THE FITTING OF STRAIGHT LINES IF BOTH VARIABLES ARE
SUBJECT TO ERROR

By ABraHAM WALD

1. Introduction. The problem of fitting straight lines if both variables x
and y are subject to error, has been treated by many authors. If we have N > 2
observed points (z;, y;) (¢ = 1, ..., N), the usually employed method of least
squares for determining the coefficients a, b, of the straight line y = ax 4 b
is that of choosing values of @ and b which minimize the sum of the squares of
the residuals of the ¥’s, i.e. Z(ax; + b — ¥;)’ is a minimum. It is well knotwn
that treating ¥ as an independent variable and minimizing the sum of the
squares of the residuals of the z’s, we get a different straight line as best fit. It
has been pointed out' that if both variables are subject to error there is no
reason to prefer one of the regression lines described above to the other. For
obtaining the “best fit,”” which is not necessarily equal to one of the two lines
mentioned, new criteria have to be found. This problem was treated by R. J.
Adcock as early as 1877.

He defines the line of best fit as the one for which the sum of the squares of
the normal deviates of the N observed points from the line becomes a minimum.
(Another early attempt to solve this problem by minimizing the sum of squares
of the normal deviates was made by Karl Pearson.’)

Many objections can be raised against this method. First, there is no justifi-
cation for minimizing the sum of the squares of the normal deviates, and not
the deviations in some other direction. Second, the straight line obtained by
that method is not invariant under transformation of the coordinate system.
It is clear that a satisfactory method should give results which do not depend
on the choice of a particular coordinate system. This point has been empha-
sized by C. F. Roos. He gives* a good summary of the different methods and
then proposes a general formula for fitting lines (and planes in case of more than
two variables) which do not depend on the choice of the coordinate system.

1 See for instance Henry Schultz’ ‘“The Statistical Law of Demand,’” Jour. of Political
Economy, Vol. 33, Dec. (1925).

2 Analyst, Vol. IV, p. 183 and Vol. V, p. 53.

3 “On Lines and Planes of Closest Fit to Systems of Points in Space’’ Phil. Mag. 6th
Ser. Vol. IT (1901).

4 “A General Invariant Criterion of Fit for Lines and Planes where all Variates are
Subject to Error,”” Metron, February 1937. See also Oppenheim and Roos Bulletin of the
American Mathematical Society, Vol. 34 (1928), pp. 140-141.
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Roos’ formula includes many previous solutions® as special cases. H. E. Jones®
gives an interesting geometric interpretation of Roos’ general formula.

It is a common feature of Roos’ general formula and of all other methods
proposed in recent years that the fitted straight line cannot be determined
without a prior: assumptions (independent of the observations) regarding the
weights of the errors in the variables z and y. That is to say, either the standard
deviations of the errors in « and in y are involved (or at least their ratio is
included) in the formula of the fitted straight line and there is no method given
by which those standard deviations can be estimated by means of the observed
values of x and y.

R. Frisch’ has developed a new general theory of linear regression analysis,
when all variables are subject to error. His very interesting theory employs
quite new methods and is not based on probability concepts. Also on the basis
of Frisch’s discussion it seems that there is no way of determining the “true’”
regression without a priors assumptions about the disturbing intensities.

T. Koopmans® combined Frisch’s regression theory with the classical one in
a new general theory based on probability concepts. Also, according to his
theory, the regression line can be determined only if the ratio of the standard
deviations of the errors is known.

In a recent paper R. G. D. Allen’ gives a new interesting method for deter-
mining the fitted straight line in case of two variables  and y. Denoting by ¢
the standard deviation of the errors in z, by ¢, the standard deviation of the
errors in y and by p the correlation coefficient between the errors in the two
variables, Allen emphasizes (p. 194)° that the fitted line can be determined only
if the values of two of the three quantities o., o, , p are given a priors.

Finally I should like to mention a paper by C. Eisenhart,® which contains
many interesting remarks related to the subject treated here.

In the present paper I shall deal with the case of two variables  and y in
which the errors are uncorrelated. It will be shown that under certain con-
ditions:

(1) The fitted straight line can be determined without making a priors assump-
tions (independent of the observed values x and y) regarding the standard
deviations of the errors.

(2) The standard deviation of the errors can be well estimated by means of

5 For instance also Corrado Gini’s method described in his paper, ‘‘Sull’ Interpolazione
di una Retta Quando i Valori della Variable Independente sono Affecti da Errori Acciden-
talis,”” Metron, Vol. I, No. 3 (1921), pp. 63-82.

¢ “Some Geometrical Considerations in the General Theory of Fitting Lines and Planes,”’
Metron, February 1937.

7 Statistical Confluence Analysis by Means of Complete Regression Systems, Oslo, 1934.

8 Linear Regression Analysis of Economic Time Series, Haarlem, 1937.

9 ““The Assumptions of Linear Regression,’”’ Economica, May 1939.

10 “The interpretation of certain regression methods and their use in biological and
industrial research,” Annals of Math. Stat., Vol. 10 (1939), pp. 162-186.
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the observed values of  and y. The precision of the estimate increases with
the number of the observations and would give the exact values if the number
of observations were infinite. (See in this connection also condition V in
section 3.)

2. Formulation of the Problem. Let us begin with a precise formulation of
the problem. We consider two sets of random variablest*

Tiy -+, TN Yy, Yn.

Denote the expected value E(x;) of z; by X; and the expected value E(y:) of
y:by Y; G =1,...,N). We shall call X; the true value of z;, Y; the true
value of y; , x; — X; = ¢; the error in the 7-th term of the z-set, andy; — Y; = #;
the error in the ¢-th term of the y-set.

The following assumptions will be made:

I. The random variables e , - -- , ex each have the same distribution and they
are uncorrelated, i.e. E(e;e;) = 0 for © % j. The vartance of e; ts finite.
II. The random variables u:, - -- , nx each have the same distribution and are

uncorrelated, i.e. E(nin;) = 0 for © # j. The variance of . is finite.

III. The random variables ¢; and 9; (¢ = 1, ... ,N;j = 1,...,N) are un-
correlated, i.e. E(ein;) = 0.

IV. A single linear relation holds between the true values X and Y, that is to
sayY; =aXy+B@E=1,...,N).

Denote by € a random variable having the same probability distribution as
possessed by each of the random variables e, ---, ex, and by # a random
variable having the same distribution as 7, -+ , 7x .

The problem to be solved can be formulated as follows

We know only two sets of observatlons T, - xN Sy, e , y,'v , Where i
denotes the observed value of z; and y; denotes the observed value of y;. We
know neither the true values X;, .-+, Xx; Y1, ---, Yy, nor the coefficients
a and B of the linear relation between them. We have to estimate by means
of the observations z; , - -+ ,y ; Y1, -+ - , Yn , (1) the values of @ and B, (2) the
standard deviation o, of ¢, and (8) the standard deviation o, of 7.

Problems of this kind occur often in Economics, where we are dealing with
time series. For example, denote by z; the price of a certain good G in the
period ¢; , and by y; the quantity of G demanded in ¢;. In each time period ¢;
there exists a normal price X; and a normal demand Y; which would obtain if
the influence of some accidental disturbances could be eliminated. If we have
reason to assume that there exists between the normal price and the normal
demand a linear relationship we have to deal with a problem of the kind de

scribed above.
In the following discussions we shall use the notations z; and y; also for their

11 A random or stochastic variable is a real variable associated with a probability
distribution.
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7 7 . . . . .
observed values z; and y; since it will be clear in which sense they are meant
and no confusion can arise.

3. Consistent Estimates of the Parameters-a, 8, o., 0,. For the sake of
simplicity we assume that N is even. We consider the expression

— (xl+ o +xm) - (xm+l+ e +Z‘N).
N )

o+t Ym) = Wmp oo +yw)
az_ N )

where m = N /2. As an estimate of « we shall use the expression

a _ m+ -+ Yn)— WYna + -« + yn)
ay (x1+...+xm)—(x,,,+1+... +x~).

We make the assumption
V. The limit inferior of

Xy + -+ + Xu) —N(Xm+1+---+XN) (N =23, ... ad. inf.

a1

¢))

2 a =

18 positive.

We shall prove that a is a consistent estimate of «, i.e. @ converges stochas-
tically to a with N — «, if the assumptions I-V hold. Denote the expected
value of a; by @ and the expected value of a; by @.. It is obvious that

ay = (Xl+ e +Xm) - (X,,,+1+ ""+XN)

' N
3)
. N+ o+ V) — Ymp+ oo + V)
a2 - .
N
On account of the condition IV we have
4) @ = ad, or o
a1

The variance of a; — @, is equal to ¢7/N and the variance of a; — d; is equal
to o2 /N. Hence a; and a; converge stochastically towards a; and @, respectively.

From that and assumption V it follows that also %2 converges stochastically
1

towards g_z = a. The intercept 8 of the regression line will be estimated by
1

6) b=7g— a3 wherea’:=7ﬁ:—"~'-1'v'ﬂ” and g7=y_1_i‘~'7‘v'_‘|:l".

Denote by X the arithmetic mean of X;, ---, Xy and by ¥ the arithmetic
mean of Y, --., Yy . Since 7 éonverges stochastically towards Y, & towards
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X, and a towards a, b converges stochastically towards ¥ — «X. From condi-
tion IV it follows that ¥ — aX = 3. Hence b converges stochastically
towards 8.

Let us introduce the following notations:

. — )2
8 = 1/ z @i‘w—@- = sample standard deviation of the z-observations,
8y = /‘/ z (y_.]v_y_) = sample standard deviation of the y-observations,

Sy =2 (%—T—%:—l) = sample covariance between the z-set and y-set.

N
sx, Sy and sxy denote the same expressions of the true values X;, --- , Xy ;
Yi,---,Yx.
It is obvious that
N —
®) B =+ a1,
N-1
(M) E(S:) = 3?’ + ‘7: N

® E(sw) = 8xv,

where E(s%), E(s)), and E(s5) denote the expected values of s2, sk, and spy .t
Since Y; = aX; + B, we have

(9) Sy = aSx )
(10) Sxy = asiv .

From (8), (9) and (10) we get

2

(11) 3; = E_'(;ﬁ);
(12) 8?’ = aE(sw)

If we substitute in (6) and (7) for sy and s} their values in (11) and (12),
we get

13) o = [ B - 2o |wyav -,
1) ot = [B() — aB)IN/OV — 1.

12 T observe that the equations (6), (7) and (8) are essentially the same as those investi-
gated by R. Frisch, Statistical Confluence Analysis pp. 51-52. See also Allen’s equations
(4) Le. p. 194.
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Since s; , s} , 8, converge stochastically towards their expected values and a
converges stochastically towards «, the expressions

(15) [s, - --]N/(N ~p
and
(16) [ — asu] N /(N — 1)

are consistent estimates of o7 and o} respectively.

4. Confidence Interval for «. In this section, as well as in sections 5 and 6,
only the assumptions I-IV are assumed to hold. In other words, all state-
ments made in these sections are valid independently of Assumption V, except
where the contrary is explicitly stated.

Let us introduce the following notation:

j_:l=x1+-'-+xm; gl=yx+---+y...
m m
5’,=xm+1+-”+$ﬂ; 72 _y,..+1+---+yu
m m
, Z (x; — xl)2 + Z (x: 3.52)2
(e = = .=

, E(?/’—yx) + Z i — 5’
@ == 7

‘Z: (@ — &)@y — 90) + i_z:;'_l (xj — %) (i — )

X, X,, Y1, YV, (sx)°, (s¥)* and sxr denote the same functlons of the true
values X;,.--,Xw», Y1,---,Y~x. The expressions s., 8, and s, are

slightly dlﬁ'erent from the correspondlng expressmns 8z, 3y, and 8, . The
reason for introducing these new expressions is that the distributions of s,

8y, and s, are not independent of the slope a = ? of the sample regression
1

line, but s; , s, and s, are distributed independently from a (assuming that e
and » are normally distributed). The latter statement follows easily from the
Ya

fact that according to (1) and (2) a = 1;,{;_1;—_5 and s, , s, , 8,y are distributed
2

independently of &, , Z;, #: and ..
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In the same way as we derived (13) and (14), we get
’
(13) 7 = [ B - o) vy - o),

(14') o7 = [E(s,)* = aB(s3,)IN /(N = 2).

These formulae differ from the corresponding formulae (13) and (14) only in
the denominator of the second factor, having there N — 2 instead of N — 1.
This is due to the fact that the estimates s, , s, , sy are based on N — 1 degrees
of freedom whereas s, , s, and s, are based only on N — 2 degrees of freedom.
From (13’) and (14") we get the following estimates™ for o> and o7 :

an [ = 2= |/ - o,
19 (1) — ashIN /Y — 2).

Hence we get as an estimate of af, + o’¢” the expression:
8 = [(s3)’ + o*(s2)* — 2a80,IJN/(N — 2)

m N
19[Sl aw) - @—aaf+ 3 (45— aw) — G- azz)lz}
= =1 j=m+1
N -2 N
Now we shall show that
N — 2)s?
) A

has the x’-distribution with N — 2 degrees of freedom, provided that ¢ and 7
are normally distributed. In fact,

(yi — axs) — (h — affy) = 0 — ae — ( — ag) (t=1,...,m)
and

Wi — ax;) — (Jo — ads) = n; — ae; — (o — a&) (j=m+1,-.-,N),

where
. _&at -+ em . _tmpt -t ey
= —-——, =,
m m
_mt e+, _ Mmoo
mh=———— fla =
m m

Since the variance of 7« — ae is equal to o2 + a’o> and since 7, — ae, is un-
correlated with 9, — aeg (K = 1) (k,1 =1, ..., N), the expression (20) has the
x-distribution with N — 2 degrees of freedom.

13 An ‘‘estimate’’ is usually a function of the observations not involving any unknown
parameters. We designate here as estimates also some functions involving the parameter a.
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Now we shall show that
(21) '\/N al(a - a)
V a: + d’d?
is normally distributed with zero mean and unit variance. In fact from the
equations (1)-(4) it follows that

al(a—a)=dz+m;m—ax(§3)

ay

T Sl Y R e ) VA
-+ BT (525D

Mm—f_ &—é&
2 *7g
Since the latter expression is normally distributed (provided that ¢ and 7 are
2 2 2
o, + oo

N

normally distributed) with zero mean and variance , our statement

about (21) is proved. '

Obviously (20) and (21) are independently distributed, hence 4/N — 2 times
the ratio of (21) to the square root of (20), namely,
t=\/l—v—_-—2\/17a1(a—.a-)= all(a—a)\,/N—2,

VN =238 V(s))'+ o’(s))* — 2asL,
has the Student distribution with N — 2 degrees of freedom. Denote by #, the'

critical value of ¢ corresponding to a chosen probability level. The deviation
of a from an assumed population value « is significant if

a(a — a)\/N — 2 > 4
V(s) + (s’ — 205, |
The confidence interval for « can be obtained by solving the equation in e,

t2

(22)

(23) aia — o)* = [(5)" + o'(s2)* — 20a] 7.
Now we shall show that if the relation
2 (8::)2t§
(24) ai > Z—V.T2 y

holds, the roots a; and «; are real and a is contained in the interior of the interval
[oucs]. From (19) it follows that

() + o(s2)’ — 2assy > 0
for all values of «. Hence, for @ = a the left hand side of (23) is smaller than
the right hand side. On account of (24) there exists a value ¢’ > a and a
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value a’’ < a such that the left hand side of (23) is greater than the right hand
side for « = o’ and @ = a’’. Hence one rgot must lie between a and &’ and the
other root between a”” and a. "This proves our statement. The relation (24)
always holds for sufficiently large N if Assumption V is fulfilled. The confi-
dence interval of « is the interval [a1 , az]. For very small N (24) may not hold.

Finally I should like to remark that no essentially better estimate of the
variance of n — ae can be given than the expression s* in (19). In fact, we

have 2N observations z;, --+ ,Zy ; %1, ---, Y~ . For the estimation of the
variance of 7 — ae we must eliminate the unknowns X;, --- , Xy and 8. (The
unknowns Y, , ..., Yy are determined by the relations ¥; = aX; + fand ais

involved in the expression whose variance is to be determined.) Hence we have
at most N — 1 degrees of freedom and the estimate in (19) is based on N — 2
degrees of freedom.

6. Confidence Interval for 8 if o is Given. In this case the best estimate of 8
is given by the expression: '

ba=27—aiwherez=‘”1_"'_'1;,ﬂ_!andg=gl+;].vﬂ.
We have
ba=B=@G -V —ald-X) =9—a
where
E=E—L].Vi?,andf)=’ﬂ_‘|'_;];[‘_‘|'ﬂ.
Hence,
VA (= 8)

. :
(25) vV a: + d’o?

is normally distributed with zero mean and unit variance. It is obvious that
the expressions (20) and (25) are independently distributed. Hence v/N — 2
times the ratio of (25) to the square root of (20), i.e.

VN =8 _ VN -2 (b —§)
VN —2s ' \/(s,',)z + o(s2)? — 2a8;,,
has the Student distribution with N — 2 degrees of freedom. .Denoting by £,

the critical value of ¢ according to the chosen probability level, the confidence
interval for 8 is given by the interval:

V(s)? + *(s0)* — 2as. V(s)? + &*(s0)? — 2as..
ba v 2 g y ba - Ll = v t|-
[ * VN -2 o VN -2

t=+N-2
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6. Confidence Region for o and g Jointly. In most practical cases we want to
know confidence limits for o and 8 jointly. A pair of values «, 8 can be repre-
sented in the plane by the point with the coordinates @, 8. A region R of this
plane is called confidence region of the true point (a, 8) corresponding to the
probability level P if the following two conditions are fulfilled.

(1) The region R is a function of the observations 21, --- , 2y ; 1, -+, Yn,
i.e. it is uniquely determined by the observations.

(2) Before performing the experiment the probability that we shall obtain
observed values such that (e, 8) will be contained in R, is exactly equal to P.
P is usually chosen to be equal to .95 or .99.

We have shown that the expressions (21) and (25), i.e.

'\/]—V al(a - a) ‘\/_A—, (ba - ﬂ)
\/o',z, + ot ’ \/aﬁ + d*o’
are normally distributed with zero mean and unit variance. Now we shall

show that these two quantities are independently distributed. For this purpose
we have only to show that Z, §, a, and a, are independently distributed (a; and a,

are defined in (1)), but since
ay — E(al) = (51 - iz)/z

o — E(a) = (m — 12)/2
T — E@) =¢
7—E@ =,

we have only to show that & #, & — &, f1 — 72 are independently distributed.
We obviously have

é=q;-ez, 7’='h'i2'ﬂz'
It is evident that &, &, #1 and % are independently distributed. Hence,
E[¢(ts — &)] = (Be&l — E&)/2 = 0and also E[5(m — )] = (Em — Enz)/2 = 0.
Since & — &, 1 — iz, and & and 4 are normally distributed, the independence
of this set of variables is proved, and therefore also (21) and (25) are inde-
pendently distributed. It is obvious that the expression (20) is distributed
independently of (21) and (25). From this it follows that

N —2 Nlai(@a — )’ + (§ — oz — 8)’]
(N — 2)s?
_ (W —2)di(a — &)’ + (F — oz — B)’]
2[(s,)° + a*(s2)" — 208,]
has the F-distribution (analysis of variance distribution) with 2 and N — 2
degrees of freedom. The F-distribution is tabulated in Snedecor’s book: Calcu-

(26) -
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lation and Interpretation of Analysis of Variance, Collegiate Press, Ames, Iowa,
1934. The distribution of % log F = z is tdbulated in R. A. Fisher’s book:
Statistical Methods for Research Workers, London, 1936. Denote by Fo the
critical value of F corresponding to the chosen probability level P. Then the
confidence region R is the set of points (a, 8) which satisfy the inequality

N -2 aila—a)+ @G — af —B)’

. < Fy.
2 (s3)* + o(s2)* — 2ass, ’

(27)

The boundary of the region is given by the equation

2F,

)" + o'(0)" — 2ass].

(28) dila—a)+ (F— ax —B) =

This is the equation of an ellipse. Hence the region R is the interior of the
ellipse defined by the equation (28). If Assumption V holds, the length of the
axes of the ellipse are of the order 1/4/N, hence with increasing N the ellipse
reduces to a point.

7. The Grouping of the Observations. We have divided the observations in
two equal groups G1 and G, , Gy containing the first half (21, #1), - -+ , (Tm , Ym)
and G, the second half (Tmy1, Ymss), -+, (Tn, yn) of the observations. All
the formulas and statements of the previous sections remain exactly valid for
any arbitrary subdivision of the observations in two equal groups, provided
that the subdivision is defined independently of the errors e, ---,ex;
m, - ,nx. The question of which is the most advantageous grouping arises,
i.e. for which grouping will a be the most efficient estimate of « (will lead to
the shortest confidence interval for «). It is easy to see that the greater | a, |
the more efficient is the estimate a of @. The expression | a; | becomes a maxi-
mum if we order the observations such that z; < 7, < ... < zx. Thatis to
say | @ | becomes a maximum if we group the observations according ¢o the
following:

Ruie I. The point (z;, y:) belongs to the group Gy if the number of elements
z; (j # 1) of the series x,, - - - , Ty for which z; < z;islessthan m = N /2. The

point (z; , y:) belongs to Gy if the number of elements x; (j # 1) for which z; < x:
1s greater than or equal to m.

This grouping, however, depends on the observed values ;, - -- , Zx and is
therefore in general not entirely independent of the errors e, --- , ex. Let us
now consider the grouping according to the following: .

RuLe II.  The point (z;, y:) belongs to the group Gy if the number of elements
X; of the series Xy, --- , X for which X; < X; (j # 1) is less than m. The
point (z: , y:) belongs to Gy if the number of elements X ; for which X ; < X (j # 1)
is equal to or greater than m.
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The grouping according to Rule II is entirely independent of the errors
€, -+, €x;M, - -,nx. Itisidentical with the grouping according to Rule I
in the following case: Denote by = the median of z;, -- -, zx ; assume that
can take values only within the finite interval [—¢, +c] and that all the values
Zy, - -+, xy fall outside the interval [t — ¢, z -+ ¢]. It is easy to see that in
this case z; < z (s = 1, ..., N) holds if and only if X; < X, where X denotes
the median of X;, ..., X». Hence the grouping according to Rule II is
identical to that according to Rule I and therefore the grouping according to
Rule I is independent of the errors e, ---, ex. In such cases we get the best
estimate of a by grouping the observations according to Rule I. Practically,
we can use the grouping according to Rule I and regard it as independent of the
eITorS €1, -+ , €x; M, - -+, nx if there exists a positive value ¢ for which the
probability that | e| > ¢ is negligibly small and the number of observations
contained in [z — ¢, z + ¢] is also very small.

Denote by a’ the value of ¢ which we obtain by grouping the observations
according to Rule I and by "’ the value of a if we group the observations
according to Rule II. The value a’” is in general unknown, since the values
X3, -+, Xy are unknown, except in the special case considered above, when
we have @’ = a’. We will now show that an upper and a lower limit for a’’
can always be given. First, we have to determine a positive value ¢ such that
the probability that | €| > c is negligibly small. The value of ¢ may often be
determined before we make the observations having some a priori knowledge
about the possible range of the errors. If this is not the case, we can estimate
the value of ¢ from the data. It is well known that if we have errors in both
variables and fit a straight line by the method of least squares minimizing in
the z-direction, the sum of the squared deviations divided by the number of
degrees of freedom will overestimate o2 . Hence, if ¢ is normally distributed,
we can consider the interval [—3v, 3v] as the possible range of ¢ i.e. ¢ = 3y,
where »* denotes the sum of the squared residuals divided by the number of
degrees of freedom. If the distribution of € is unknown, we shall have to take
for ¢ a somewhat larger value, for instance ¢ = 5v. After having determined ¢,
upper and lower limits for a’’ can be given as follows: we consider the system S
of all possible groupings satisfying the conditions:

(1) If z; < & — c the point (x;, y¥:) belongs to the group G .

(2) If ; > x + ¢ the point (x;, ¥;) belongs to the group G, .

We calculate the value of a according to each grouping of the system S and
denote the minimum of these values by a*, and the maximum by a**. Since
the grouping according to Rule II is contained in the system 8, a* is a lower
and ¢** an upper limit of a”.

Let g be a grouping contained in S and denote by I, the confidence interval
for a which we obtain from formula (23) using the grouping g. Denote further
by I the smallest interval which contains the intervals I, for all elements g
of 8. Then I contains also the confidence interval corresponding to the grouping
according to Rule II. If we denote by P the chosen probability level (say
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P = .95), then we can say: If we were to draw a sample consisting of N pairs
of observations (z:, ¥1), - -, (x», Yn), the probability is greater than or equal
to P that we shall obtain a system of observations such that the interval I will
include the true slope a.

The computing work for the determination of I may be considerable if the
number of observations within the interval [x — ¢, * + ¢] is not small. We
can get a good approximation to I by less computation work as follows: First
we calculate the slope a’ using the grouping according to Rule I and determine
the confidence interval [a’ — §, a’ + A] according to formula (23). Denote by
a(g) the value of the slope, i.e. the value of H , corresponding to a grouping

=
g of the system S, and by [a(g) — §,, a(g) + A,] the corresponding confidence
interval calculated from (23). .Neglecting the differences (3, — 8) and (A, — A),
we obtain for I the interval [a* — §, a** + A].

If the difference a** — a* is small, we can consider I = [a* — §, a** + A] as
the correct confidence interval of a corresponding to the chosen probability
level P. If, however, a** — a* is large, the interval I is unnecessarily large.
In such cases we may get a much shorter confidence interval by using some
other grouping defined independently of the errors e, ---, ex; m, -, x5
For instance if we see that the values 2, --- , Ty considered in the order as
they have been observed, show a monotonically increasing (or decreasing) tend-
ency, we shali define the group G as the first half, and the group G: as the
second half of the observations. Though we decide to make this grouping after
having observed that the values z, - .-, zy show a clear trend, the grouping
can be considered as independent of the errors e, ---, ex. In fact, if the
range of the error eis small in comparison to the true part X, the trend tendency
of the value zi , - - - , 2y will not be affected by the size of the errors e;, - - - , ex .
We may use for the grouping also any other property of the data which is
independent of the errors.

The results of the preceding considerations can be summarized as follows:
T — 2
Ty — e
and the corresponding confidence interval [a’ — §, @’ 4+ A] (formula (23)). This
confidence interval cannot be considered as exact since the grouping according
to Rule I is not completely independent of the errors. In order to take account
of this fact, we calculate a* and a**. If a** — a* is small, we consider I =
[a* — 5, a** 4 A] with practical approximation as the correct confidence interval.
If, however, a** — a* is large, the interval I is unnecessarily large. We can
only say that I is a confidence interval corresponding to a probability level
greater than or equal to the chosen one. In such cases we should try to use
some other grouping defined independently of the errors, which eventually will
lead to a considerably shorter confidence interval.

Analogous considerations hold regarding the joint confidence region for «
and 8. We use the grouping according to Rule I and calculate from (27) the

We use first the grouping according to Rule I, calculate the slope a’ =
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corresponding confidence region B. If | a** — o*| and | b** — b* | are small
(b* = § — a*z and b** = § — a**%) we enlarge R to a region R corresponding
to the fact that a and b may take any values within the intervals [a**, a*] and
[6**, b*] respectively. The region K can be considered with practical approxi-
mation as the correct confidence region. If | a** — a* | or | b** — b*| is large,
we may try some other grouping defined independently of the errors, which
may lead to a smaller confidence region. In any case R represents a confidence
region corresponding to a probability level greater than or equal to the
chosen one.

8. Some Remarks on the Consistency of the Estimates of «, 8, 5, 0,. We
have shown in section 3 that the given estimates of «, 8, o and o, are consistent
if condition V is satisfied.

If the values z;, ..., zy are not obtained by random sampling, it will in
general be possible to define a grouping which is independent of the errors and
for which condition V is satisfied. We can sometimes arrange the experiments
such that no values of the series ;, ---, 2y should be within the interval
[t — ¢, x + c] where z denotes the median of z;, - .., zx and ¢ the range of
the error e. In such cases, as we saw, the grouping according to Rule I is
independent of the errors. Condition V is certainly satisfied if we group the
data according to Rule I.

Let us now consider the case that X;, --- , Xy are random variables inde-
pendently distributed, each having the same distribution. Denote by X a
random variable having the same probability distribution as possessed by each
of the random variables Xy, ---, Xy. Assuming that X has a finite second
moment, the expression in condition V will approach zero stochastically with
N — « for any grouping defined independently of the values X;, --- , Xx.
It is possible, however, to define a grouping independent of the errors (but not
independent of X, --- , Xx) for which the expression in V does not approach
zero, provided that X has the following property: There exists a real value A
such that the probability that X will lie within the interval [\ — ¢, N + ¢]
(c denotes the range of the error ¢) is zero, the probability that X > X\ + ¢
is positive, and the probability that X < A — cis positive. The grouping can
be defined, for instance, as follows:

The 7-th observation (z;, y:) belongs to the group G, if z; < A and to G: if
z; > N\. We continue the grouping according to this rule up to a value ¢ for
which one of the groups Gi , G, contains already N/2 elements. All further ob-
servations belong to the other group.

It is easy to see that the probability is equal to 1 that the relation z; < A\
is equivalent to the relation X; < A — ¢ and the relation z; > A is equivalent to
the relation X; > N 4+ ¢. Hence this grouping is independent of the errors.
Since for this grouping condition V is satisfied, our statement is proved.

If X has not the property described above, it may happen that for every
grouping defined independently of the errors, the expression in condition V con-
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verges always to zero stochastically. Such a case arises for instance if X, ¢ and
n are normally distributed.!* It can be shown that in this ease no consistent
estimates of the parameters @ and 8 can be given, unless we have some addi-
tional information not contained in the data (for instance we know a prior: the
ratio o./ay).

9. Structural Relationship and Prediction.’® The problem discussed in this
paper was the question as to how to estimate the relationship between the true
parts X and Y. We shall call the relationship between the true parts the struc-
tural relationship. The problem of finding the structural relationship must not
be confused with the problem of prediction of one variable by means of the
other. The problem of prediction can be formulated as follows: We have ob-
served N pairs of values (%1, ¥1), ---, (v, yx). A new observation on z is
given and we have to estimate the corresponding value of ¥ by means of our
previous observations (21, 1), -+ - , (zx, ¥»). One might think that if we have
estimated the structural relationship between X and Y, we may estimate y by
the same relationship. That is to say, if the estimated structural relationship
is given by ¥ = aX + b, we may estimate y from z by the same formula:
y = ax + b. This procedure may lead, however, to a biased estimate of y.
This is, for instance, the case if X, ¢ and 5 are normally distributed. It can
easily be shown in this case that for any given x the conditional expectation of
y is a linear function of z, that the slope of this function is different from the
slope of the structural relationship, and that among all unbiased estimates of
y which are linear functions of z, the estimate obtained by the method of least
squares has the smallest’ variance. Hence in this case we have to use the least
square estimate for purposes of prediction. Even if we would know exactly the
structural relationship ¥ = aX + B, we would get a biased estimate of y by
putting y = ax 4+ 8.

Let us consider now the following example: X is a random variable having
a rectangular distribution with the range [0, 1]. The random variable ¢ has a
rectangular distribution with the range [—0.1, 4+ 0.1]. For any given z let us
denote the conditional expectation of ¥ by E(y | ) and the conditional expecta-
tion of X by E(X | ). Then we obviously have

Ey|2) = «B(X |2) + 6.

Now let us calculate E(X | z). Itis obvious that the joint distribution of X and
¢ is given by the density function:

5 dX de,

14 T wish to thank Professor Hotelling for drawing my attention to this case.
15 T ghould like to express my thanks to Professor Hotelling for many interesting sug-
gestions and remarks on this subject.
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where X can take any value within the interval [0, 1] and e can take any value
within [—0.1, 4 0.1]. From this we obtain easily that the joint distribution of
z and X is given by the density function

5dz dX,

where z can take any value within the interval [—0.1, 1.1] and X can take any
value lying in both intervals [0, 1] and [x — 0.1, z + 0.1] simultaneously. De-
note by I, the common part of these two intervals. Then for any fixed x the
relative distribution of X is given by the probability density

axX
aX
I
Hence, we have
[ xax
EX|z) = ==
ax
12
We have to consider 3 cases:
(1) 01<z<09.
In this case I, = [z — 0.1, « 4+ 0.1] and
2+0.1
f XdX
E(X|z) =22 — g
ax
/0.1
(2) -0.1 <z <0.1. Then I, = [0, 2 + 0.1] and
z+0.1
f XdX
EX|z) == i = .5z 4 .05.
f X
0

3)09<z<11. ThenlI,=[z—0.1,1]and

’

XdX
' EX|z) = =2 = 5z + .45.

[ o
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Since
Ey|z) = aB(X |2) + 8,

we see that the structural relationship gives an unbiased prediction of y from z
if 0.1 £ z < 0.9, but not in the other cases. '

The problem of cases for which the structural relationship is appropriate also
for purposes of prediction, needs further investigation. I should like to mention
a class of cases where the structural relationship has to be used also for prediction.
Assume that we have observed N values (21, 1), -+, (T~ , y~) of the variables
z and y for which the conditions I-IV of section 2 hold. Then we make a new
observation on z obtaining the value z’. We assume that the last observation
on z has been made under changed conditions such that we are sure that 2’ does
not contain error, i.e. 2’ is equal to the true part X’. Such a situation may arise
for instance if the error e is due to errors of measurement and the last observa-
tion has been made with an instrument of great precision for which the error of
measurement can be neglected. In such cases the prediction of the correspond-
ing ¥’ has to be made by means of the estimated structural relationship, i.e. we
have to put ¥’ = az’ + b.

The knowledge of the structural relationship is essential for constructing any
theory in the empirical sciences. The laws of the empirical sciences mostly
express relationships among a limited number of variables which would prevail
exactly if the disturbing influence of a great number of other variables could
be eliminated. In our experiments we never succeed in eliminating completely
these disturbances. Hence in deducing laws from observations, we have the
task of estimating structural relationships.
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