NOTES

This section i3 devoted to brief research and expository articles, notes on methodology
and other short items.

—

THE STANDARD ERRORS OF THE GEOMETRIC AND HARMONIC
MEANS AND THEIR APPLICATION TO INDEX NUMBERS'

By NiuaAN Norris

Attempts to derive useful expressions for estimating the standard deviations
of the sampling errors of the geometric and harmonic means have not yielded
results comparable with those afforded by the modern theory of estimation,
including fiducial inference. There are in the literature of probability theory
certain theorems which can be applied to obtain these desired results in a
straightforward manner. The use of forms for estimating standard errors is
subject to certain conditions which are not always fulfilled, particularly in the
case of time series. An understanding of these limitations should deter those
who may be tempted to judge the significance of phenomena such as price
changes solely on the basis of estimated standard errors of indexes.

1. Statement of formulas. The standard error of the geometric mean of a
sequence of positive independent chance variables denoted by z; = 1, 22, - - -,
Olog z
Vn'
80 that 10 - is the standard deviation of the logarithms in the population as
given by o1eg - = [E{[log z — E(log z)]*}}}; and n is the number of individuals
comprising the sample. The estimate of the standard error of the geometric

where 6, is the population geometric mean of the variates;

x,,,isag=01

Slog z;

vn—1
estimate of 6; ; so that siog , is the estimate of o105 = ; and n — 1 is the degree of
freedom of the sample.

mean is 8¢ = @ , where @ is the sample geometric mean, that is, the

1 This article summarizes two papers presented at sessions of the Institute of Mathe-
matical Statistics at Detroit, Michigan on December 27, 1938, and at Philadelphia, Penn-
sylvania on December 27, 1939. The results given herein can be derived by several meth-
ods, which vary somewhat as to degree of rigor. The writer wishes to acknowledge his
indebtedness to the referee for suggesting a proof based on a probability theorem stated
by J. L. Doob, ““The limiting distributions of certain statistics,”” Annals of Math. Stat.,
Vol. 4 (1935), pp. 160-169. The standard deviation formulas obtained follow as an applica-
tion of this theorem, as will be seen by reference to it. Obviously the asymptotic variance
formulas of many other statistics (estimates of parameters) can be obtained in a similar

manner.
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The standard error of the harmonic mean of a sequence of positive inde-

pendent chance variables denoted by 2; = 21, Z2, - -+ , Za, is oz = 63 11/'1

where the population harmonic mean of the variates is 8, = 1/a = [E(1/2)]™;
so that the standard deviation of 1/z in the population is ¢y, = [E{[1/z —
E(@1/z)"}}}; and n is the number of observations comprising the sample. The

. . . s
estimate of the standard error of the harmonic mean is sy = - ——=t_ , where

2’\/?7,"'

the estimate of a is given by a = % = 71_‘ (Z 1/z;); in which s /., is the standard

deviation of the reciprocals of the observations comprising the sample; and
n — 1 is the degree of freedom of the sample.

2. Derivation of formulas. These forms can be obtained by application of
the Laplace-Liapounoff theorem® as follows: Let z; = 7, %2, - - - , T, be a set of
positive independent chance variables with the same dlstnbutlon functlons,
where the expectations, E(z;) and E(z}) exist, and where o7 = E {[z. — E()]})
> 0. The last condition is imposed to eliminate the trivial case in which the z;
are all equal and their distribution is confined to a single point. The geometric
mean of the z; is G = (z1-Z2+ --- -Z,)"'", and the harmonic mean of the z; is

1«17
n-[Ez]

It is necessary to assume that both olog - and ¢}/; are finite, and that in the
case of both log'z and 1/z at least one moment of order higher than any two of the
respective variates is also finite. The requirement that the variance and at
least one moment higher than the variance be finite can be weakened in various
ways, but this is a trivial consideration, since nearly all distributions of any
importance have finite third moments.’ Certain rarely occurring types of
distributions, such as the Cauchy distribution, have infinite variance. In such
cases, standard error formulas as ordinarily used are not valid.

Let E(log ) = ¢, and E(1/z) = a. By the Laplace-Liapounoff theorem,

of V/n(log G — §)

Olog z

except for terms of order 1/4/7, the limiting distributions

—1

and \/ﬁ H are normal with zero arithmetic means and unit variances.
01z

That is, if C represents a set of conditions on chance variables, and P{C} is the

probability that these conditions are satisfied, then

2 A, Khintchine, Asymptotische Gesetze der Wahrscheinlichkeitsrechnung, Ergebnisse
der Mathematik und ihrer Grenzgebiete, J. Springer, Berlin, 1933, Vol. II, No. 4, pp. 1-8;
J. L. Doob, op. cit., pp. 160-169; and S. S. Wilks, Statistical Inference, 1936-1937, Edwards
Brothers, Inc., Ann Arbor, 1937, pp. 39 f.

3 For a more detailed discussion of this matter see Wilks, op. cit., pp. 39 f.
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lim P{\/ﬂgﬂ < t} = lim P{\/_ﬂH_;l__c') < t} = \/__1__2_1‘[:[%’“.

n—rewo Olog z n—+c0 01/z

In order to use these relations in obtaining the limiting distributions of the
geometric and harmonic means, it is necessary to suppose that the sequence of
random chance variables, V;, converges in probability (converges stochasti-
cally) to p, and that the sequence of random chance variables, v/n(V; — p), has
a normal limiting distribution with zero arithmetic mean and variance o°.
Also, it is necessary to assume that the real-valued function, f(z), has a Taylor
expansion valid in the neighborhood of p. If f’(p) > 0, only the first two terms
of the series are needed. The required expansion is given by

1@ =16 + & = 07 6) + ES 2 1o + pz = )

where 0 < 8 < 1, and f”’(z) is continuous in the neighborhood of p. When these
conditions are fulfilled, the limiting distribution of v/2[f(V;) — f(p)] is normal
with an arithmetic mean of zero and a variance of o’[f'(p)]*.

Let f(log @) = € ¢, and use the expansion given by ¢ ¢ = ¢ + (log G — §)éf
+ 3(log G — {)* 189D Qinge 6, = ¢, it follows that the limiting distribu-
ti0121 of /n(G — 6,) is normal with an arithmetic mean of zero and a variance of

10 Jog z -

Similarly, it can be shown that the limiting distribution of \/n(H — &) is

normal with an arithmetic mean of zero and a variance of 630}/, , where 6, =

L= B/,

It is of some interest to observe that the expressions for the standard errors
of the geometric and harmonic means correspond with the forms previously
given for the standard errors of two efficient ratio-measures of relative variation,

namely,
2 2

0 62
Oo/a = 5 0a¢, and ome = - oom,

62 A

where 6,/6 is the population geometric-arithmetic ratio, and 6,/6, is the popula-
tion harmonic-geometric ratio.

3. Limitations of standard-error estimates. Application of these forms is
subject to the usual conditions for drawing sound inferences on the basis of the
representative method. Fiducial argument should be employed to avoid certain
untenable assumptions of the outmoded method of using standard errors.
Estimates of the standard deviations of sampling errors do not constitute an
ultimate test of significance which can be applied with a high degree of success
to all types of problems. In general, such estimates cannot be relied upon with a

¢ Nilan Norris, ‘“‘Some efficient measures of relative dispersion,’* Annals of Math. Stut.,
Vol. 9 (1938), pp. 214-220.
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high degree of confidence when they are used as tests of significance for index
numbers, since in nearly all time series there exists an appreciable degree of
serial correlation, persistence, or lack of independence among successive items of
any sample.

4, Bibliographical note. Certain aspects of the sampling distribution of the
geometric mean have been discussed by Burton H. Camp.® Attempts to derive
forms for estimating the standard errors of index numbers have been made by
Truman L. Kelley® and Irving Fisher,” and an empirical study of the sampling
fluctuations of indexes has been made by E. C. Rhodes.® Although various
special tests of significance for time series have been proposed,’ at the present
time no generally satisfactory procedure has appeared.
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A NOTE ON THE USE OF A PEARSON TYPE III FUNCTION IN
RENEWAL THEORY

By A. W. Brown

One of the methods suggested by A. J. Lotka' for the derivation of the renewal
function may be briefly summarized as follows.

The method consists of dissecting the total renewal function into ‘‘genera-
tions”. The original installation constitutes the zero generation, the units
introduced to replace disused units of the zero generation constitute the first
generation, renewal of these the second, and so on. Let f(z) be the “mortality”
function, the same for all generations. f(z) is a function satisfying the usual
conditions of a distribution function. Adopting Lotka’s notation, let N be the
number of units in the original collection, B;(¢) dt the number of objects intro-

1 A.J. Lotka, ‘A Contribution to the Theory of Self Renewing Aggregates, With Special
Reference to Industrial Replacement,”’ Annals of Math. Stat., Vol. 10 (1939), p. 1.



