A GENERALIZATION OF THE LAW OF LARGE NUMBERS
By HiLpAa GEIRINGER

It is well known that the law of large numbers can be established for dependent
as well as for independent chance variables by using Tchebycheff’s inequality [1]
and assuming that the variance of the sum of the variables tends towards
infinity less rapidly than n’.

In recent years v. Mises has introduced the notion of statistical functions (2]
and has shown that, under certain assumptions the law of large numbers is still
valid if, instead of the arithmetic mean of the n observations z;, --- ,z. a
statistical function of these observations is considered. For example in the very
special case, where the n collectives which have been observed are identical
k-valued arithmetic distributions with probabilities py, - -- , px corresponding
to the attributes ¢, - - -, ¢x and with observed relative frequencies ni/n, - - -,
n/n one obtains the result: It is to be expected for every ¢ > 0 with a probability
P, converging towards one as n — «, that | f(ni/n, - -, m/n) — f(pu, -+ -, 22 )|
< eunder very general conditions concerning the function f.

In the present paper we shall generalize these new results so that they will
apply also to collectives which are not independent.

1. Lemma concerning alternatives. Let us consider the n-dimensional
collective consisting of a sequence of n trials and let us assume that the n trials are
alternatives, i.e. for each trial there are only two possible results which we
denote by ‘“‘success,” ‘“failure,” by ‘“‘occurrence,” ‘“non-occurrence” or by
“1,” “0.” The total result of the n trials is expressed by » numbers each equal
to 0 or 1. Let v(z1, 23, - - -, Z») be the probability of obtaining the result x,
at the first trial, 2, at the second one, - .. , z, at the last one (x, = 0, 1;» =
1,..-,n). In the same way we introduce vis(z, ) = >, v(%,y, Tz, - - - , Tn)

o Sl

and generally v,,(z, y) as the probability that the uth result equals z, the »th

equals ¥, (4 # »), and finally let v,(z) = 2, v,,(z, y) be the probability that the
v

pth result equals . In particular let us write
() = pu, vw(l, 1) = pw, (l‘y” =1,.-.,nu#v)

ps being the probability of success in the uth trial and p,, the probability of
simultaneous success both in the uth and »th trials.
The variance s, of the sum (1 + -+ + x,) is easily found:
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sh=Var(z1+ --- +2a) =zx.-z--:.z,. @it oo FTa—pPr—eer —Pa)0(T1, -, Za)
= 2 @=p)vlm, ey +
+ 2%;% (21 — p1) (X2 — P)V(Z1, + oo, Tn) + -+ -

; (71 — p)ioa(z) + --- +2 2 (11— p1) (@2 — po)vna(zs, 22) + - -+

Z1:22

=p(1 —p1) + -+ + Pa(l = Pa) +2(p1z — p192) + - -+ + 2(Prs,n — Da1D4)-
Thus:

(1) 83. = Var (x; + ... 4 xn) = i p»(l - pv) + 2 i (pm - pﬂp')'

The first sum on the right is <n/4; the second one consists of N = §n(n — 1)
terms, therefore we cannot be sure that it tends toward zero after division by n’.
(n)

Putting p,, — DDy = o) We see immediately:
(@) A necessary and sufficient condition for lim s./n = 0 s

n—+c0

) lim 1/n° 2 al? = 0.
Denoting by o} the variance of v,(z) and by 7, the correlation coefficient of
vw(z, y) we have

)
a,f: = Dw — Duly = Tw0u0y.

We see that o)’ takes values between —1/4 and +1/4 and our conditions (2)
postulates that the sum of these positive and negative terms tends towards
infinity less rapidly than n’. As to the meaning of the signs of these terms we

see that a term o'’ will be < Z 0 according as p,./p, z p,. This means: the

fact that the »th event has presented itself makes the occurrence of the uth
event either more probable; or it is without influence on it; or it makes it less
probable. And we see that s./n tends toward zero, only if there is a certain
“equalization” or ‘‘stabilization” of positive and negative mutual influence.
If in particular for a pair of values g, », 7 = +1, that is 9,,(0, 1) = v.,(1,0) = 0,
the events must either both occur or both fail and p, = p,. If r,p = —1 we
have 9,,(0, 0) = (1, 1) = 0 the simultaneous occurrence is impossible and
likewise the simultaneous failure, and p, + », = 1. If we have p,, = 0 (case of
mutually exclusive events) then p, + p, < 1.

Since 3 = 0 and X, p,(1 — ) = 2, o5 < n/4 we conclude from (1) that
=1 y=1

E a,f:" > —n/8 and we obtain the following simple sufficient condition for the
vahdlty of (2):
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(b) Let us denote by m., the number of all combinations p, v(p < n;v < nyu #= »),
such that however large n may be, a,,, > ¢, where € 18 a given positive number;

then — Z al? converges toward zero if lim m,/n® = 0.

p ye=1 n—+w

We have in fact
g E < ma+ (N — mae

and dividing by »n* we find that-— Z a{? is enclosed between _—; and m,/n* +

pw—vl 8
N o " which both tend toward zero. Roughly speaking this condition implies

that for “almost all”’ combinations of indices u, », the o}’ converge toward
“negative or vanishing correlation.”
(n)

On the other hand the sum of all positive and negative terms in Z a,,
wry=1

cannot become less than —n/8. Therefore, if “almost all” positive terms are
supposed to tend towards zero it follows that also almost all negative terms
tend toward zero. Thus we obtain the sufficient condition (c) which is neither
more nor less general than (b):

(¢) The sum — Z ol tends towards zero as n — w, if “almost all” the indi-
p.v==1

vidual terms a(") Dw — DuD» tend toward zero. Or more exactly, the sum in
question tends toward zero if | a{s’ | < efor every e and sufficiently large n with
the exception of u, terms where lim un/nt = 0. That is “convergence towards

independence” for almost all combinations y, » of indices. Let us, for example,
assume that all the p, are % 0 and all the p,, = 0, then all the a,‘,, are certainly
< 0 and (b) is fulfilled; but it is easily seen (3) that in this case py + p2 + - - -
pn = 1. Therefore all the products p,p, (with the possible exception of a finite
number) tend toward zero, and (c¢) holds as well.

2. Statistical functions. Suppose n observations have given the results
X1, Xa, -+ ,%n. Let us assume for the sake of simplicity that they are all
bounded between two real numbers A and B. To each real z corresponds the
number n S.(z) of observations with a result < z. S,(z) is a monotone non-
decreasing step function with n steps, each of height 1/n; however several steps
may coincide at the same point. We have

(1) Sa(r) =0 if <A and S.(z) =1 if z= B.

Sa(z) is called by v. Mises the partition (Aufteilung) of the n observations.
Sn(x) coincides with the well known cumulative frequency distribution if the
attributes ¢, (k = 1, .. . k) and the corresponding relative frequencies ny/n, - - -
nx/n are given.
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A statistical function is a function of the z, , z;, - - - , , which depends only on
S.(x), the partition of the n results. It will be denoted by f{S.(x)}. If the ¢,
and the n,/n are given then statistical function means simply “function of the
relative frequencies” and it becomes a function of k variables. In f{S.(x)} the
partition S,(x) takes the place of the independent variable. Such a statistical
function has the following properties: (@) It is a symmetric function of the
Xy, X2, -+ ,%,. That is, it is independent of the succession of the n results.
(b) It is “homogeneous’” in the following sense: If instead of n observations
we have nl observations and if at the same time each z, is replaced by lz, then
the statistical function is not changed.! Examples of statistical functions are
the moments

leZ = f:c'dS,.(x) = M

N y=l

or, if M} = @, the moments about the mean a:

%Z @ —a)" = f (x — @)"dS.(z) = M,, ete.
r=1

The independent variable in f{S.(zx)} is a partition; but in addition we shall
define f{P(z)} where P(z) is a certain bounded distribution which is not neces-
sarily a partition. A distribution P(z) is called bounded if

1) Plzx)y =0 if <4 and P(x) =1 if z = B.

If this is true for a sequence P,(x), Py(x), - - - with the same A and B then the
sequence is called uniformly bounded. Let us now consider a bounded partition
P(z) which in every point of continuity of P(x) is the limit as n — « of a se-
quence of bounded partitions S.(z). As S.(z) converges toward P(z), if
f{Sa(x)} converges towards a limit L which does not depend on the limiting
process S,(x) — P(z) then that limit shall be denoted by f{P(z)}; it will be
called the value of the statistical function at the “point”’ P(z) and f{S.(z)} will be
called continuous at P(z). The definition of continuity can be given also in the
following way: Corresponding to every ¢ > 0 exists an 5 > 0 such that

) [ f{Sa(@)} — fIP@)} | < e

for all values of n and for every bounded S,(z) such that at every point of
continuity of P(x)

3) | Sa(z) — P(2) | < n.

In this case f{S.(z)} is called continuous at the point P(z). Thus a statistical
function is defined for bounded partitions and for certain bounded distributions
which are not themselves partitions. If the continuity defined by (2) and (3)
exists for a sequence Pi(z), Py(z), - - - of bounded distributions with the same 7

1 This condition of homogeneity is fulfilled e.g. for V 2122 - - - 2, but not for z1zz + -+ z .
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corresponding to a given ¢, we call the statistical function uniformly continuous
at the points Pi(x), Pay(z), --- .

3. The general law of large numbers. The generalization of the law of large
numbers which we have in mind can be demonstrated in a way analogous to the
demonstration given by v. Mises in the case of independent collectives if we
introduce the results of paragraph 1 in order to estimate the variance. We shall
consider here only one dimensional, bounded collectives in order to make clearer
what is the essential of the generalization.

A sequence of dependent collectives Pi(x), Py(z), - - -, Pa(x) can be given in
the following manner. Let P(z;, 2,, - - - , T,) be the probability that the result
of the first observation is < z, of the second < z;, .--, of the nth < z,,

This distribution will be said to be bounded in (4, B) if P = 1 when all the z,
are = Band P = 0 if at least one of these arguments is less than A. From this
n-dimensional distribution we deduce n one dimensional distributions

Pl(x) =P(x:B"”)B):
Pﬁ(x) =P(Byx)B””)B)’ °-°,P,.($) =P(B)”’)B)x;

where P,(z) is the probability that the vth observation be < 2. The P,(z) are
uniformly bounded in (4, B) which is a corisequence of P(z;, 7z, - - -, *,) having
been assumed to be bounded in this interval. In an analogous way we deduce
from P(zy, zz, -+, %) the n(n — 1) uniformly bounded two dimensional
distributions

2 Pﬂ(xyy) =P(x’y:B’ B)’ P;a(:c,y) = P(z, B, y, B, -+-B), .-

Here P,,(z, y) is the probability that the uth result is <z, the »th result <y,
and we have P, (z,y) = P,(y,z). Of course we have also

1

1) Py(z) = Py(z, B) = Py(z, B) = ... = Py,(z, B)

Py(z) = Pr(B, ) = Puy(z, B) = ... = Py,(z, B) etc.
If we put in (2) z = y we obtain P, (z, ) = P,.(z, z) and we introduce
@®) P,.(z,z) = P,(z) = P,(z)

the probability that both the uth and the »th observation is <z. Then P,,(z)
equals zero if £ < A4 and equals one if x = B, and this is valid with the same 4
and B for all the distributions P,,(z).

Now if p1, p2, - -+, Da are the probabilities of success for n general alterna-
tives Tchebycheff’s Lemma asserts that the probability W that the average
(1 + 22 + - - - + z,)/n of n observations differs by more than 5 from its expecta-
tion (p1 + p2 + .-+ + p,)/n is subject to the following inequality

(:c1+xz+ +zﬂ)= sh

n n?n?’

4) W= s—zVar

Here s, is given by (1) of paragraph 1.
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Let us introduce the average P,(x) of the P,(z):
() Py(z) = [Pi(z) + Pa(z) + --- + Pu(2)]/n

and let Q. be the probability that at any point of continuity of P,(z) the in-
equality

(6) [ 8u(z) = Pulz) | > 9

holds. Our aim will be to show that for every  under certain restrictions re-

garding the given collectives, @, tends toward zero as n tends toward infinity.
For a fixed point 2’ the probabilities P,(z) = p, and P,,(x) = p,, are constants

and we put P,(z) = p. = (p1 + D2 + --- pn)/n. The probability that in z’

) | 8a(z") = Pala’) | > n/2

is then, according to (4) smaller than (s2)../(3n)’n’. Here we denote by (s3).s
the value of 3 in 2’ (as given by (1) in paragraph 1).

Now we divide the interval (4, B) in N parts in such a way that in every one
of the N intervals e.g. in (2, ') the variation

() 8 = P(z") — P.(x) < n/2.

If there is at 2 (or at 2”’) a step of P,(x) we take the limit which P, (z) approaches
as £ — 2’ (or 2”’) from the interior of the interval. In order to obtain such a
division we need only divide the total variation 1 of P,(z) in 2/7 equal parts and
project these points of division on P,(z), disposing however in a suitable way of
horizontal parts of P,(z). The abscissae of these points form the endpoints
of the N intervals. If there is a step of P,(z) at an endpoint of one of these
intervals the variation in both the adjacent intervals can only be diminished.
It is further possible that the two ends of an interval coincide ' = z”, this will
be 50 if P.(x) has for z’ a step >»/2. In any case we have a divisionin N < 2/9
intervals such that all the points of continuity of P,(z) are enclosed in them and
in each of these intervals (8) is valid.

Let us now assume that in the left end point z’ of the rth interval (2, z”’) the
inequality

(9) | Sn(:v,) - Pn(x/) l = ’7/2
is valid. Then we have for every z between 2’ and z”
(10) | 8ale) = Palw) | S n/2 + 8 = 9.

Because, since S.(z) and P,(r) are both monotone, the difference S.(z’) —
P,(2') cannot increase by more than § < /2 as z varies from 2’ to z”’. There-
fore if (6) is valid for any point z in this interval then (7) must be valid for
the left end point 2’ of this interval and the probability g, of this latter inequality
is less than or equal to 4(s3)./7’n.

But there are N intervals with the left endpoints x{, s y e zv and the
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probability that (6) may be valid in any point belonging to any one of these
intervals is < ¢1 + ¢2 + --- + gv. Denoting by s} the greatest of the N
variances (s3)z;, (S2)z, « - - , (83)z4 We have for @, (which is the probability that
(6) may be valid at any point of continuity of P(z)) the inequality

2
4N , < 8 Sn

n?n? n = ,7“3 nt'

@11 r=ag+et+- ---+ogw=

Therefore @, tends toward zero for every g if s,/n tends toward zero.
But according to (2) in paragraph 1, s,/n tends toward zero if for every z in
(4, B)

(12) lm 5 3 [Pu(®) — P@P@)] = 0.
Considering the definition of continuity of a statistical function we have ob-
tained the following result:

Asin (1), (2), () and (5) let P,,(z, y) be two dimensional distributions (u, v =
1, .-, n;p # v), uniformly bounded in (A, B); P,(z, B) = P,(z); Pu(z, ) =
P, (z) and P,(z) = 1/v(Pi(x) + Pi(x) + --- + P,(z)).

If the variable partition S.(x) is bounded in (A, B) and if f{Si(x)} is uni-
formly continuous at the “points” Pi(x), Pa(x), - - - then the probability that

(13) [F{8a@)} — f{Pa@)} | > ¢

tends toward zero for every € as n — «, provided (12) is uniformly valid for every
z in (A, B).

4. Examples. Let us illustrate by simple examples.
1) In order to define the P,(x) etc. mentioned in our theorem we define the
n-dimensional distribution P(z;, 22, - - - ) used at the beginning of paragraph
3 by indicating the probability density
p(@y, &2, -+, &) = Cu[l — 2175 - -+ 5] in the “unit cube”,

€Y

=0 elsewhere.

The corresponding probability distribution is
zy Ty
) P(xl,xz,...,x”)=f f #(xl,xz,...’x”)dxl...dx,,,

By putting
2”
3) Cn = o1’
we see that P(z1, 22, - - - , Z») equals unity if all the arguments are = 1 and it
equals zero if one of these arguments is less than 0. Therefore P(z,, z2, -- -,

z,) is bounded in the wunit cube.
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From (1) we deduce the two-dimensional densities

Vu(z, y) = Ca (1 — Y ) in the unit square,

4 22
=0 elsewhere
and the distributions
z v
® Pole,9) = [_ [ vl ) dody.
We see that

Pu(z,y) = Cazy (1 — ';—y) in the unit square

=0 fzory =0
=1 ffrzandy 21

and e.g. for £ 2 1,0 < y < 1 we have P, (z, ¥) = P.(1, y) etc. Thus the
P,,(z, y) are completely given.

It follows from (3) that —C,/2" = 1 — C, ; therefore putting C, = C we
have in (0, 1)

P,(z,x) = P,(x) = Cc* + (1 — C)a*

6

© P,(z) = Cz + (1 — C)2’

therefore

Q) P,(z) — P,(2)P,(z) = C(1 — C)2’(1 — 2)°

is < 0 for every z in (0, 1) since C > 1. For z £ 0, P, (z) and P,(x) both
equal zero and for z = 1 they both equal 1. Therefore our conditions of para-
graph 1 are fulfilled. We see that C, tends towards unity as n — «, therefore
for every z in (0, 1) P,,(z) — P.(z)P,(z) tends towards zero, we have “conver-
gence towards independence’’ but by no means independence.

This example was based on a symmetric density. Let us give an example of
asymmetric and arithmetic distributions. For the sake of simplicity let Pi(z),
Py(z), - - - be arithmetic distributions each with only three steps at x = 0, 1
and 2. As starting point we take the n-dimensional arithmetic distribution
v(x1, 23, « -+ T,) which gives the probability that the first result equals i, the
second z2, - - - , the nth z, , the z, being equal to 0 or 1 or 2; thus v(z:, 22, - - -,
z,) takes 3" values the sum of which equals unity. We deduce the two dimen-
sional distributions v,(z, ¥), e.g. vu(x, ¥) = 2. v(z,¥, 23, - - -, Ta), the prob-

ered

8 Zn
ability that the first result equals z, the second y, and finally the wi(z) =
Y vz, ), ete.  According to the definitions of P,(x) and P,,(z) we have then:
v
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8) P(x) =0 (z <0)
= ,(0) 0O=z<1)
= 1,(0) + »() 1=2zx<?2)
=1 2 = o),

9) Pu(z) =0 (z <0)
= 1,,(0, 0) 0=z<1)
= 1,(00) + v,(10) + v,,(01) + v,,(11) (A =Lz <2)
=1 @2 = 2).

Now we subject v(z;, - - -, x,) to the following conditions: Every v(z;, - -, Z,)

equals zero if it contains either: at least two ‘“‘zeros,” or: at least one ‘“‘zero”
and one “one,” or: at least two “ones.” All the other v-values are supposed
to be different from zero. Then we have

(0, 0) = 9(1,0) = 2,(0, 1) = v(1,1) = 0
therefore P,,(z) = 0 for x < 2 and P, (z) = 1forz = 2. On the other hand

10 =92, 2 ...2,0,2,...2)and v,(1) = v?, 2, .--2, 1, 2, ... 2) there-
fore P,(x) # 0 for 0 < z < 2 and we have thus for every finite n

P, (r) — P,(x)P,(x) =0 forx <Oandz = 2,
<0 for0=z<2

Therefore the condition (b) of paragraph 1 is fulfilled and thus (12) paragraph 3
holds.

I hope to have the opportunity to discuss more general applications of this
theorem later.

A generalization of the strong law of large numbers may be given in a simi-

lar way.
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