on the
basis of the preceding assumptions. From the expansions [20; p. 32] of power
product sums in terms of products of power sums, we get the formulas for u byt
which are given in the following tables.

The formulas in the tables of this section are called transformation formulas for
Jfinite sampling or more briefly transformation formulas.

The transformation of generalized sampling formulas ingo2 corresponding
finite sampling formulas is illustrated by the substitution of N—‘_*MIN_(—” Nps for pi,1
in (1.27). We get

(1.41) ", = 7]—7((7":—3 [p2 — wil,

which is the well-known finite sampling formula for the mean of the variance of
samples of n.

From this and the preceding section it is evident that the generalized sampling
formulas may be considered as formulas for either infinite or finite sampling
depending upon the interpretation given to terms of the form u;,s, ..., .

9. Transformation of infinite sampling formulas into corresponding finite
sampling formulas. It . a well-known fact that infinite sampling formulas may
be obtained from those for finite sampling by letting the size of the parent popula-
tion become infinite. But, prior to this paper, apparently no one has presented a
method of obtaining finite sampling formulas from infinite sampling formulas.
However, by making use of the relations between finite, infinite, and generalized
sampling, we shall demonstrate that it is possible to transform any infinite
sampling formula into the corresponding finite sampling formula.

Since the infinite sampling formulas are obtained from the generalized sam-

pling formulas by replacing
Meytg-- -ty by MMy * o M,

it follows that generalized sampling formulas may be obtained from the infinite
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TABLE II
@ 2) ®
Coef. | N Coef. N N2 Coef. | N N2 | N3
m ™ »i ps | mamr | pd
w | N | 1 us | N 1 us | N©D 1
p1a | NOD -1 1 p2a | NO2D | —1 1
Iy N3 2 -3 1
(5)
Coef.] N| N2 | N2 | N® | N¥ | N4 | N©
ps | papr | paps | panf | pdpen | pod | pd 4)

s | Neo| 1 Coef.| N | N2 | N2| no | s
ma | NEDP =11 1 se | paa| pi | pad | pl
p32 | NO?| -1 1 B4 NCD 1
ps2 | NO» 21 =21 —1] 1 mza | N2 —1 1
pa | NO 21 —1] =2 1 p2a | N9 —1 1
p2, | NOO| —6 6 5 -3 | -3 1 w2z | NO®| 20 -2 —-1] 1
15 NS 24| —30] —20] 20| 15| —10] 1 Iy N9 —6| 8 3 —6] 1

(6)
Coef. | N N2 N2 N2 N3 N3 N3 Nt Nt N® Ns
po | wowr | pape | pi | ppl [ mapann | pd | ped | pipl | papl| pl

He N&ED 1
B5,1 N2 -1 1
B4,2 N2 -1 1
13,3 N2 -1 1
B4, 12 N 2l =2} -1 1
321 | NO® 2] -1 -1| —1 1
n N 2 -3 1
B33 N&o —6 6 3 2 -3 -3 1
paz | NO9 ~6 4 5 2 -1 -4 | -1 1
M2, 14 N¢&® 24 —24 | —18 | -8 12 20 3| —4 | —6 1
18 NE® | —120| 144 90 40 | —90 | —120 | —15 40 45 | —~15 1
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formulas by replacing
(142) HKeglhey = w0 Ky by Megty--ety «

However, it must be emphasized that the application of (1.42) demands formulae
which are expressed in terms of moments of sample moments rather than central
moments of sample moments (although the sample moments may be measured
about a fixed point or about the mean) and the moments of the universe must be
measured about a fixed point The reason for these restrictions is to insure that
each term is accounted for individually.

After replacements (1.42) are made in the formula for sampling from an
infinite population, the resulting formula is the corresponding generalized one.
The step to the corresponding finite sampling formulas is simply the one outlined
in section eight, namely, the use of the transformation formulas.

We shall consider, as the first illustration, the infinite sampling formula for
the mean of the sample variance when the moments of the parent population are
measured about the mean. The formula is

n—1

(143) Mim, = n M2 .

When (1.43) is expressed in terms of moments of the parent population about a
fixed point, we have

-1
" [ps — wil-

(1.44) Bty =

Following (1.42), ui is replaced by ui: and (1.44) becomes (1.27). The use of
the transformation formula for u;,; gives (1.41) which, when the moments of the
parent population are measured about the mean, becomes

N(n —1)
1.45 iy = e fi2.
( ) M1:my n (N — 1) M2

Infinite sampling formulas expressed in terms of moment-function, may be
similarly transformed into the corresponding finite sampling formulas. For
example, Craig [9; p. 57] gives the second Thiele seminvariant of the variance
of samples as

2 —
(1'46) )\2:7712 = @ — 1) )\4 + 2 ‘(—/n—'z*}*) )\g .
n n

Fa—

First, we express (1.46) in terms of moments about a fixed point by use of the
formulas relating Thiele seminvariants and moments [9; p. 12]. We also recall
that the resulting formula should be expressed in terms of moments of sample
moments rather than in terms of central moments of sample moments. We
obtain

"uain, = (n - D [(n — Dt — 4(n — Dpgps + (n* — 2n + 3)ua
(1.47) n

—2(n — 2)(n — Dzt + (n — 2)(n — 3)uil.
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The next step is to transform (1.47) into the corresponding generalized sampling
formula by use of (1.42). We obtain (1.32). Since we desire to obtain the
finite sampling formula which exactly corresponds to (1.46), it is necessary to
transform (1.32) from the second moment of 77, to the variance of 77, and we get
(1.36). Next the transformation formulas are applied to (1.36). When the mo-
ments of the parent population are measured about the mean and are replaced
by Thiele seminvariants, (1.36) becomes

I NN — n)(n — 1) 3 o
(g T Bl - D -y = N DW= N =a = D

+ 2(N*n — 3Nn — 3N + 3n + 3)A3l.

Formula (1.48) gives the second Thiele seminvariant of the variance of samples of
n drawn from a finite parent population of N. When N — «, in (1.48), we
obtain immediately (1.46).

It is generally true that infinite sampling formulas are more easily derived than
are the corresponding finite sampling formulas. The methods of this section
make it possible to derive the desired sampling formulas for the infinite parent
population and then transform these infinite sampling formulas into the corre-
sponding finite sampling formulas.

II. MoMENT FUNCTION ADJUSTMENTS FOR GROUPED DATA

A given distribution of discrete variates may be grouped in ‘“k groupings of k”’.
We desire to find the correction which eliminates the error made in replacing a
given moment of the original distribution by the average of the corresponding
moments of the k grouped-distributions.

Formulas for the adjustments for moments of a grouped-distribution of
discrete variates were first given (without proof) in the Editorial of Vol. I, No. 1
of the Annals of Mathematical Statistics. Later, more satisfactory derivations
of adjustment formulas were given by Abernethy [24] Craig [25] and Carver [26].
However, it was observed by Carver [26; p. 162] that the developments of
Abernethy and Craig are adjustments about a fixed point and that they fail to
hold for the case of expectations of central moments if we accept the definition

1 3
M1, ="’§‘rﬁt, (t= 273’ ‘oo).

Here .ji; represents the tth central moment of the rth grouped-distribution. The
formula for the true value of ui;, was supplied by Carver [26; p. 162] but he did
not indicate a general method which might be used for the derivation of w;, ,
t>2).

A distribution of discrete variates grouped in “k groupings of ¥’ is a special
case of a universe of n finite populations and hence the methods and formulas
for the expectations of population moments are applicable to our present
problem.
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It is found that the adjustment formulas for moment-functions of grouped
data involve central moments of a rectangular distribution. It will be con-
venient for our present purposes to give a brief treatment of the moment-func-
tions of a rectangular distribution.

1. Moment-functions of a rectangular distribution. Consider the rectangular
distribution of discrete variates,

2.1) h, 2h, 3h, ... , kh.
It is readily shown that the moment generating function of (2.1),
2 on
(2.2) Gz(0)=no+#10+uz%+---+n»-ﬁ-,+g--
may be written

e}(k-l—l)hﬂ sinh % kho
k sinh 1ho
Setting the expansion of the right member of (2.3) equal to the right member of

(2.2) and equating coefficients of like powers of 6, we obtain the following recur-
sion formula for the moments of (1.1)

-(_n—_'_ 1)(1) _ (n + 1)(2)
iy e 21

(2.3) G.(0) =

hpnrr + -+

+ (=) ﬁT,—— K horpiin + - = K"R",

where p..z represents the nth moment of a rectangular distribution. Formulas
for un:r, (n = 0,1, ..., 10) are given below. See Sasuly [27; p. 27].

wo:r = 1.

pir = 3(k + 1h.

pze = 2k + 1)(2k + 1)A® = 12k + Dhpir -

pae = 2k + 1)° kB® = kh piz .

par = 28K + 3k — 1)A® pan .

(25 pgn = 3K + 2% + 1A pse -
uer = HBk' + 6k° — 3k + DA* par.
pre = 3Bk' 4 6K — k' — 4k + 2)h* pgz .
per = 15(5k° + 15k° + 5k' — 15k° — k* + Ok — 3)A° pa:r .
un = 32K + 6K + k' — 8K + K + 6k — 3)A pge .

poe = 23k + 12K + 8k — 18k° — 10k* + 24K* + 2k* — 15k + 5)R° pa: -



FINITE POPULATIONS 325

The deviations about the mean of (2.1) are

Therefore,
(2.7) Banii:e = 0.

If we denote (2.6) by %, we have
sinh 3(kh6)

(2.8) G:E(O) f m.
The recursion formula for central moments of (2.1) is
(2n + 1)(1) _ h2 (2n + 1)(3) _

11 M2n:R + 52 ———3‘—"—— M2n—2:r + ...

2.9
( ) hr (2n + 1)("‘"1) _ _ k2nh2n

2—,"“—(77?1—)!—#2"4:34' T g

Formulas for fige:z, (n = 0; 1, -- - , 5) are given below. See [27; p. 27].

+

doe = 1,

Bzr = Tln'(k2 - l)hz;

e = 75(8k° — TR jige,

He:r = 1‘}7(3’04 — 18" + 31)h4l,-‘2:ny

dsr = vao(5k® — 55k' + 239K° — 381)A% iz,

Bor = zars(3k° — 52k° + 410k — 1636k* + 2555)h° us:x .

From the relation which connects Thiele seminvariants and the moment
generating function, we get, see [25; p. 57],

(2.10)

Mz = 0, Mg = (k —; l)h, Aenpre = 0,
(2°11) 2n (720 |
A2'n:R = (_ 1)”+1 —’ilz%———l)', n = 1, 2, 3’ cee

where A..r represents the nth Thiele seminvariant of a rectangular distribution
of discrete variates and B., (n = 1, 2, - - .), the Bernoulli numbers: %, 4, - - -

In each of the cases considered in this section, corresponding formulas may be
found for a rectangular distribution of continuous variates by setting h = m/k
(which makes the range m with &k subdivisions) and then letting k — o

2. Adjustments for moments. As our basic distribution we consider the set of
discrete variates, z;, (# = 1, 2, ..., N), where some of the z;’s may not be
distinct. We assume that the given distribution is grouped in “k groupings
of k”.
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When z; is placed in the rth position of a class, the limits of the class are

z; — (r — 1)h and z; + (k — r)h and the class mark is z; + [’L’_’%’_‘:_l_) I
Thus, when the class mark is used as the value of z;, the quantity [’f___(zl:_l_)] h

is added to the true value of z;. Therefore, when the expected value of a
particular moment for “‘k groupings of k&’ is found, each variate has made a
definite contribution as it was placed in each of the k positions of a class.

For convenience, we define

(212) €r = [&_—__(_227'_—__1_)] h, ('I‘ = 1’ 2; et ;k)'

As was previously indicated, the expected value of a given moment involves
the contribution of each variate as it occupies the k class positions. A con-
venient method of finding these contributions is by means of a universe ;U=

which is composed of the populations ,X, (r = 1,2, --- , k). The rth population
consists of the values of the variates when they occupy the rth position of the
class. Hence ,X consists of x; = 2;: + e,z =1,2, ..., N).

The notation for moments is the same as that of Part I. Since ;U is of the
same form as the universe studied in Part I, we use the definitions (1.1) of that
part.

The expected value of the {th moment is

Mg, = Z E(xa + er)

r==l

£ (S

Many devices have been used by prev1ous Wnters [24; p. 269], [25; p. 57],

% E e,. However, it should be
r=1

noticed that the quantities e,, (i = 1, 2, ..., k), are respectively identical

with the deviations (2.6) about the mean of a rectangular distribution of discrete

variates. It follows that

[26; p. 157], to evaluate terms of the form -

I-‘aR— “’Zer

r==l

And since Fz41:r = 0, we have

(/21

(2.13) Mg, = Z (2 )Ht—zsﬁzuno
=0 S

Formulas for fiss:z , (s = 0, 1, - - - , 5) are given by (2.10).

If the class marks are selected as the unit of z, we set & = 1in (2.10). If the
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class interval is chosen as the unit of z, we set h = 1/k in (2.10). If k con-
secutive values of the discrete variable are grouped in a frequency class of width
m, we put b = m/k in (2.10).

Usually we desire to estimate the value of the moments that would have been
obtained if we had not grouped the data. Therefore (2.13) is solved for the
moments of the ungrouped data. We have

[t/21 )
(2.14) pe = §, (28)P23“1:l,‘t—2a
wherein
_ (—1)°(25)! p! fizp ;R Bisgyir « -+ Bapyr
[(2p) 2PN - - - [(2p) T m! 7!+

the summation being taken for every possible product of moments for which
Xpi=s  2m=p
te=l t=]1

Formulas, corresponding to (2.13) and (2.14), for a distribution of continuous
variates are written by replacing the moment symbols for discrete variates by
those for continuous variates.

P2s

3. Adjustments for central moments. Consider the universe U which consists
of the population X, (r = 1,2, . .. , k), where ,X is the rth grouped-distribution.

The expected value of the tth central moment of the k grouped-distribution is
given by (1.3), (1.4) and (1.5) of Part I, where now py.,,—; is given by (2.13) of
the preceding section. Thus, the development of this section is identical with
that of section one of Part I with the single exception that u:.., = p: no longer
holds but is replaced by w1, = ue + @ correction. Therefore, the formulas for
the adjustments for central moments may be obtained immediately from the
formulas derived in section one, Part I, if the corrections of the preceding section
are inserted. We have

(2.15) Mg, = H2 + far — Hay

(2.16)  pug, = Bz + Omaiboy, — BBrnugu, + 2,

(217) g, = B + Ofislize + fae + 6(h2 — 2 + fn:r)lnu
+ 12manuge, — 12miss, — 4B1pu,
+ Ohotiuguy — ez,

The moments of the ungrauped data can be obtained readily from formulas
(2.15) through (2.17).

Adjustment formulas for central moments of a distribution of continuous
variates may be obtained from (2.13) by replacing the moment symbols for
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discrete variates by those for continuous variates and taking the moments about
the mean. Also, it may be observed that adjustment formulas for central
moments of a distribution of continuous variates may be obtained from formulas
(1.3), (1.4) and (1.5) of Part I, provided the moment symbols are exchanged as
indicated above and terms of the form 7,,,,. —wagivg v, - vy, BT€ SEE equal to zero.

4. Usual adjustments for Thiele seminvariants. The usual adjustments for
Thiele seminvariants, for the univariate discrete population, may be developed
directly by use of one of the fundamental properties of Thiele seminvariants.

It is assumed (see [25; p. 55]) that k consecutive values of the discrete variable
are grouped in a frequency class of width m. The k smaller intervals of width
m/k = h go to make up the class width m, the actual points representing the &
values of the variable being plotted at the centers of the sub-intervals. Now,
let us suppose that each of the k£ consecutive boundary points of the subintervals
is as likely to be chosen as a boundary point of the larger intervals as any other.
Then, if z; is the class mark of the 7th frequency class, for any true value, z, of
the discrete variable included in this frequency class, we have

Ti=z + e

in which z and e, are independent variables and e, takes on the k values (2.12)
with equal relative frequencies 1/k.

Since we have noted that the equally likely values which e, may take on are
deviations about the mean of a réctangular distribution of discrete variates, we
employ the cumulative property of Thiele seminvariants [9; p. 4] and obtain

directly
(2.18) Mz = ez + Aer, t=1,2 ...,

where )., is the tth seminvariant computed from the grouped data, A is the
tth seminvariant computed from the ungrouped data and .., is defined by (2.11).

Formulas corresponding to (2.18), for special values of ¢, are given by Craig
[25; p. 57]. However, the present development indicates the dependence of
adjustment formulas on central moments of a rectangular distribution and pro-
vides a general formula for these adjustments which is expressed completely in
terms of Thiele seminvariants.

6. New adjustments for Thiele seminvariants. If we accept the definition

1 k
prige = 3 20 ohey t=23,.-.),

e

then (2.18) is at best only an approximation formula. We now desire exact
formulas for ui.a, for the case of a grouped-distribution of discrete variates.
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First (1.9) is used and terms of the form ps,s, .. .s,:u1us - - .4, are evaluated in terms
of central moments by (1.3). Then terms of the form ui.,, are evaluated by
(2.13) and finally the relations between moments and Thicle seminvariants are
employed. Exact formulas for the expected values of the second, third, and
fourth Thiele seminvariants for grouped-distributions of discrete variables are
given below.

(2.19) pn, = A2+ Aaip — foy -
(2.20) pny = As F Oy, — BBivugus + 2Ms:4, -
(2.21)  wa, = M+ Ar + 1200 — 20 + Aoz,
+ 24[Brugny, — Baug N — rpgp
+ 1202100, — OBass; — iz, .

Formulas for Thiele seminvariants of ungrouped data in terms of expectations
may be obtained from (2.19) through (2.21).

Adjustment formulas for Thiele seminvariants of a distribution of continuous
variates are given by Langdon and Ore [23; p. 231] and Craig [25; p. 57]. If we
denote the tth Thiele seminvariant of a distribution of continuous variates by
Lt N then

(2.22) vier, = L + Lug,
where

_ (_ l)HB,m”

2t , t=1,2’...

(2.23) Loyr:r = 0, Lyy:e

Formulas (2.19) through (2.21) may be used for continuous variates by
changing the moment symbols and setting terms of the form f,u, .- g, ue, - e
equal to zero.

v

6. Adjustment formulas applied to a numerical problem. We consider the
arbitrary distribution given in Table III.

TABLE III
An Arbitrary Distribution of Discrete Variates
v J Y f v J F
1 2 4 30 7 1 24+30+1=233
2 8 5 4 8 1 8+ 4+1=13
3 10 6 3 9 1 0+ 3+1=14




330 JOSEPH A. PIERCE

The three grouped distributions, when the variates are grouped in “‘groupings
of three,” appear in Table IV.

TABLE 1V
Distributions Derived from Data of Table I11 by Making the Three Possible Groupings of Three
4] 2 ®
Class I Class f Class I
1-3 0-2 10 —-1to1l 2
4-6 37 3-5 44 2-4 48
7-9 6-8 5 5-7 8
10-12 0 9-11 1 8-10 2

Using the fixed point 4, moment-functions are computed f8r the distribution of
Table IIT and for each of the distributions of Table IV. These quantities
along with the average of each moment function appear in Table V.

TABLE V

Moment-Functions of the Distributions of Table III and Table IV. Averages of Moment-
Functions of Distributions of Table IV

Dist. B1 M2 "3 ' B2 = Ao | B3z = N3 Ry e

o 9 165 69 1125 | 9819 | —17442 [238,849,317|—50,388,966
60 60 60 60 (60)? (60)3 (60)+ (60)+

@ | 22| m 81 2511 | 10179 | 567162 [557,840,277| 247,004,154
60 60 60 60 (60)2 (60)3 (60)* (60)*

@ | 20| 2 | 18 | 188 | s 1317600 |528,282,000] 294,904,800
60 60 60 60 (60)2 (60)® (60)+ (60)*

A -10 | 166 9 1858 | 9606 | 622440 |441,657,198 163,839,996
Ve | 60 60 60 60 (60)? (60)* (60)* (60)*
Orig. | =10 | 126 | 116 | 1314 | 7460 | 642400 |305,034,000/ 138,079,200

Dist. 60 60 60 60 (60)2 (60)2 (60)+ (60)*

Table VI gives the expected values of the moment-functions as obtained by

substituting from Table V into the formulas of sections two, three, and five.
Also the expected values, computed from the usual formulas, are given and the
errors which would be made, if the usual formulas were used, are indicated.
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TABLE VI
Ezxpected Values of Moment-Functions Computed by Formulas

Pra, = |Prg; =

Lt :
B, HBig #e Frng

Expectations by| Puyuy | Prp, | Brug | B,

New Formulas —10 | 166 | 96 |1858 | 9606 |622440| 441,657,198 | 163,839,996

B 60 | 60 | 60 | 60 (60)2 | (60)3 (60)* (60)*

Geual Formulas —10 | 166 | 96 | 1858 | 9860 |642400| 416,778,000 | 133,795,200
60 | 60 | 60 | 60 (60)2 | (60)2 (60)* (60)*

254 19960 | —24,879,198 | —30,060,796
(60)* | (60)* (60)* (60)*

l
l

Error — —

7. Evaluation of f,.,, . It appears at first that it is necessary to form the
“k groupings of k" in order to evaluate the term fs,, which enters the precise
formula for the expected value of the variance. That was the procedure fol-
lowed by Carver [26; p. 161]. However, it is possible to evaluate fs:,, from the
ungrouped data without forming a single grouped-distribution.

By definition,

1&
figy, = = 21 [r — pal’,
=

where ,u; is the mean of the rth grouped-distribution and g, is the mean of the
ungrouped distribution. We wish to study the terms ,u; and p; . Consider a
set of variatesz;, (1 = 1,2, ..., 8), with corresponding frequencies f; , ( = 1, 2,
.+, 8). The «’s are subject to the condition, ; — z;_; = 1, and consequently
Zzf
?f .

F,=fi+ fivi + foops + -+, G=1,2 ..,k

Then, if a grouped-distribution is formed with z; in the ¢th (z = 1,2, ... [ k)
position of a class, the mean of this grouped-distribution is
k
2af + ,Z_l Fieirin

where e;_, = e, if e; = 1 and e;y1 = e1if ¢; = ¢;, . Similarly if a grouped-distribu-
tion is formed with x; in the (¢ + 1)st position of a class, the mean is

k
2af + i_z; Fieiy;
2f ’

some of the f’s may be zero. The mean of this distribution is

We define
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Thus, it is evident that, given the expression for the mean of any grouped-
distribution in which z; is in the 7th position of 3 class, we may form the expres-
sion for the mean of the grouped-distribution in which z; is in the (z + 1)st
position of a class by a cyclic permutation of the e.’s of the given expression.

Therefore, it follows that if we call ,u; the mean of the grouped-distribution
in which z;is in the r7th (r = 1, 2, ... , k) position of a class, then

k
;Fierﬂ‘—l
rltx"m:’—_—’ET, (r=1,2...,k).

If we define
k
N =3f and ¢, = E Fierri
i=1

then,

1 &
Moy = W;d’f

Thus, it is evident that fa.,, is a function of the frequencies of the variates and
of the e’s. The fact that the values of the variates do not enter fg,, permits

one to quickly calculate its value.
Consider js:,, for the distribution of Table III. We find

&1 = 33e1 + 13ez + 14e;.
Then, by successive cyclic permutations of the e/'s,
¢2 = 33e: + 13es + 14e,,
¢3 = 33e; + 13e, + 14e,.

Substituting the values e; = 1, e, = 0, ¢ = —1 we have ¢; = 19, ¢ = 1 and
¢3 = —20. Therefore,

_ 254

M2y = W

which is identical with the value which was found when Table V was used.
It follows from the preceding development that

1 ¢
ﬁl:u1="'c'_N‘t§¢r

and if F, = F; = ... = Fy then [i,, is zero.
8. Conclusion. The results of this paper include:

1. The derivation of general and specific formulas for the cxpected values of
population moment-functions.
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2. The derivation of generalized sampling formulas under the condition that
samples of n are formed by selecting one variate from each population.

3. Methods for the transformation of generalized sampling formulas into the
corresponding infinite and finite sampling formulas.

4. A method for the transformation of infinite sampling formulas into the

corresponding finite sampling formulas.

5. A demonstration of the fact that adjustment formulas for moment-function
of grouped data involve central moments of a rectangular distribution.

6. A general formula for the expected value of the itth moment of grouped data.

7. New adjustment formulas for central moments of grouped data.

8. New adjustment formulas for Thicle seminvariants of grouped data.

9. A method for the evaluation of the term fe.,, which appears in the precise
adjustment formula for the variance.

Many thanks are due Prof. P. S. Dwyer, to whom the writer is greatly in-

debted for advice and encouragement.
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