REDUCTION OF A CERTAIN CLASS OF COMPOSITE
STATISTICAL HYPOTHESES

By George W. BrowN

1. Introduction. A situation frequently met in sampling theory is the fol-
lowing: z has distribution f(z, 6), where 6 is an unknown parameter, and for
samples (z1, --- , ¥,) there exists in the sample space E, a family of (n — 1)-
dimensional manifolds upon each of which the distribution is independent of
0; in addition there is a residual one-dimensional manifold available for estimat-
ing 6. For example, suppose there exists a sufficient statistic T for 6, then on
the manifolds T = T, there is defined an induced distribution which is inde-
pendent of the parameter.

A similar situation is observed when 6 is a “location” or “scale’” parameter.
Let z have the distribution f(z — a) for some a, then the set (za — 2, 23 —

Zy, -+, %y — Z1), Or any equivalent set, such as (z2 — &, ..., ., — %), have a
joint distribution independent of @, and there is a residual distribution corre-
sponding to each particular configuration (22 — #;, ---, . — ;). Fisher

[1] and Pitman.[5] have examined the residual distributions in connection with
the problem of estimating scale and location parameters. In this paper we
shall be concerned primarily, not with the residual distribution, but with the
remainder of the sample information, corresponding to the (» — 1)-dimensional
distribution which is independent of the parameter. It is found, in a rather
broad class of distributions, that the part of the sample not used for estimation
determines, except for the parameter value, the original functional form of the
distribution of z.

This paper is devoted mainly to a study of particular classes of distributions
having the property mentioned above. We consider also the theoretical appli-
cation of this property to certain types of composite hypotheses which may be
reduced thereby to equivalent simple hypotheses.! The principal results of this
nature may be summed up as follows: If = has distribution of the form f(z, 6),
where @ is either a location or scale parameter, or a vector denoting both, then
there exists, in samples (z1, ---, .) a set of functions yi(x;, ---, z,), ¢ =
1,2, ...,p p < n, having joint distribution D(y1, - .-, y,) independent of 6,
and such that the converse statement holds, namely, if {y:} have the distribution
D@y, - -+, Yp), then = has, for some 0, a distribution of the form f(x, 6). There
is a corresponding statement when z has a distribution of the form f(z — Za.u),
where the {a;} are parameters, and the {u;} are regression variables.,

1 We use the terms simple and composite hypotheses in the sense of Neyman and

Pearson [2].
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2. Location and Scale. This section is devoted to the study of functions of
the sample observations which are such that their distributions determine the
distribution of z, except possibly for location and scale.

It will be assumed that associated with x there is a function F(x) such that

(a) F(x) is monotone non-decreasing,

(b) F(—») = lim F(z) = 0,and (¢) F(®) = lim F(z) = 1

Z—>—00
with the normalization F(x) upper semi-continuous. F(z) is the probability
that the random variate takes a value less than or equal to z. If F(z) is as-
sociated with the random variate z we say that = has the distribution F(z).
If g(x) is a Borel-measurable function, the Lebesgue-Stieltjes integral

j g(z) dF (z) is denoted by E[g(z)].
The characteristic function o(f) = E(e"") determines F(x), that is, if
[ ¢ da@) = [ & @), then F@) = G().

L]

Similarly, let F(zy, - - -, i) be such that

(a) F(my, -+ %ia, x: + h, z%'+l)"'>xk) 2 F(xlr”‘yxﬂ“’!xk) for
h>0and?2=1,2 ...,k

® lm F(ry,--r,m) =0,2=1,2,...,k;

Zy—>—00

(C) lim F($1,°",$Bk)=1;

21yt TR0
with the normalization F(z,, - - -, i) continuous on the right in each z;. If
F(zy, --- , 2:) is associated with z,, - -, 2 we say that ;, - - -, zx have the

joint distribution F(z:, --- , z). As before, E[H(z1, - , z)] = f HdF,
Ry,
where Ry is the Euclidean %k-space. It is well known that under such condi-
tions, given Borel-measurable functions y:(®1, ---, %), ¢t = 1,.--,p,p < k,
then G(y1, -+, ¥p) = /‘;( )dF(zl, ..., x1), where R(y) is the region [yi(z1, - - -,
V.

) <, -, Y@, - -+, ) < ¥yl, is again a distribution function satisfying

‘the conditions above. Moreover, j g, -, Y0 dGyr, -, Yp) =
R

f glys(s, -+, T&), -+ Yp(@1, -+ -, 2)] dF, where R’ is the set of all points
R’

(331, R xk) such that [:1/1(331, Tt xk)) ttty y?(zly Tt zk)] ¢R.

If z has distribution F(x), then, by definition, the set (z;, - - - , ,) is a sample
from this distribution if 2, , - - - , . have the joint distribution F(z,) - - - F(x.).

The following theorem states that two distributions giving rise, in sampling,
to the same distribution of the set 21 — %, a — Ta, -+, Ta1x — Za, With
n > 3, can differ at most by a translation, that is, the distribution of that set
determines the original distribution except for location.

TueoREM IA: Let x have the distribution F(x). Denote by S the set of zeros of
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f ¢'* dF (z) and denote by e the g.1.b. of | ¢ | for tin S. Suppose that the comple-

ment of S is econnected.> Suppose that z’' Has distribution G(z'), and letz,, - - - ,
and z;, --- , x be samples. Then the set Wy = Ty — Tp,a = 1, ..., n — 1,
have the same joint distribution as the set we = & — Z, if and only if there exists
a constant a such that x’ + a and x have the same distribution.

Proor: The sufficiency of the condition follows immediately, since wy, =
T, — 20 = (xf,-{-a) - (xf.-i—a).

In establishing necessity, only the fact that w; , w, have the same joint dis-
tribution as wi , ws is needed. This hypothesis implies that

E{ei[tlwl+t2w3]} =R { e"[tlwi+t’w§]}
i

that is,
p— — : P ¥ e p?
E{eilh(z] 2n)+ta(zg z,,)]} E{C'[‘l(zl 7))+t (zg z")l}.

Set o(t) = E(e™), ¢(1) = E(e*’). The relation above becomes

(1) e(h)ot)e(— t — o) = (LY (LW (— & — &).

Consider equation (1) for values of ¢, , f, in the neighborhood of ¢t = 0. ¢(0) =
¥(0) = 1, hence there is an interval |¢| < 8, in which ¢(f) and ¥(f) do not
vanish. It is easily shown that ¢(£) and y¥(f) are each continuous, since ¢**,in
the neighborhood of ¢ = 0, is continuous uniformly for any bounded interval
of z, and since A may be chosen.so that 1 — F(A) and F(—A) are both as small
as desired. In the interval | | < & the function f(t) = ¢(¢)/¥(?) is continuous.
Also, o(—t) = o(t) and ¢(—t) = ¢Y(f). Setting &z = 0 in (1) we obtain
e()e(—1t) = Y()¥(—1), hence | o(t) | = |¥(?) |, that is, [ f(t) | = 1. f(t) takes
values on the unit circle of the complex plane, and f(0) = 1, hence there is an
interval | ¢| < & such that z = f(t) lies on an arc v, of length less than 2,
containing the point z = 1. Now consider the functional equation (1) for

|t] < 3¢, |t2| < 48’. (1) becomes
J@)@)f(— & — ) = 1.

The interval | ¢ | < &' was so chosen that for | 4 | < 3%, | &2 | < 3&', it is possible
to define a single-valued branch of the argument of f(t1), f(i2), and f(t + #).
Letting t; = 0 we have f(t)f(—t) = 1, hence, replacing f(— & — &) by 1/f(t. +
ts) in the last equation, we have

F)f(t) = f(t + t).

Arg f(t)), arg f(t:), and arg f(t + t2) are uniquely determined, except for some
fized multiple of 2x. If we choose the principal value of the argument, i.e., so

% The set S is e-connected if any two points p, ¢, in S can be connected by an e-chain,
i.e., there exists a set po = P, P1, *** , Pn-1, Pn = ¢, such that | p; — i1 | < ¢ 7 =1
2‘ oo » n'
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that 0 < arg f(t) < 2w, we must have
arg f(h) + arg f(t:) = arg f(t + t2)

for | t,| < 48, | t2| < 48’. Since arg f(¢) is continuous, any solution of this well
known functional equation must be of the form arg f(t) = at. |f()| = 1,
therefore there exists a constant a such that f(t) = €™, for | t| < 14', that is,
o(t) = e™Y(t), for | t| < 36'. By use of (1) this may be extended to hold for
alltsuch that | £ | < ¢, where ¢ is the minimum modulus of all ¢ such that ¢(t) = 0.
(1) may now be used to extend the relation for all ¢ such that ¢(t) = 0 by choos-
ing an echain connecting the origin to the point {. We know -already that
o(t) = e**Y(t) if o(f) = 0, hence it holds for all £. This relation says that
E@™) = E("*®'*), hence ' + a and z have the same distribution, thus
completing the demonstration of the theorem.

It should be remarked that the set (x; — Zp, -+ - , Tam1 — ) may be replaced
in Theorem Ia by any equivalent set, for example, (1 — %, ---, Tny — I).

The next result is of the same nature as Theorem Ia except for the replace-
ment of the location parameter by a scale (positive or negative) parameter.

THEOREM IB: Let x have distribution F (x), such that the zeros of [ '8 =D gp(z)

are nowhere dense, and let «' have distribution G(z'). Let 2, --., 2. and
x1, -+, T be samples from the distributions of x and ', with n > 3, then the set
Wa = To/Tn, a = 1,..., n — 1, have the same distribution as the set w, =

To/Tn 3f and only if there exists a constant ¢ such that cx’ and x have the same
dustribution.

Proor: The sufficiency of the condition is evident. Suppose, then, as before,
that w, , w, have the same joint distribution as w; , ws . Log | wi | and log | w. |
have the same joint distribution as log | w; | and log | w: |, hence by application
of Theorem Ia to log | z | and log | 2’ | it follows (since the complement of a
nowhere dense set is e-connected for every ¢) that there exists a constant a such

that
fao ei‘loglzl dF(:c) _ [‘” e.'t[log |z’{—al dG(:t).

0 0

Let y = ¢ "¢/, then | z | and | y | have the same distribution, and
@ [ e ar@) = [ &= ang),

where y has distribution H(y). We now have to show that either ¥ or —y has
the distribution of z, that is, it must be shown that either H(y) = F(y), or
H(y) =1 — F(—y).

By the first part of the theorem the functions u, = y1/ys and us = y2/ys have
the same joint distribution as w;, ws. It is clear that the mean value of any
function of u; and u, is the same as the mean value of the corresponding func-
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tion of w; and we. Hence

fff glltrtoluiltts losluall ooy 1 sgn we dF (z,) dF (xz) dF (z5)

= fff g*lt1 108 luzl+tz log lugl] sgn u; sgn up dH (1) dH (y2) dH (ys),
wheresgn z = 1,forz > 0,sgnz = —1forz < 0.

(sgn wy)(sgn we) = (sgn z)(sgn x2),
so that the last equation becomes

/ff eﬂtl (log |21}~ log |z 1) +t2 (log lz2)— log | z31)} sgn sgnxzdF(xl) dF(xz) dF(xa)

(3)

_ fff ez’lu (log ly1l—1log lysl)+¢3 (log lyzl—log lwsl)} —
X sgn ys dH (y1) dH (y2) dH (ys).
Set

‘l’l(t) = feit log |zl dF(x), ¢1(t) = /e" log Iyl dH(y)

'l’2(t) = /eo‘tlozlzl sgn .’ch(:c); ‘P2(t) = feit log lyl sgn de(y)‘

From (3) we have ya(t)ye(tla(— 8 — ) = ou(t)es(t)er(— t — 1) for all
4, ta, and from (2) we have y1(f) = ¢i(t) for all ¢, hence, if Y1 (— , — ;) = 0,
Ya(h)¥e(t2) = @u(ti)pa(t). By hypothesis the zeros of ¥y(f) are nowhere dense,
hence if y1(— & — ;) = 0 there is a sequence ™, such that £ — — t, — 4,
and ¢1(t™) = 0. Now take an arbitrary sequence #{™ such that #” — ¢, ,
then §” = — ¢ — ¢{™ must tend to ;. For each n we have VetV W (™) =
e2(ti)pa(t5™).  All the functions appearing are continuous, thus we see that
Va(h)ye(t) = @a(ti)es(te) for all &, £. From this it follows directly that either
¥2(t) = @a(t) for all ¢ or yu(t) = —ea(t) for all &. We have?

© LI
',/l(t) = '/o‘ ez’t logzdF(x) + [“ e:l log (—2) dF(x)

00 0
W) = fo 61982 g (z) — L ¢t198 2 ap()

3 The assumption has been made implicitly that F(z) and G(z) are continuous at z = 0,
otherwise the distribution of :/z. is not properly defined, and the functions ei(t) and ys(t)
are then not defined. Similar assumptions will be made whenever necessary in later
theorems.
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® 3 o .
at) = f e 1% dH (z) + [ 6152 gH (x)
0 0

© 0
and el) = j; e 1" dH(z) — [ e 1" gH (z).
©0
Combining these expressions with the relations obtained above leads, by Fourier
inversion, to the result that either F(z) = H(z) or H(zx) = 1 — F(—z). We
have shown that either y or —y has the same distribution as x, that is, either
¢z’ or —e "z’ has the same distribution as z.

Theorem Ib states essentially that the joint distribution of the set z./z.,
a=1,...,n — 1, determines the distribution of z except for a scale parameter
and possibly a reflection. In the event that x has an asymmetrical distribution,
and if it is desired to rule out negative changes of scale, a variation of this pro-
cedure is necessary. The next result is appropriate for this situation.

TuEoREM Ic: Let x have distribution F(x) such that the zeros of f ' 1o8=! gp (z)

are nowhere dense; and let x' have distribution G(x'). Let x,,--., . and

’ ’ . . o
Zi, -+, T, be samples from the distributions of x and z’, with n > 3. Express
’ 7 . . .
Ziy -+, Toand Ty, - -+, Ty 10 Spherical coordinates
’ , ’
T = rcos b, xy = r' cos 6
. ’ . ’ !
Zp = r8in 6; cos 6, z2 = 1’ sin 6, cos 6,

) . . . !’ ) . r . ’ . ’
ZTn =7sin6,sin 6 --. sin 6,4, Tp, = 7' sin 6;sin 03 - .- sin 0,_;.

Then 0y, - - -, 0,1 have the same joint distribution as 0y, - - -, 0n_, if and only
if there exists a positive constant k such that kx’ and x have the same distribution.

Proor: Sufficiency of the condition is an immediate consequence of the fact
that 6,, - - -, 0,1 are invariant under the transformation x = kz’, with k& > 0.
If 6,,---, 6,_; have the same joint distribution as 07, - ., 6,_; then the set
{Zo/Z.} have the same joint distribution as the set {z./z.}, hence, by Theorem
Ib, there exists a constant ¢ such that ¢z’ has the same distribution as z. To
establish necessity of the condition we must show that |c |z’ has the same
distribution as z.

Set y = |c|«’, and let y;, ---, y» be expressed in spherical coordinates;
Y1, ---, Yy have the same angular coordinates 6;, ---, 6»_;. This implies
that z;/r and xy/r have the same joint distribution as y:/R and y./R, where
E=Vyi+. . +a4i2/|2

—| = z,/| x; |, therefore z;/| z2 | has the same dis-
tribution as y1/| ¥z |, so that

f } e’ toe 3] sgn (I%l) dF (7)) dF(z;) = f 7 P &l sgn (lg_lz!l) dH(y,) dH (y2)
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if y has distribution H(y). Sgn (l-:—c—le) = sgn 1, s0 that the last equation
yields
[ eit log Izl sgnzdF(x).[ e-—-c‘t log |zl dF(:c)
L)

= [ e 181 gon 2 dH (z)- [ etlelel gp ().

We know already that | z | and |y | have the same distribution, so that

(4) ‘[ eulozlzl dF(z) =[ o't loglzl dH(x),
thus
(5) [ ¢t 11" ggn z dF (z) = [ ¢! sgn z dH (),

except possibly for zeros of [ el gp(z). By hypothesis the exceptional

points are nowhere dense, so that, by continuity, (5) holds for all ¢. (4) and
(5) together imply, as in the proof of Theorem Ib, that F(z) = H(x), i.e., x and
| ¢ | ' have the same distribution.

The next three results are generaljzations of Theorems Ia, b, ¢, to analogous
multivariate situations. The first of these is a direct generalization of

Theorem Ia.
TaeoREM IlA: Let ,, ..., xx have joint distribution F(zy, ..., xx) such

that the complement of the set S of zeros of [ e dF (zy, - - - , Z1) is e-connected,

where € 13 the g.l.b. of | t| for (t) in S, and let y., - - - , yr have joint distribution
G(yl: ;yk)' Let(x:: ;xl:)and(y:; )y:):a = 1) )n:besamples
from these distributions, with n > 3. Then wyg = x — a}, 1 =1, ..., k,
B =1,...,n — 1, have the same joint distribution as the corresponding set vig =
¥i — y? if and only if there exist constants ay , - - - , @i such that y» + a1, -,
Yx + ax have the same joint distribution as x,, --- , X .

Proor: Set

Lk
oty ooe, ) = fe'?'""dF(xl, cen, ),

Lk
Y, -, ) = fe’?"”'dG(yu,-“,yk).,

Jwg,i=1,...,k B = 1, 2 have the same joint distribution as v, then,
as in the proof of Theorem Ia, we have
et , -+, ta)o(tz, -+, be)o(— tn — bg,y -+, — b — ba)

(6)
=Y, -y k)¥(la, o, ba)¥(— tu — ba, v, — ta — lia).
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Again, as before, |¢| = |¢¥|; o(tr, ---, &) and ¥(ts, - - -, &) are continuous;
¢(0,0,---,0) = ¢0,0,---,0) = 1. There will exist a neighborhood N of

0,0, ---,0) such that for (4, ---, &) eN the function f(t,---, &) =
(i, --» %) i defined and continuous. Then there will exist a neighborhood

Y, -+, b)
N’ C N such that in N’ there exists a uniquely determined branch of

arg f(t,, --- , &), continuous in N’, and such that if (4, ---, &) e N’ and
(ur, -+, w) e N’ then arg f(ts + u1, - -+ , & + w) is also uniquely determined
and continuous. For (t) e N’ and (u) ¢ N’, arg f satisfies the relation

argf(tly Tt tk) + argf(uly ttt uk) = a/rgf(tl + UL, -+, i + uk)'
It is easily shown that any continuous function satisfying the equation above
must be of the form Za,t, , therefore

Lk
@) oty oo ) = 37 Y, --- , t); (D) eN'.
Just as in the proof of Ia the relation (7) may be extended, by use of (6), to
hold for all ¢. This implies, finally, that the set {y: + a:} have the same

joint distribution as the set {z:}. '
Theorem IIb is a generalization of Theorem Ib to multivariate distributions.

TuroreM 1IB: Let x,, - -- , 2 have distribution F(zy, --- , xx) such that the

zeros of f e'Ztrloslerl gp(g, ..., 1) are nowhere dense, and letyy, - - - , yi have

distribution G(yy, - -+ ,yx). Let(zxy, - ,z5)and (', -+ ,4c),a=1,---,n,
be samples, with n > 3. Then the set wy = B/, i=1,---,kB=1...,
n — 1, have the same joint distribution as the corresponding set vig = Yi/yt if
and only if there exist constants ¢1, - -- , ci such that the set cys have the same

distribution as the x; .
Proor: The demonstration is parallel to that of Theorem Ib. By Theorem

IIa there exist a; , - - - , ax such that
E(es‘m, log lz,l) —_ E(eizt,(log her‘ar).

Set 2, = €y, , then
(8) f eZtrioslel GR(y, ooy m) = f Ak : (CA A §

where (21, - - - , z) have distribution function H(z:, - - - , 2i).

We shall continue the proof from here under the assumption that k = 2.
It will be evident how the proof goes for any k. We have, since 27/z; have the
same joint distribution as 2f/x} ,

. 1 2
f f f ¢ Ztratlon I8l —loglz2D) sgn (:_;) sgn z_:) dF(:vi, ) dF(:cf, z2) dF(a:f, z3)
1 1

ON
1
=fff eizha(lozlzgl—lo:lzgl) sgn (%) Sgn(g dH(x%,x}) dH(xf,xﬁ) dH(a:?,zg).
1 1
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Both members of (9) are evaluated as products, just as was done in previous
proofs, and from the result, combined with (8), we conclude, as in Theorem Ib,
that

© 0
ff 2181l son 4 dF (2, 29) = 8 /f e lonlerl gon o dH (1, ),

—00 ~—00

where s, = %1, for all (4, ;). Similarly

0

ff e:zt, log |z| Sgn z» dF(xl,m;) =8, [f eizt.- log lz,| sgn z» dH(xl, xz)

—c0 —00

and

ff o' Ztrlog lz,l SEN 1 SgN 23 dF(xl,xz) =8 ff e Ztrlog |zl sgn sgnxgdH(xl,xz),

-—00 —00

with s = *£1, 83 = +1.

Set alt, t) = f f ¢ Ztrloglerl sgn x; dF (x1, x2)

--00

ety b) = f f e2trioelerl gon 0 dF (2, 22)

—00

¢pm(t1, tz) - ff ei}:t.-lozlzrl SgN T, sgn 7 dF(xl, xz)

—00

and let y1(t, &), Ye(ti, t2), and Yia(ti, ;) denote the corresponding transforms
of H(z,, x2). We have '
o1ts, ) = siyu(ty, t)

(10) ea(ts, ) = sapa(ty, &)
eu(ty, ) = ssyu(t, &)
with & = 1, 8, = 1, and s3 = 1.

1 2
. . ; - T z

Now, as in (9), by considering El:e'z"’(“‘ l=fl=log =D ooy -—é) sgn (—-;)] we
1 T2

obtain the relation
e1(tu , ta)oa(liz , te)pra(— tu — bz, — log — ta2)
= Y1(tu , tu)¥a(tie , Lo)ra(— tu — te, — ta — i),

showing that s, , sz, 83, may be chosen so that s;s;s3 = 1, that is, s18, = s3.
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Consider now the variates 2z, = s,2, ,7=1,2. Let K(z1, 2) be the distribu-
tion function of 21, z5. If we let 6;(, , t2), O2(t1, la), and 615(f; , t2) be the trans-
forms of K which correspond to ¢1(l1, t2), ¢2(t1, t2), and ¢wn(t; , ty) respectively,
it is evident that

olt, o) = 0u(ts, t)
(11) o2ty , ta) = 6s(tr, ta)
eu(l, k) = O, ).

Moreover, from (8),

ff eiEt,- log |zl dF(xl,xz) = ff eiZtr log |z,| dK(xl, Z‘z)-

The last relation, together with the equations (11) imply that F(z) and K(x)
coincide in each quadrant, thus F(x,, 22) = K(x,, x2) for all 2;, 2.

The final result is that z; , z; have the same distribution as 1 , 2, i.e., s16"%
and sx¢"*y, have the same joint distribution as z; and z .

The next result bears the same relation to Theorem IIb that Theorem Ic
bears to Theorem Ib, that is, only positive scale changes are to be permitted.

THEOREM Ilc: Let 21, - - -, xx have distribution F(xy, - .-, xx) such that the

zeros of f eZtrloglerl gp ey, .., @) are nowhere dense, and let yy, - - - , yi have

distribution G(y1, -+, yx). Let (1, - -, 2x) and (Y7, - -, ys), a = 1, 2,
., n, be samples withn > 3. Expressaf, ---,x; and y1 , -- - , Yx in spheri-
cal coordinates
1 1 1 1
x; = ricos 6;, Y = R; cos ¢; ,
2 . 1 2 2 . 1 2
x; = r;sin 6; cos 65, yi = R;sin ¢; cos ¢;
. 1 . -1 . R —
2y = rysin 6; ... sin 6] ; y? = Risin ¢i --- sin ¢f .

Then {63}, ¢ =1,...,k B8 =1,...,n — 1, have the same joint distribution
as {¢?} if and only if there exist constants k; > 0, ¢ = 1, ... , k, such that the
set k:y; have the same joint distribution as the set x; .
8
Proor: If {67} have the same distribution as {¢}} then it follows that {%}

t

have the same distribution as {_y_‘;{} , hence by Theorem IIb there exist constants
Y

¢; such that {c;y;} have the same distribution as {x;}. Set z; = |c¢i|y:; we

wish to show that {z;} have the same distribution as {z;}. By equation (8)

in Theorem IIb it is known that {|z:|} have the same distribution as {| z; |},

moreover, if we express z{ in spherical coordinates, the angular coordinates are
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1 1
z P
the same as those of ;' , therefore {| x; |} have the same distribution as {I-—zé—l},
f i
since these functions are obtainable in terms of the angular coordinates.
As before, we shall continue the proof from here under the assumption that

k = 2. The procedure is a generalization of the procedure in the proof of
1

Zi
Theorem Ic. sgn z; = sgn “7”}, and similarly for y, therefore
¢

2
$ 1]— 2
o R riosleri=lonl=tl) oo, 5} dF (21, x3) dF (2, o3)

(12)
2
= f[e‘r.zh trlolell=lorl=tD gon 2} dH(z1, 3) dH (23, 73), ¢ =1,2,

where it is assumed that 2, , 2, have distribution H(z , 2;). As before, set

olt, 1) = [ P iowter aF @, 2,
eilty, ) = f 21 bl gon 2, dF (@1, w2), i=1,2,

oult, h) = f ¢t 181! ggn 2; sgn 7, dF (31, 7),

and denote the corresponding transforms of H(z:, x2) by 6(t, t2), 6i(tr, t),
0:(ty, t2), and Oya(tr, ;). It has been remarked already that {|z:|} have the
same distribution as {| z; |}, therefore 8(t; , &) = ¢(t1, ). Equation (12) yields
the relation ¢i(th , t)e(—t, —ts) = 0i(t, L)0(—t, —t3), ¢ = 1, 2; the zeros of
¢(t1 , t2) are nowhere dense, so that it can be concluded that ¢:(t1 , ) = 8i(t, t2),
i =1,2. Now, from an equation similar to (12) we obtain g1t , t2) = 612(t1 , t2)-
As in Theorem IIb, the four relations above together imply that F(z:, x2) =
H(z; , %), in other words, {|¢;|y:} have the same distribution as {z}. ,

We are now in a position to combine some of the preceding theorems so as to
obtain analogous results for scale and location parameters together.

TurEOREM IIIA: Let x have distribution F(x) such that the zeros of f ' dF (x)
satisfy the condition of Theorem Ia, and the zeros of

fff 8“‘ log lz1—z3l+its log lze—zs] dF(:cl) dF(xz) dF(xs)

are nowhere dense, and let y have distribution G(y). Let x\,---,%. and
Ty — Tn

Y1, -+, Yn be samples, withn > 9. Then we = ———,a=1,...,n — 2,
ZTn-1 — Tn

have the same joint distribution as the corresponding set wf, = Yo" ¥ if and

Yn—1 — Yn

only if there exist constants a, ¢, such that c(y — a) and z have the same distribution.
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Proor: Sufficiency of the condition is an immediate consequence of the fact
that w, is invariant under transformations of the form ¥’ = ¢(y — a). Assume
then that {w.} and {w.} have the same joint distribution. By elementary
transformations it is evident that the functions o S S B x“ Ts— T3 T~ x“,

Tr— Ty’ T — Ty — o' T — Ty
have the same joint distribution as the corresponding functions of the y’s, if
n > 9. Since 1, --- , Z, form a sample it follows that the pairs {z; — s,
T2 — @3}, (% — 6, Ts — s}, {T1 — Ty, T8 — X}, have the same joint distribu-
tions and are pairwise independent, and similarly for the corresponding func-
tions of the y’s. Theorem IIb assures the existence of constants c1, ¢z, such
that ¢ci(y1 — ¥s), c2(y2 — ys) have the same joint distribution as (1 — x3),
(x2 — z5). Considering separately the marginal distributions it is seen that
ci(y1 — ys) has the same distribution as ca(y2 — ¥s). 1 — ys and y2 — ys have
the same distribution, therefore either c; = ¢1,0rc; = —¢1. Set ua = 2o — 3,
Ve = (¥« — ¥s), @ = 1, 2. We have, for the distributions of (u1, u2) and
(n, ve), relations correspondmg to (10) in Theorem IIb, with the additional
condition that s; = s;, because of the symmetry in the variables. This implies
that either (v, v3) or (—v1, —vs) have the same joint distribution as (w1, us),
that is, there exists ¢ such that ¢(y: — ys) and c(y2 — ys) have the same joint.
distribution as ; — x; and zz — z5. Application of Theorem Ia now completes
the proof.

Just as before, there is an analogous situation when we consider angular
coordinates instead of quotients. The proof is immediate; the angular coordi-
nates determine the angular coordinates of {x; — 3 , 22 — @3}, {1 — Ts , Ts — %6},
and {z; — %y, Ts — %}, arranged as a sample. Then the constants ¢, ¢ in
the proof of Theorem IIIa are both positive; it follows that ¢; = ¢z . Applica-
tion of Theorem Ia gives

Tagorem I11IB: Let z;, --+ , %, and 41, -+, Yn satisfy the hypotheses of
Theorem I1Ia. Set

’
2 — T, = 7 CO8 O, Y — Yn = 1’ cOS 0,
. . ’ ’
Zs — T, = 7 8in 6 cos Oz, Y2 — Yn = 7’ 8in 6; cos b, ,
. . o ’ . ’
Zny — Tpn = 78N 0 --- 8N 02 ; Yn1 — Yo = 7'8in 6) ... sin 0,_s.
. . ’ ’ . .
Then 0y, - - - 0._s have the same joint distribution as 61, - - - , 02 if and only <f

there extst constants a and ¢ > 0 such that c(y — a) has the same distribution as .
Theorem IVa is a generalization of Theorem Ia to cover arbitrary linear com-
binations of some subset of the sample.

TueoreM IVa: Suppose z has distribution F(x) such that f ¢'*® dF (x) does not
vanish, and let y have dz.strzbutwn G(y). Consider the functions wa =

“§lapxmp,1Da= Ez,,y,,.ﬂ,a‘_lz cee,m,B=1,2-
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n — m, and suppose that m > n — m. Then, if {w,} have the same joint distri-

n—m

bution as {w,} and if 32 lag % 1 for somg a, it follows that F(y) = G(y); if
=1

Dl = 1 for all a there exists a constant a such that F(y — a) = G(y).

B

Proor: Denote the characteristic functions of « and y by ¢(t) and ¥/(t) respec-
tively. By expressing the fact that {w,} and {wh},a = 1,2, ... ,n — m + 1,
have the same characteristic function we obtain the functional equation

n—m+1 n—m n—m+1 n—m+1 n—m n—m+1
¢'I.=Il (P(ta) BI—II ‘p(—a;l laBta = -];Il ‘b(ta) ﬂI-Il ¢(_£ laﬂta)~

By hypothesis ¢(t) does not vanish, therefore ¢(f) has no zeros, because of the
relation above. ¢(f) and ¥(f) are continuous, thus the function f(f) =
log ¢(t) — log ¥(t) can be uniquely defined in a continuous manner for all ¢.
The equation above becomes

n—m+1 n—m n—m+1
(13) 3 100+ 2 (<35 Late) =0
a=1 B=1 a=1

The constants l.s are necessarily linearly dependent, so that, for some «, .5
can be expressed as a linear combination of the others; suppose then that

n—m
lomire = El ealag.
P

Putting these values in (13) we have

n—m+1 n—m n—m
(14) Zl. f(ta) + ﬂzl f(_z:l laﬁ(ta + tn—m-{-lca)) = 0
It can be assumed that Ze’, # 0, for, if e, = 0 for all a, we have ln_my1s = 0,
B=1,...,n — m, that is, Wr—my1 = Yn-ms1 80d Wnmi1 = Tn_ms1, hence
and y have the same distribution. Assuming e; # 0, set ta = —eéatnmi1,
a=2 ..., n— m,in (14), obtaining
(15)  f(t) + Z:zf(—eutn—m-i-l) + f(tnmy1) + ﬂz:lf(—llp(tl + e1tn-mp)) = 0,

n—m

now, recalling that f(0) = 0, set tw—my1 = 0, getting f(t) + BZ: S(—lgty).
=1

Evaluating this with argument & + ejt,—m+1, and substituting back in (15) it
appears that

(16) Tt + ftrmi)+ Zz J(—eatnm) = flti + ertn-my1).
Now setting {; = 0 in (16) we have the relation

f(tn—-m+l) + n—;:‘ f( —€a t»—m+l) = f(e) tn——m+l) .
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thus we have finally f(t) + f(eitn—mt1) = f(ti + etn_m41), Or, since e; # 0,
f(to 4+ t2) = f(t) + f(¢2). The last relation implies that f(f) = ct, since f(¢) is con-

n—-m+1 n—m+l n—m
tinuous. Now replace f(¢) by c¢tin (13), gettmgc{ Dot — 2 2 lagtap =
a=1 a=]1 [==1

n—m

0, that is, elther ¢=0,or 2 ls = 1forall . We conclude then that ¢(f) =
¥(1), unless El a8 = 1 for all a If ; les = 1 for all & we have o(t) = e*Y(t).

o(—1t) = ¢(t) and ¢(—t) = gb(t), hence ¢ is of the form ¢ = 7a, where a is real,
in other words ¢(t) = ¢™“%(t), thus concluding the proof of the theorem.

It was assumed in Theorem IVa that ¢(f) has no zeros. If o(f) has zeros
we have proved that, for an interval || < ¢ o(f) = ¥(t) (or o(t) = €™Y(t)).
This does not necessarily imply the result of Theorem IVa, but it does imply
at least that if the kth moments of = and of y (or of ¥ — a) both exist they
are equal.

The last result in this series can be proved by methods similar to those used
in Theorem IVa.

TuroreMm IVB: Let x and y satisfy the hypotheses of Theorem IVa. Suppose,
moreover, that m > 2(n — m), that the rank of ||lss || ts n — m, and that

2 lag # 1 for at least 2m — n values of a. Then, if there exist constants {ca}
p=1

such that the set {caws} have the same joint distribution as {w.}, it follows that,
for some a, c.y has the same distribution as .

3. Application to Composite Hypotheses. The results of section 2 have a
significant application in the theory of testing composite hypotheses. Suppose
that 2 has a distribution of the form F(z, 6;, 6;), and that the hypothesis
6, = 63 is to be tested, without reference to the value of 6,. We assume that
the parameters are independent, i.e., F(z, 6,, 8,) = F(z, 6y, 0;) implies that
6, = 6;and 6, = 6;. It is true in a wide class of important cases that, given
a sample x;, - -+ , Z, from the distribution F(z, 6,, 6.), there exist functions
Ya(®1, -+, Za), @ = 1,2, ..., p, such that {y.} have joint distribution inde-
pendent of 6; , but depending on 6; . Now if the {y.} are such that their joint
distribution redetermines the original distribution, except for 6, , one can reason-
ably use the p-dimensional distribution of the {y.} for testing the hypothesis
6 = 63, thus reducing the composite hypothesis to a simple hypothesis. In
testing this simple hypothesis, every alternative hypothesis (corresponding to a
value of 6;) determines a distribution of x among the alternatives F(z, 6, 6,)
except for the unknown 6, , that is, there is a one-to-one correspondence between
the two sets of alternative hypotheses, expressed by the fact that if 6, = 02
then the distributions of the set {y.} corresponding to 8, = 0; and 6, = 65
must be different.

Suppose, for example, that it is desired to test whether y = x — a for some a
has the distribution F(y, 6°), with the assumption that, for some a, y has the
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distribution F(y, 6). Given a sample one can form the set wa = ro — .,
a=1,2 ...,n — 1, obtaining the distribution G(w,, ... , w1, 6); now con-
sider the simple hypothesis § = 6°, knowing that G determines 8, by Theorem Ia.
Similarly one can test whether cz, for some ¢ # 0, has distribution F(y, 6°),
by forming we = Z4f/Tn, @« = 1,...,n — 1, or by expressing (z;, - - , Zn)
in spherical coordinates and considering the angular coordinates, according to
whether both positive and negative or only positive values of ¢ are to be allowed.

In the same way one can test the hypothesis § = 6° under the assumption
that ¢(x — a) has distribution F(y, 6) by forming w, = ;"———x—; ya=1,...,

n—1 — dn

n — 2, or by expressing (; — ., - -+ , Zo—1 — Z,) in spherical coordinates and
considering the angular coordinates.

Theorem IVa may be applied to analogous problems, in which the hypothesis
6 = 6°is to be tested under the assumption that y = u — Zaz; has distribution
F(y, 0) for fixed values of the x;, with the a¢; unknown. In such problems
there exist linear combinations of the observed values of ¥ which are independent
of the a;. By Theorem IVa, under certain conditions the joint distribution of
these linear combinations determines the original distribution of y, without
regard to the a;

In applying some of the preceding results we must verify in certain cases that

the zeros of f ¢'" dF (z) are nowhere dense, for a certain distribution function.

By a change of variable the condition of Theorem Ib can be stated in this form;
moreover if F(x) satisfies this condition it is evident that it satisfies the condi-
tion of Theorem Ia. A sufficient condition applicable to a considerable class
of cases has been obtained by Levinson [4]; if f(z) is O(e*®) as  — «, where

00
6(x) is monotone and f ‘%f) dz diverges to «, then f ¢**f(z) dz cannot vanish
1

on an interval without vanishing identically. It is evident that it is likewise
sufficient if the corresponding condition holds as £ — — « instead of + . In
particular, if there exists A such that f(z) = Oforz > A (orforz < A)itisa

consequence of the Levinson result that [ ¢'*f(z) dz has no intervals of zeros.
It can be established easily that if f(z) is majorized by | z 7%, ¢ > 0, in the
neighborhood of the origin, then f ™18 1=l £(2) dz has no intervals of zeros.

As a simple example consider the rectangular distribution on (0, 1). Let
(x — a)/r have this distribution with ¢ unknown, r > 0, and suppose that we

are interested only in r. Given a sample z,, - - - , z, form the functions y, =
Ze — 2a)/r,a=1,...,n — 1. Set yu» = max (¥«, 0), o = min (y., 0).
Then it can be shown that ¥, , - - - , y.—1 have probability density (1 — yu + y1)

in the region —1 < y. < 1, y» — yr < 1, zero elsewhere. ¢ = yy — yo i
of course the quotient of the sample range by r. It can be shown that ¢ has
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density n(n — 1)(1 — ¢)y" *dy. Theorem Ia makes it possible to base any
tests not involving @ on the distribution of the y,, since if the y, have the
stated distribution then (x — a)/r for some a must have the rectangular dis-
tribution.

Similarly, suppose ¥y = (x — a)/r has the distribution ¢™¥, y > 0, for some
ZTo — Zn

,a =12 ...n — 1, have distribution density
r

a, r. Then w, =

%e_z"”“"'”“, where w, = min (0, w,). Again, the latter distribution may be

used to estimate 7.

Let us examine the distributions of functions of the type. considered, in the
case of normality. Assume that z;, ..., z, are a sample of n observations
from a normal distribution with unit variance and unknown mean. The
variables ¥, = £, — 21, « = 2, ..., n, have a joint normal distribution with
zero means and matrix of variances and covariances || A¥ || = || 1 + &;]|.
Then Theorem Ia shows that if {y.} have this joint distribution then z is nor-
mally distributed with unit variance. Note that xa_1 = ZA;y:; = Z(x. — )%
If we had z = 2'/o, then 2(z, — &)* = o’z%_;, giving the estimate
;—}1 2zl — &) for o,

There are, of course, many ways in- which the matrix || 4;; || may be trans-
formed into a diagonal matrix in order to obtain a new set of independently
distributed variates; one convenient set is the set v/3 vz, /2 (ys — 342), - - - ,

n—1
4/ n ; 1 (y,. _ 1 E y..). In terms of the original z’s we have 1/ (z; — 21)

n—1a=2

n—1
V3 (@ — 3 + z2)), /‘/n%l (x,. - 1 i E:c..); these functions of the
- a==1

data are independently distributed according to the normal distribution with
zero mean and unit variance.

Similarly, in the case of a sample z, , - - - , 2, from a normal distribution with
zero mean and unknown variance, there exists a set of » — 1 functions with
distributions independent of the variance. A convenient set of functions is

the set

t = VM Tmia

m @;

It is known (see Bartlett [1]) that the variables t,, are independently distributed
according to student t-distributions with m degrees of freedom respectively.
The set t,, determines the set of angular coordinates obtained by expressing
Zy, -+, Z, in spherical coordinates, hence we can conclude, conversely, that if
{tm} have this joint distribution then z is normal with mean zero.

m=1...,n— 1
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Finally we can eliminate both mean and variance. Suppose z;, --- ,z,area
sample from some normal distribution. The variables

m 1%
=/‘/m_—1{xm+l—;n‘§xg‘}, m=1’2,¢oo,n_l,

are normal and independent with mean zero and some variance. Then we have

the set
r 4 1 &
(e - &
t:=V +2 +1$-1 , r=1,..‘,n_2’
E J {xi+l - "th}

:—l =1

independently distributed according to t-distributions with r degrees of freedom
respectively. It may be convenient for computational purposes to make use of
the identity

r;l .7 + 1{ i=1
We then have

2 r+1 r+1 2 r+1 .
Tiynr — = E x,} = E (xi Z ) = E (@i — Zeen)”
=1 + 1 =1

(: I ;) (T2 — 57(r+1))

r+1 . ’
2 (@ — Fran)
i=1

Now, by Theorem IIIc, we know that if the set {,} has this specified distribution
then z must be distributed according to some normal distribution. The set
{t/} may be used to test the goodness of fit of the observations to normality,
by first adjusting the set {;} to a standard basis of comparison, i.e., by con-
gidering F,(t;), where F, is the corresponding cumulative distribution function
and then applying, for example, a x* goodness of fit test to these n — 2 quanti-
tities, with respect to the rectangular distribution on (0, 1).

’

l, =
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