ON A STATISTICAL PROBLEM ARISING IN ROUTINE ANALYSES
AND IN SAMPLING INSPECTIONS OF MASS PRODUCTION

By J. NEYMAN

Unaversity of California, Berkeley, Calif.

CONTENTS

Page

1 Introduction. ... ... e 46
2. Statistical hypothesis H to be tested................ .o 48
3. General problem of similar regions............. ... i 48
4. Regions similar to the sample space with regard to o, &1, &2, =c+ , En.ovvonvenn.t. 55
5. The set of hypotheses alternative to H............. ... ... 61
6. The best critical region for testing H against a particular alternative............. 65
7. A critical region of an unbiased type............. ..o 66
8. Methods of determining e..........oovviriiiini i 70
L 25 153 5 4T R 76

1. Introduction. The words “routine analyses” are used to denote the analy-
ses performed by laboratories, frequently attached to industrial plants, and dis-
tinguished by the following characteristics: (1) All the analyses or measure-
ments are of the same kind, for example, are designed to measure the sugar
content in beets or to determine the coordinate of a star. (2) The analyses are
carried out day after day using the same methods and the same instruments.
(3) While all the analyses are of the same kind, the quantity measured varies
from time to time and each such quantity is measured repeatedly = times,
‘where 7 represents some small number, 2, 3, 4, 5.

As an illustration we may consider the routine analyses of sugar beets per-
formed in the process of selection and breeding. A small section is cut out of
each of a great number of sugar beets expected to be suitable for further breed-
ing. It is crushed and its juice extracted to determine £, the sugar content of
each particular beet. From the juice available from each beet n samples are
taken and a determination of the sugar content is made from each. Thus, if
¢; represents the sugar content of the section from the ¢th beet and there are
N beets, the laboratory will have to make nN analyses with their results z;,1,
Tig, + -, Tin, representing the measurements of the same quantity £ . Ob-
viously the sugar content &; referring to the sth beet need have no relation to
that of any other jth beet.

An essential point in the above description is that the number of measurements
referring to the same quantity §; is usually very small. For example, the
quantitative analyses of urine in certain clinics are performed only twice for
each patient, so that n = 2. Frequently, various practical considerations make
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it impossible to increase this number 7 of analyses intended to measure the same
quantity &;.

The smallness of n introduces difficulties in estiminating £;. It is usual to
consider %;,, Zi2, -+, &i,» as independent variables, varying normally about
£ with an unknown standard error o; . If they have to be used to estimate £; ,
then the confidence interval [1]* for &; will be determined by the familiar formula

) Zi. — Sita(n) < & < i + sita(n),

where z;. denotes the mean of the z;;,

2 si = 2 (xg — z:.)*/n(n — 1)
feml

and t.(n) is Fisher’s ¢ corresponding to the number of degrees of freedom n — 1
and to the chosen confidence coefficient a. It is known [2] that if the estimate
of £;is based only on its direct measurements z;, , .2, - + , %i,n , then the con-
fidence interval (1) can not be made any smaller; in fact, formula (1) gives the
shortest unbiased confidence interval for £. Buf if we try to substitute appro-
priate numbers in (1) we get disconcerting results. Namely, if n = 2 and
a = .99, then t,(n) = 63.657. If n is increased, the value of ¢,(n) decreases
rapidly but for n = 5 it is still very considerable, £,(5) = 4.604, and consequently
the numerical confidence interval determined by (1) is frequently so broad that
it is devoid of practical value.

The general conclusion is that, if » cannot be increased, satisfactory estimates
of &; can only be obtained when they are based on something else in addition to
the direct measurements z;;, 2, - -+, %i,» . This point was first noticed by
“Student” [3]. His method of avoiding the difficulty consists in assuming that
the accuracy of measurements performed in the same laboratory is constant
in time, so that ¢y = ¢; = ... = gy = o. If this is true, then s = Zs}/N will
be an unbiased estimate of the variance of x;; , based on N(n — 1) degrees of
freedom. If the past experience of the laboratory is of any size, as measured
by N, then the product N(n — 1) will be of considerable size and the confidence
interval for §;

3) Zi. — Sta(N(n — 1) + 1) < & < zi. + sptaN(n — 1) + 1)

will be much more satisfactory than (1).

The problem which arises is whether we are entitled to assume that ¢; =
o2 = ... = gy. The first study of this problem seems to have been made by
Przyborowski [4] in a paper written in Polish. His findings, subsequently re-
ported [5] in English, show that, at least in certain cases, the accuracy of routine
analyses is quite difficult to keep constant. If it is not constant, then the rela-
tive frequency of the cases where formula (3) gives correct statements about £;
will generally be different from the expected a.

1 Figures in square brackets refer to the literature quoted at the end of the paper.
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The procedure employed by Przyborowski to test whether oy = 63 = -+ = on
consisted in considering the quantities v; = (n — 1)s! and applying the x* test
to see whether they follow the ~ame x* distribution with n — 1 degrees of freedom

@ p@) = !PT

with an unknown o.

Just this point is to be the main subject of this paper. The X’ test was de-
vised by Karl Pearson with no particular set of alternative hypotheses in view.
As a result we may expect that in many cases other tests may be devised which
would be more powerful. A number of such cases are already on record [6],

7], (8.

2. Statistical hypothesis H to be tested. We shall consider the case where
we can observe the particular values of Nn random variables z:,;, ¢ = 1, 2,
...,N;j=1,2, ... n, and we know that x;,; is independent of zy for 7 > k

and that

1 " —éé (zi,i—8:)2 o}
(5) p(xi,l, Ti2y v Tin) = (6_“\/2—;) e i=1
with unknown values of & and o; > 0. The hypothesis H to be tested is that
61 = 63 = --- = gy = o without specifying, however, the actual value of .

It will be noticed that this hypothesis has already been treated by a number
of authors [9]-[17]. The need for considering it again arises from the fact that
previously it was tested against the set of alternatives presuming that the o1,
oe, --- ox, Were positive constants having any values whatsoever. It seems
to the author that, in the present case, the set of alternatives should be different.
This will be explained in the next section. It follows that while the hypothesis
tested is the same as in the papers quoted above, the problem of testing it is
quite different.

Let us denote by E the whole set of Nn observable variables. If H is true
then their elementary probability law will be

N =n
= ] l(ze,i—te)zlfr’

6) p(E|H) = (ﬁ)he =147

3. General problem of similar regions. The development of the test will
follow the general lines explained elsewhere [18], [19], [20]. Denoting by W the
Nn dimensional space of the z;,;’s, we want to determine a region w in W having
- the following properties: (a) if the hypothesis tested is true then the probability
of E falling in w shall have some fixed value chosen in advance, e.g., ¢ = .05 or
e = .01. This probability is known as the probability of an error of the first
kind. (b) If H is not true then the probability of E falling in w as determined
by one of the alternative hypotheses (that we assume likely to be true when H
is false) shall be as large as possible in a sense that requires further explanation.
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The probability with which this condition is concerned is a complement of the
probability of an error of the second kind. Once the region w is chosen it will
be used to test H in this way: if E falls within w, then H will be rejected.

In the present section we shall deal only with ways of satisfying condition
(a). The problem is similar to the one recently described by Hotelling [21].
The difficulty is that, if H is true, the probability law of E is given by (6) and
contains N + 1 unspecified parameters, “nuisance” parameters as Hotelling
very appropriately calls them. If we take just any region w then it is most
likely that the probability of E falling in it will vary with different values of
o, &, -+, Ev. As a matter of fact, if we want the test to be absolutely- most
powerful, or at least relatively so, we must determine not just one single region
satisfying (a) but actually all such regions or some broad family of them. From
these we shall then select one which seems most satisfactory from the point of
view of (b).

Systematic methods of determining regions of the above kind have already
been considered [18], [20], [2]. In these publications they are called “‘similar”
to the sample space W. The reason for this term is that the whole space W does
possess the required properties with e = 1. In fact, whatever be the values of
the nuisance parameters, a, & , - - - , £, the probability of E falling within W,
as calculated from (6), is perfectly determined and equals 1. Our problem is
to find a region w, part of W, with similar properties for 0 < ¢ < 1. However,
in many cases no such regions exist [22].

The general methods in the above publications are applicable in the present
case. However, a recent paper by Cramér and Wold [23] allows a slight im-
provement in presenting the matter. As-this is a little involved, it seems de-
sirable to take up the whole problem and present it anew.

Consider then the general case where the probability law of some m observable
variables y1, Y2, - , Ym, 58y P(E | 61, - - -, 8,), as specified by the hypothesis
tested, depends on s nuisance parameters 6, 6z, ---, 6, . Our problem will
consist of determining the necessary and sufficient conditions for a region w to
be similar to the sample space with respect to all these parameters. We shall
assufne that the probability law p(E | 6., - - - , 8,) satisfies certain limiting con-
ditions. ,

Let
~_dlogp
(7) Y = ET
_dlogp
8 vij = W

Assume that for all valuesof fandj =1,2,...,s
9 i = Aij+ 2 Bijron
k=1

where the coefficients 4:,; and Bi, ;. are independent of the observable variables
E. Assume also that the probability law p(E | 8;, -+, 6,) permits indefinite
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differentiation under the sign of the integral taken over any fixed region win W.

It is easy to check that the probability law (6) satisfies all of these conditions.
In order to find the necessary conditions for the region w to be similar to W

with respect to 6, 6, - - - , 0, , assume that w is actually similar and that, conse-

quently,
(10) P{Eewlﬂl, cee, b} = f...fp(Elol, ceeB)dyr - dym = €

for all possible values of 6,, 62, ---, 8,. It follows that the derivatives of all
orders with respect to 61, 6z, - .., 0, taken from the left side of (10) must be
identically equal to zero. But we have

9
é——o‘.f..../;p(E|01’-o-’ﬂ.)dyl...dym
d
1) =f...fa—o—.p(Elel,...,0,)dy1...dym

- f...f,,,.p(mo,,...,o,)dyl...dyms
2, ..., s. Similarly, using (9)
f...fp(E'Ol,...0,)dy1...dym

fori =1,
82
36, 06;
= f f ((P.'%‘ + 4+ ,‘z:lBi.i,kiﬁk)p(Elol, cee,0)dys - dym = 0.
Using (10) and (11), the last identity will be reduced to

18) T [ o [ oon @10y, e 0y dyn = — Ay forii=1,2, 0,8

where the right side does not depend on the particular region w, provided that
w is similar to the sample space. Considering the identities (11) and (13)
which were obtained by differentiating (10) twice, we may guess what will
happen if we differentiate (13) again and again. We may assume, in fact, that,
whatever be the non-negative integers ki , k2, - - - , k., we shall obtain

(14) ‘e]‘.f"'fH‘P?':p(Elol,"',oa)d?ll"'dymEM(kl,]‘h, "',kl))

t=]

(12)

where M(k, , - - - , k,) is independent of the particular region w, provided that w
is similar to the sample space with respect to all of the #’s. Assume that this is

found for all &’s such that E k: < K; also assume that the sum of the &’s in

t=1

.(14) is exactly K. Differentiating with respect to 6, , we obtain

1 8 8 . 8 _
;f «/.:{%.II‘P?‘ +‘I_:[¢?' tz_:l%lw,i}p(El”l, ooy 00)dyr - - e dym
(15) s

60,-M(kl’ ey k).
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Because of the particular form of ¢;,; , the second expression in the curly brackets
under the integral is a polynomial in the ¢’s of order not exceeding K. According
to the assumption made, this expression multiplied by p(E | 61, -- -, 0:)/e and
integrated over w gives a result which is independent of w. As the right side of
(15) is also independent of w, we conclude that

1 J .
e [ el @i, -0y e dyn

= M(kl,...,kj-[- 1,...,k,)

(16)

is also independent of the particular similar region chosen. We have seen that
(14) is true for K < 2 and that if it is true for K it is true for K + 1, that is,
it is true in general.

We may now sum up our findings: if w is a region similar to the sample space
with respect to all of the 6’s and if ¢ denotes the value of the integral (10), then,
whatever be the non-negative integers ki, k2, - - - , ks , the value of the integral
on the left side of (14) is independent of the particular region w chosen.

As the whole sample space W is also ‘‘similar”’ with ¢ = 1, it must satisfy this
identity. This allows us to determine the M’s, namely

an [ [ T p@0s, o, 0)dys - dy = Mhs, -, k).
W i=1

It is obvious that the necessary condition above is also sufficient. If a region
w is such that (14) holds for all systems of non-negative integers then all the
derivatives of (10) must be identically zero; thus the left side of (10) is inde-
pendent of 6,, 62, .., 0, .

It will be useful to interpret the above conditions as follows. We start by
noticing that the left side of (17) represents the product moment of some speci-
fied order of the ¢1, @2, - - - , ¢, considered as random variables. We shall call
it the absolute product moment. We will now interpret the left side of (14)
as a product moment also. For this purpose we shall define a new elementary
probability law of the y’s to be denoted by p(E | w, 6, -- -, 6,) and described
as the relative probability law given w. We shall write it as

1
(18) p(E|'w,01,---,0.)=;p(E'|01,---,0,)

for all of the points E included in w and
(19) ' p(E|w:01:"':01)=0

for all other points. With this definition the left side of (14) appears to be the
expectation of the product ¢i' ... ¢* calculated from the relative probability
law of the y’s given w. We will call it the relative product moment given w.
The final result can now be stated as follows:

For a region w to be similar to the sample space with respect to 6,, 6z, ..., 6,
it is necessary and sufficient that all the relative moments and product moments
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of o1, ¢2, + -+ , ¢ shall equal the corresponding absolute moments and product
moments.

In order to make the method of constructing similar regions according to the
above conditions clear we recall the procedure involved in the calculation of the
probability laws of any given set of random variables.

Assume then that the elementary probability law of the original variables is
given. Fix some values of the parameters 6, 6z, -- - , 8,, denote the resulting
probability law by p(E), and consider the problem of finding the elementary
probability law of ¢1, ¢2, - -+ , ¢, considered as functions of the y’s. We shall
assume that none of the ¢’s can be expressed as a function of the others not
involving the y’s explicitly so that the matrix

dor dnn e ]

6y1 6y2 ay,,.
(200 [ eeeeeeeiieeaen |

["_% e .. 90 J

oY1 9Oy Ym
is non-singular. In these circumstances it is possible to select m — s functions
of the ¥’s say V¥e41, Yoz, -+« , ¥m Which have continuous second derivatives such
that the formulae

@1) 2i = @i 1=1,2 , 8
zi =y; Jj=s+1,...,m
determine a one-to-one transformation of the space W of the y’s into the space
W’ of the 2’s. If w denotes any region in W then it will be transformed into a
perfectly determined region w’ in W’. If E’ denotes a point in W’ then the
probability of E’ falling in w’ will be identical with that of E falling in w. Thus

(22) P{E' ew'} = P{Eew} = f _/';p(E)dyl coo QY.

Letting J be the Jacobian of the y’s with respect to the 2’s in the transformation
(21) and using the known formulae for transforming multiple integrals, we have

) Pweny = [ [ o] 1710 den,

where p(E)]s denotes the result of substituting the expressions for the y’s in
terms of the z’s as obtained from (21) into p(E). It follows that, whatever be
the region w’ in W', the probability of E”’s falling in it is obtained by integrating
the function p(E)]g | J | over w’. But this means, according to the usual
definition, that the product p(E)]s | J | is the elementary probability law of
the 2’s. Denoting it by p(E’) = p(z1, - -+ , 2») We have

(24) p(E") = p(B)ls | J |-
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Now, to obtain the joint probability law of ¢1, ¢2, -+, ¢, or that of z,
2, .-+ ,2 we must integrate p(E’) for all the other z’s between their extreme
limits, formally between — « and + = for each of the variables concerned,

+o +o
(25) Do, -y ed = [ oo [ pE) daves - dom.

This procedure will be applied when calculating the absolute probability law
of the ¢’s and also the relative one given w. The only difference will be that in
the latter case we shall have to start with (18) and (19) instead of the original
probability law. The space W’ and the transformation (21) will be the same
in both cases. It is important to be clear about the difference between the two
cases. This is connected with the difference between p(E |6, ---, 68 and
p(E|w, 0, --.,0) of (18) and (19). The latter is proportional to the former
at any point E within the region w but is zero outside of w. As mentioned
above, the integrations for 2,1, 242, -, 2m in (25) should extend formally
from — © to + = for each variable. However, the probability law p(E’) may
equal zero within certain parts of this range. Fixing any system of values
z; = @i, fori = 1,2, ..., s, is equivalent to fixing a hypersurface in the space W
and considering the intersection of planes z; = constant in the space W’. De-
note them by W(e) and W'(p), respectively. If we shift the point E or E’
along W(p) or W'(p) respectively, the variables z; = ¢;, for j = s + 1,
s+ 2, ..., m will assume a certain set S(p) of systems of values. When calcu-
lating the absolute probability law of ¢;, - .- , ¢, this set S(p) will be the real
region of integration in (25); outside of it the function under the integral sign
will be zero. On the other hand, when calculating the relative probability law
of o1, .-+, ¢s given w, the function under the integral (25) is zero as soon as
the point E moves outside of the region w. Denote by w(p) that part of W(p)
which is included in w and by w’(¢) the corresponding part of W/(p). So, the
absolute and the relative, given w, probability laws of ¢1, --- , ¢s can be ob-
tained by using the formulae

(26) oty -++, 00) = _/ '/;V’(v) P(E) dzoys - -+ dem

@ ple el =t [ [ pE) don e dan.

Now the method of constructing regions similar to W with respect to 6,
02, ---,0,1s clear: to construct any such region it is necessary and sufficient
to select for each of all possible systems of values of ¢1, @2, -+ , 05 & part w(p)
of the hypersurface W(p) and to combine all these parts. The selection of w(p)
is arbitrary save for the restriction that the probability law (27) have all its
moments equal to those of (26), identically in the 6’s. This last condition will
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certainly be satisfied if w(p) is so selected that for almost all systems of values
of o1, 02, , s

(28) Plery o, 08| W) = plor, -+, 05)

for all values of the 6’s.

By selecting w(p) in all possible ways that satisfy (28) we obtain an infinity of
regions similar to W with respect to 6;, 62, ..., 6,. They form a family which
we shall denote by F(e¢). However, it is known that in general all the moments
of pler, -+, ¢s | w) and p(e1, - - - , s) may be identical without the two proba-
bility laws being equal almost everywhere. In such cases, the family #(e) will
not exhaust all the similar regions. It is important to be able to state whether
or not F(e) contains all the similar regions. To ascertain this we may use the
conditions of Cramér and Wold [23] which are sufficient for the determinateness
of the problem of moments, that is, for the uniqueness of a function having a
given set of moments.

Let

(29) My ="M(”70707"';O)+M(O;V;O; s ;O)+ s +M(070’ ce :071')'

With this notation the conditions of Cramér and Wold can be stated as follows:
If any two probability laws, e.g., the probability laws p(e1, -« -, ¢. | w) and

ple1, « -+ , ¢s), have all their moments and all their product moments identical
and if the series
(30) Dum

1 4

is divergent, then
(31) p(‘Pl"";‘Ptlw)Ep(¢17"‘;¢!)

almost everywhere.

Therefore, to know whether the family F(e) defined above exhausts all the
regions similar to W, we must calculate the even moments of all the ¢;-and see
whether the series (30) depending on these moments is divergent. If it is, there
is no similar region besides the family F(e). Otherwise, there may be some
others. These others will be constructed by selecting w(y)’s such that the in-
tegral (27) equals any other probability law having the same moments as (26).
In such cases, a region w selected, in one way or another, from the family F(e)
as the best from the point of view of controlling errors of the second kind will
only be the relative best.

It should be mentioned that whether we can always, under the conditions
considered, select a w(p) on any W(p) that satisfies the identity (28) has not
yet been proved. However, it seems plausible that the differential equations (9)
imply the existence of a sufficient set of statistics for 61, 6z, ---, 6,. If thisis
so, the possibility of satisfying (28) is guaranteed (see [2], p. 366).
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4. Regions similar to the sample space with respect to o, &, &, -+, &v.
We may now return to the original problem and apply our theory to the proba-
bility law (6). We wish to construct the most general regions similar to the

sample space with respect to the nuisance parameters ¢, &, - - - , £ unspecified
by the hypothesis tested. We let
dlo Nn , 13 ¢
(32) P Y i S D) D CHE
do 7 od i3 jm
_dlogp _ nlzm — &) _. T
(33) o= g = 5 with ;. = ﬂ,; xi.
Then
qg’ = —§ — @L
do P a?
ggo = —20¢'
0k
(34)
?ﬁ? —3 —ﬁ
85,- a?

dp; . .
— =0, T #
9%; I
and we see that the probability law (6) satisfies the differential equations (9).
Now the hypersurfaces W(p) of the theory are the intersections of the hyper-
surfaces

(35) ¢, = constant and @; = constant, fori=1,2...,N.
The latter equations are clearly equivalent to
(36) z;. = constant.
As to the former, we notice the identity
N n N
@37) El 2 (= &) =n 21 (8% + (z:. — £)) = X, (say)

where n8; = E (z:,; — z:.)". Therefore, W(y) denotes the intersection of the
=1

hypersurfaces (36) with, say,
N
(38) T, = >, 8} = constant.

=]

If we succeed in selecting from each hypersurface W(p) a part w(p) satisfying
condition (28) identically then the sum of all such regions w(e) will form a
region w similar to W with respect to all the unspecified parameters and belong-
ing to the family F(e). Before proceeding to this stage of the solution, let us see
whether the family F(e) exhausts all of the similar regions.
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For this purpose notice first that instead of considering whether there is but
one probability law with moments equal to those of ¢, and the ¢/'s, it is suffi-
cient to concern ourselves with the moments of x* and z;. .. In fact, all the ¢’s
are functions of these variables and the problem of uniqueness of the distribution
must have the same answer in both cases. The 2vth absolute moment of x*
as calculated from (6) equals

(39) (26)*T(3Nn + 2v)/T(:Nn).
The same order moment of z;. is
(40) o (2v)1/(2n) w1

Thus, the quantity denoted by ps, in the theory becomes

(26)”T(3Nn + 2) A\ (2)!
raNey - TV (“) 2k

n
We are interested in whether or not the series (30) is divergent. Since u,, satis-
fies the inequality

(42) pp < a”T( + 20) = C3,  (say)

with @ = 26° + N and 2b = Nn, if we prove that the series ZC,, diverges, then
(30). also diverges. To settle this conveniently we apply Stirling’s formula to
b + 2) and find that, as v — o, the ratio Cy,/» " tends to a finite limit. As
the series v is divergent, so is the series ZC,, and thus the series Zuz,’” is
divergent. Therefore, there is but one probability law with moments identical
to those of x* and the z;.’s and so the family F(e) contains all the regions similar
to the sample space with respect to o, &1, ---, én.

It may now be interesting to go into some details of the effective construction
of any region similar to W with respect to o, &, - -+, £&v. For this purpose it
is convenient to go back and express the identity (28), that the reglons w(p)
must-satisfy, in terms of the relative probability law of 2,41, 242, - -+ , 2m given
@1,¢2,+,0s. Thisis denoted by p(zet1, Zet2, +++ 1 2m | @1, ++ ,<p.) and de-
fined for every system of values of the ¢’s for which p(e1, ¢z, -+ ,¢s) # 0 as
follows:

(41) By =

p(za+1; Zepz, sy 2m| o1, 2, e, @s)
= p(¢1; tety Paylatly c 0, zm)/p(¢l; ) ‘P')’
Using (26), (27), and (43), the identity (28) can be rewritten in the following form

(43)

(44) f"'f()p(zs-'-l;"')zm|¢l)""¢8)dzs+l°"dsz€~
w/ (e

The function under this integral is the relative elementary probability law
Of Ze41, Za42, + - - , 2m and it is integrated over the region w'(¢). Therefore, the
left side of (44) is nothing but the relative probability of the point E’ falling in
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w’(p) given that the first s of its courdinates have the fixed values o1, ¢z, -+ , ¢s .
In other words, and owing to the one-to-one correspondance between the spaces
W and W', we have

(45) P{E ew'(¢) | E e W'(p)} = P{E ewle) | EeW(p)} = e«

Now the general method of determining similar regions may be stated as
follows:

1. Choose any system of variables Zs1, Zst2, « -+ , 2m sSuch that their values
determine uniquely the position of the point E’ on any fixed hypersurface W'(¢).
These 2’s considered as functions of the y’s should be continuously differentiable
twice.

2. Find the relative probabiiity law of the 2’s given the ¢’s. This must be
done for every possible set of values of the ¢’s.

3. In the space of Z41, Ze42, * + - , 2m consider regions which satisfy the equality
(44) identically in the 8’s. Any such region could be taken to form a part of w’,
the region similar to the sample space, which we are trying to construct. If
the assumption that the differential equations (9) imply the existence of a suffi-
cient system of statistics for 61, 6;, --- , 0, is true, then (see [2], p. 366) the
probability 1aw p(2et1, Zet2, -+ ,2m | @1, -+« , @) Will be independent of the
¢’s and there will be an infinity of regions satisfying (44).

Obviously, instead of dealing directly with ¢1, ¢2, - - - , ¢, as described above,
we may select any system of statistics Ty, Tz, -- -, T, such that the system of

equations 7; = constant is equivalent to ¢; = constant, forz = 1, 2, ..., 8.
Returning to the particular problem of similar regions with respect to o,
&, .-+, &v, we notice that instead of the ¢’s we may consider
. ,
(46) =28 and Tiy= .  fori=1,2 ..., N.

=]

Now we wish to select a convenient system of variables, denoted by z.4,’s in
the theory above, to determine the position of the point E’ on any hypersurface
W'(p) where all the functions (46) have fixed values. Obviously there is no
unique choice and we shall use what we find convenient. But notice that the
total number of these variables should be, in our case, Nn — N — 1. The
following system may be suggested.

If the sum =87 has a fixed value T then none of the S? can exceed T;. Write

St =wT:
, N1
=1

and consider u;, us, --- , uv_1 as belonging to the system of variables sought.
The region of their variation is determined by the inequalities
N-—1

(48) 0<w and . u <1
fmm]

C))
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If the w’s are fixed then they, together with the value of 7, determine the
values of S;, Sz, -+, Sy. As the values of z;. = Ty, are already fixed, we
have to solve the problem of choosing for each 7 = 1, 2, ..., N a system of
n — 2 variables, say z;1, Ziz2, - , 2i,n—2 , Which with z;. and S; will completely
determine the values of z; 1, Ziz2, - -+ , Zi.n . However, this will only have to be
done if n > 2. Following the now familiar method (see, for example, [5], pp.
33-43), we may determine the z;,; in two consecutive steps. First write

— 1 ]
Ti1 = Ti. + [%l"' 3. 3U:2+ -+ /‘/mm,n—l
T2 = Xy — vi1+ T02+..+ ___1_,,. L
+ : 12' 2.3 (m—1Dn """
49 o /1 1
Ti3 = Ti. é.—3”i,2 + ..o+ (—n—_‘—l—)n”i.n—l

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

where v;,1, vi2, -+, ¥i,n—1 are new variables satisfying the identity

n—1

(50) Z Vi,j = Z (:B., - ,‘. .

We transform them further by putting

Vi1 = \/TS; COS 2;,n_3 COS Zi n_g ++ - COS 22 COS 2,1
iz = /7 S; COS Zi,n_3 COS Z; n_g + -+ COS 22 SiN 2,1

(51) Vis = \/NS; COS Zi n_3 COS Zi,ns + - - SID Zi 2

Vime1 = V/7 8 8in 2; ns
with the 2’s varying as follows

0<z1<2r
(52) forj=2,3,--.,n — 2.
—7/2 < 2,; < w/2

Of course, instead of the S; we should put their expressions in terms of T; and
the u’s into (51). With the exception of a set of measure zero, which can be
ignored, the formulae above determine a one-to-one transformation of the
original space W of the z’s into the space W’ of Ty, T, -+ , Txyr, wa, -+,
un—1, and 2,1, 252, -+ ,2inefor¢< =1,2... N.

In calculating the joint probability law of all the new variables, we notice
that, on the hypothesis tested, all the Nn original variables are mutually inde-
pendent. Consequently, the transformations (49) and (51), which refer to
separate groups of the z;, /s, corresponding to fixed values of ¢, could be carried
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through separately. In doing so, we use formulae deduced elsewhere (see [5],
pp. 38-39) directly and obtain

L e b iz
(53) (i, Siy 21, + ) Zins) = ( Vn ) 872 insite —tNIe TT o571 4, .

o/ 2w =2

It follows that

p(xl‘, coe T, Sty o0, SN, %, o, 2N nm2)

N
(54) - I_I, Py Siy 2y +o ey Zina)

_ '\/ﬁ n —{n g (z5.~£5)3/02 a n—2 —4ns2/o2 o eE -1

= — e ik II 82 HHcos 2.
o\ 2mr i=1 Tl jed

We now wish to introduce T and the u; instead of the Sys. Since all other

variables remain unchanged the Jacobian of this transformation reduces to that

of (47). Simple calculations show that

(81, 82y -2+, 8w) | _ ywoppro (4 _ Nfue)_*ﬁlu?.

(T, uay « -, Un_1) i=1 =1

G5 |

Using this expression and substituting (47) in (54) we finally obtain

p(xl" sy Tne, Thul’ cee, UN, 510, 000 ,ZN@_z)

= (%)N ( @)Nﬂ e—}n..gl(z;.—i.-')‘/a’ TgN(n—l)—l
e\ 2

. N—1 N—1 $n—3) N n—3 )
‘e—iﬂﬂ/&' ((1 - E u.-) H u;) H H (5()8’—-1 k5

t=] t==] koml jwa2

(56)

To obtain the relative probability law of wui, us, «++ , Un—1, 21,1, * =+ , ZN,n-t
given T; and the T;y; = z:. , we must calculate p(T1, T:, ---, Txs1) and
divide expression (56) by it. Of course, p(T1, T2, -+, Tx41) is obtained from
(56) by integrating over the whole of W’(p), that is, for all other variables be-
tween the extreme limits of their variation. As these limits are independent of
the values of T, Ty, --- , Tw41, the result will be

N
(57) p(Tl ] T2; Yy Tn+l) = ce_‘n"zl @5~k 3ol TgN("—D—l e—hrll”

where ¢ denotes a constant. Thus

PUr, eov, Unaa, 211y o0 0y 2une2| Ty o ooy Tyyn)

(58) e ( (1 _ »;\_:1 u;) nﬁl m);(n—m INI 'ﬁ* cos’ 214

jeal gl kw1 =2
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with the region of variation W’(p) limited by the following inequalities
N—1

=1
0< 2:1<2r fork=1,2,...,N,
—1r/2$zk,1$1r/2 j=2,3,---,n—-2.

Since (58) integrated over W'(p) is identically unity, ¢; is a purely numerical
constant.

Now to construct any region w similar to the sample space with respect to o,
&, .-+, &v, we must select, separately for each and all systems (p) of values
of Ty, Ty, -+, Txs1, a region w'(p), part of W’(p) as defined by (59), with the
sole restriction that ?

(59)

(60) [ f:( )p(’lld, tee , UN—1,21,1y " ,ZN,n—ziTl, ,TN+1)
w'(e

-dul, e, dZN,n_z = €.

Obviously, there is an infinity of ways of selecting any single one of such
regions. For example, we could let the «’s vary as indicated in (59) and limit
the 2’s by

61) 0<z,<a —-a<z;Z<a k=12...,N;j=23,.--,n—2)

where a is chosen so that (60) is satisfied. This choice of w'(¢) may correspond

to one particular system of values of Ty, Ts, ---, T'y41 and no other. Again,

the same region (61) may be chosen to serve for all systems of values of the 7”s.

In this case, the region w = J_ w(p) might be described as cylindrical. Any
(4

such region w will control errors of the first kind in testing H to the same level
of significance e and, as far as these errors alone are concerned, each of these
regions is of equal value. Whatever the choice of regions w'(p) or w(p), the
test of H will consist of (1) observing the values of the z;,;s, (2) calculating the
corresponding value of Ty, Ts, - -, Twy1, the w’s, and the 2’s, and (3) noting
whether the point with coordinates u,, w2, - -+, Unv—1, 211, - -+ , 2n,n—2 falls in
the region w(p) chosen to correspond to the observed values of Ty, Te, ---,
Twxi41. Of course, in practical cases, the choice of w’(p) for one system of values
of the T’s will not be quite unconnected with that for others. On the contrary,
there will probably be some more or less simple rule connecting w’(¢) with the
corresponding systems of the 7”s. As a result, the actual machinery of the test
will be much simpler than that described above and will consist of the calcula-
tion of only a very few functions of the z’s and in checking some simple in-
equalities.

Now our purpose is to select a region from the infinite family F(e) of all
regions similar to the sample space with respect to g, &, - - - , £&v which we judge
most satisfactory for controlling errors of the second kind. Roughly speaking,
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this region will have to be such that, if the hypothesis H is not true, the observed
point E will fall in this particular region as frequently as possible, in general.
Here we come to the necessity of specifying the ways in which we expect the
hypothesis H to be untrue. It may be untrue in an infinite number of ways.
For example, the values of the ¢’s may (1) be equally distributed over any given
range, (2) may fall into just two groups ¢; = 1 and ¢; = 2, or (3) all ¢;’s except
the last may have the same value ¢ while the last is 10s, and so forth. Any
such assumption will be called an hypothesis alternative to H. It is obvious
that the probability of E falling in any given region w will be different for each
of them. Therefore, if we wish to deduce a test which will detect the falsehood
of the hypothesis tested frequently, we must analyse the practical cases where
the test is to be applied and guess the ways in which the hypothesis tested is
usually wrong. Then we can deduce a test which will be, in one sense or
another, most sensitive to the assumed deviations from the hypothesis tested.
Needless to say, our guess may be right or wrong. In the latter case, an in-
creased volume of observational material may demonstrate its fallacy and sug-
gest the necessary modifications. In any case, it is important to know exactly
the class of alternatives for which our test is, in some particular way, the best.

5. The set of hypotheses alternative to H. Let us consider the routine analy-
ses made at some laboratory and try to discover the circumstances likely to
cause variation in their accuracy. First of all, we may think of assignable
causes such as a change in personnel, apparatus, or accommodation. These
and similar causes are likely to produce lasting effects; the test of the hypothesis
that they did net reduces to one of the equality of only two ¢’s. An easy
application of known theory [20] shows that the familiar F or z test is unbiased
of type B;, which means that it is preferable to any other. Consequently,
situations of this kind and also similar one for which the L test is applicable [9],
need not be considered here, so that we may concentrate on cases where there is
no directly assignable cause of variation in the accuracy of the analyses. As-
sume then that the personnel, the apparatus, the accommodation, etc., remain
the same. Now the accuracy of analyses depends on a multitude of causes
evading identification, such as changes in the efficiency of the workers. In
principle, they try to have the highest, and therefore a constant, level of accuracy.
Uncontrollable circumstances cause some fluctuations about a certain average
and we expect that small deviations from this average will occur more frequently
than large ones. With this in mind, the author feels that it would be appro-
priate to expect that variations in accuracy, if any, will have a random character
so that any o; referring to one particular group of analyses, or any monotonic
function of that o; could be considered as an essentially positive random variable,
having some unimodal probability law. To make the problem of the best test
sufficiently specific, we must specify this law entirely. Here we face a some-
what embarassing freedom of choice. For lack of more precise information as
to the random variability-of ¢;, we guide ourselves by considerations of ease in
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calculations. From this point of view it is convenient to consider the variable
(62) h=d"

and assume that, within a given period of time which is not too long, when the
conditions in a laboratory are sensibly constant, it is varying according to the law

(63) p(h) = 8K ¢ /T(a) for 0 < h,

where « and 8 are unknown non-negative constants. It is useful to express these
constants in terms of two new ones which have an obvious interpretation: Ao , the
expectation - of h, and », the square of the coefficient of variation of h. Easy
calculations give

(64) a=1/y, B = 1/hov.
Now p(h) has the form

_ 1 (1/v)—1 _—h/hg»
(65) p(h) = Gy T ) h e .

We note that when » — 0 the probability law (65) tends to a limiting dis-
continuous form with P{A = hy} = 1. This corresponds to the hypothesis H
that we wish to test. The type of law represented by (65) is known to be
rather flexible. Consequently, we may easily assume that even though the true
variability of k (or ¢) does not exactly correspond to (65), there will be a system
of values of ho and » for which the difference between the true law and (65) will
not be large. Therefore, a test whicki is particularly sensitive to deviations of »
from zero with law (65) will be reasonably sensitive in real practical cases.
However, this is an assumption by the author. But it is subject to test and this
will be done below.

Formula (63) represents the hypothetical probability law of the variable h
which is not directly observable. We must use this formula to obtain the
probability law of the observable z’s alternative to (6), which corresponds to the
hypothesis H being true. Using h = 1/0°, we write the relative probability law
of 2,1, Zig, +++ , Zin given h

h /2 h & PR )2
(66) p(xi'l’ cer, i l h) = (ﬂ) et ,.El(z..,—e‘) .

Multiplying (66) by (65) we obtain the joint probability law of h and the zi,i’s
referring to one group of analyses

1 priztin-=1 e—h(llhovﬂ .21(35',:'—5;')2)
(2r) 2 (hov) P T(1/%) ' '

Integrating (67) with respect to h from zero to infinity, we obtain the absolute
probability law of z;,1, 22, - - - , Z:i,n, all referring to the ¢th group of analyses.
Assuming that the value of h in one group of analyses is independent of that in
another, we obtain the joint probability law of all the Nn observable z;,;s by

(67) p(h; xi.l) ctty xi.n) =
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simply multiplying the probability laws referring to particular groups of n of
them. The result will depend on N + 2 unknown parameters, &, &, ---,
Ev, ho,and v. As the last two will play a more important role than the others
we shall denote the probability law by p(E | hy, v). Easy calculations give

N 4Nn
(68) p(E | ho, v) = (lé‘é:{zz-ll‘-(ll//:)) ) N hov (’?y) w2l
;[-_-]1: (1 + = ’; (2:,;°— fi)2>

We easily check that for » — 0 (68) approaches the law (6) with hy = ¢~
Therefore, the problem that we shall treat below will be to assume that the
observable z’s follow (68) with some hy > 0 and some » > 0 and to test the
hypothesis H that » = 0. More specifically, we shall try to choose among all
the regions of the family F(e), found in the preceding section the one over which
the integral of the function (68) is, in general, the largest.

Before doing so, it may be useful to exhibit some experimental evidence in
favor of the assumption that, if ¢ is not constant in some conditions of analysis
or measurement, then it varies in such a way that the variability of the z’s has
at least some characteristics appropriate to (68).

Introduce the notation

(69) wi=n8t = 2 (wi; — z:.)%
=

Using transformations (49), (50), and (69), successively, we easily deduce the
probability law of w;

s _ (ov/2" TG0 — 1) + 1/%) Pl
(70) plw) = rG(n — D)I(1/) T F Thovan) i sii*

If the hypothesis we have made about the variability of %, as expressed by (65),
is true in any particular case then the sums of squares (69), referring to each
particular group of'analyses, are distributed according to (70). The reverse is
not necessarily true, of course, but it is comforting that a check of the above
in a number of broadly divergent circumstances gives satisfactory results. By
applying the transformation 1 + hww;/2 = ¢, the integral of (70) is easily
reduced to an Incomplete Beta function whence Pearson’s tables [24] provide
an easy means of calculating the theoretical probability that w; is within any
given limits.

Table I gives several observed distributions of the sums w together with their
expected ones, calculated from (70) with the values of o and » fitted by the
method of moments. The last lines give particulars of the application of the
%’ test for goodness of fit.

The origin of the data used to compile Table I is as follows:

For the data providing frequency distributions numbered 1 and 2, the author
is deeply indebted to Professor Raymond T. Birge. The methods of measure-
ment and their purpose are explained in the publications [25] and [26], respec-




TABLE I
Comparison of empirical distributions of w with those calculated from (70)

Number 1 2 3 4 5
Author or K. Buszczynh- A.A. L%"cgel'
Source of R.T. Birge R.T.Birge | skiand Sons, f,zgée and 'W. S. Svenson
Data Ltd. F. Pez;,rson
Kind of I:Iea- ?;rgixg Ilig.ﬁfis SA Sc;lar Sugar Content| Velocity of Octane
surement, or ° pectrum B . :
Analysis R) itrt(:‘;egf Line of Beets Light Rating
Frequency | Frequency | Frequency | Frequency | Frequency
w Exp. | Obs. | Exp. | Obs. | Exp. | Obs. | Exp. | Obs. | Exp. | Obs.
0-1 29.38| 29 15.10] 17 15.56| 16 3.-50| 2 14.90 17
1-2 19.30| 20 13.14| 11 12.67 17 7.73| 10 18.88| 16
2-3 13.11} 17 11.39| 15 10.70]| 13 9.37| 13 16.83| 14
34 9.16] 7 9.84| 5 8.98 2 9.66| 8 13.93| 12
4-5 6-56] 6 8.46| 9 7.53| 11 9.28| 17 11.20| 10
56 4.80] '1 7.-24) 9 6.34| 4 8.60] 7 8.911 7
6-7 3:59] 4 6-17 11 5.36| 3 7.80] 7 7.04| 10
7-8 4.80 1 5.23| 4 4.54| 7 6-99 7 5.58] 9
89 ) 3 4.40, 2 3-86] 4 6-22| 4 4.43| 7
.9-10 2 3.69] 2 6-09 0 5.52| 4 3.52| 7
10-11 3.94 0 5.63 2 ) 5 4.88) 3 5.08 3
11-12 0 ) 1 4.45 0 4.32( 5 ) 1
12-13 4 3.76 3 ) 0 3-82 3 0
13-14 5.36/ 1 : 1 5 6.37 2 4.51] 1
14-15 0 1 |; 4.61] 1 5 0
15-16 0 5.95 3 0 5.03 1 1
16-17 1 1 0 0 6.18 1
17-18 0 1 3 4.00 3 1
18-19 0 1 |} 4.37] 1 2 2
19-20 1 1 0 2 0
2021 1 1 4.55| 0 0
21-22 0 0 1 0
22-23 0 4.94| 1 2 0
23-24 0 0 1 0
24-95 0 o [+ 1 0
25-26 0 1 1 0
26-32 2 4 3.94| 3 1
32-43 1 3.58| 3 1
>43 3.61 6
Total 100.00/100 [100-00{100 {100-00{100 [123.00|123 (120-.99|121
2 9.63 12.67 18.75 18.09 13.35
Degrees of
Freedom | 7 10 11 18 10
P() .21 .24 -066 .45 .21

The symbols } are used to indicate the groupings used in the calculation of
the x2. The groupings were made so as to have the expected frequency in a

class at least equal to 3.5.

64
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tively. These papers also contain various compilations of the results of the
measurements. However, the original single measurements, necessary for the
present paper, are naturally unpublished and Professor Birge was kind enough
to find them for the author in his records.

Frequency distribution No. 3 was compiled from a book of records of sugar
beet trials carried out by Messrs. K. Buszezyniski and Sons, Ltd. in Gérka
Narodowa, Poland.

The 4th distribution was constructed from the original measurements of the
velocity of light as published [27] by Michelson, Pease, and Pearson. The
measurements made during single days were treated as forming separate groups.

Distribution No. 5 originated from repeated measurements of Octane Rating
conducted by a refining company in California. They were made accessible by
Mr. Walter S. Svenson and it is a pleasure to express the author’s deep grati-
tude to him.

The number of observations in each column is not very large. It may be
expected that if it were increased, the differences between the hypothetical
distributions and the observed ones would become more apparent. It seems
safe, however, to assume that in a number of instances the hypothesis as to the
character of the variability of w; is not in very bad disagreement with the actual
facts. It would be most interesting to have some more data on the subject.

6. The best critical region for testing H against a particular alternative. It
seems unquestionable that the most desirable test of any hypothesis is the uni-
formly most powerful test (U. M. P. Test) with respect to the whole class of
simple hypotheses alternative to the one which is being tested. Denote by H
the hypothesis tested, by # any simple admissible hypothesis alternative to H,
and by @ the set of all #’s. If w, is the critical region corresponding to the
U. M. P. Test, then w, has these properties:

@7 Q) P{Eew |H} = e
(2) If wis any other region such that P{E ew | H} = e then
(72) P{Eew | h} > P{Eew]|h},

whatever be h € Q.

Following the known method [18], we shall see whether a test of the hypothesis
H considered in the preceding sections exists which is a U. M. P. Test with re-
spect to the whole class of admissible hypotheses that specify the probability
laws (68) with any hy > 0 and » > 0.

The method consists of considering one particular alternative hypothesis 4/,
that is, one particular set of values of hy > 0 and » > 0 and finding the best
critical region wy,,, for testing H against 2’. If this region appears to depend
on v and/or on hy then there is no U. M. P. Test. The region w,,, is found by
determining, for each system (¢) of T, T2, - -+, Tyna sep}arately, a part wp,,.(¢)
determined by the inequality

(73) P(E | ko, v) 2 kio)p(E | H)
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where k(p) is a function of Ty, Ty, --- , T'x41 s0o determined that the relation
(60) is satisfied. Substituting (6) and (68) in (73), taking the logarithm of both
sides, and combining all terms which are constant or depend onlyon Ty, T% , - - -,
Twn41, We have

(74) Zl log (1 4 3hevn(S} + (Ti — £)7)) < ku(T1, - -+, Tws), (say).

Clearly, for Ty, Ta, - - - , T'n41 fixed, this inequality imposes a restriction on the
variability of u;, uz, - - , Uxs1 While 21,1, - - - , 2y a2 are allowed to vary indis-
criminately within the extreme limits (52). But the region w,,.(¢) determined
by (74) also depends on the product kw. Therefore, there is no uniformly most
powerful test for testing H against any and all simple alternatives specifying (68).

7. A critical region of an unbiased type. There seems to be no grounds for
dissention that when a U. M. P. Test exists and is readily applicable, it is pref-
erable to any other test, but the situation is quite different when there is no
U. M. P. Test. In such cases, practical considerations may suggest a variety
of requirements for a second best test of the hypothesis. Among these, we may
suggest the following considerations:

Fix, for a moment, the values of hy, %1, --- , v, take any region w of the
family F(e), and "consider the probability of E falling in w as a function of »
only. This'is called the power function

(75) b6l = [ - [ p(E |k, 5)dois - div.n

Here, of course, » > 0. Because of the properties of regions belonging to F(e)
we have (0 |w) = e If » > 0, the value of 8(v | w) represents the corre-
sponding probability of the test (based on w) discovering*the falsehood of H.
It is obviously desirable to have this probability as large as possible. In any
case, it sheuld be greater than e. This last restriction is known as that of un-
biasedness [19], [20], [28]. Further, since it is impossible to maximize B(v | w)
for all values of », we must choose those for which it is most desirable, in our
opinion, to concentrate our efforts to increase B(v | w). One possible point of
view is that these values should be very close to the hypothetical value » = 0.
For if » is considerably larger than zero, we may argue that there will be no
need to apply any refined statistical test to detect the falsehood of H. Of
course, this argument has no mathematical character and its general acceptance
is not suggested. In fact, we may argue that if » is greater than zero but very
small, it will be almost impossible to detect the falsehood of H by any test and,
therefore, our efforts should be concentrated on values of » which are of con-
siderable size.

These are considerations of non-mathematical character; the role of mathe-
matical statistics is limited to devising tests and elucidating their properties.
If these last are understood by practical statisticians, each may choose according
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to his problem. Note that what could be termed the ‘“properties” of a test are
summarized in the power function 8(v | w) with its relation to the power funec-
tions of other possible tests of the same hypothesis.

In this paper we shall deal with tests particularly sensitive to small deviations
of v from its hypothetical value v = 0. In this respect, our first trial is to find
a region wy , belonging to the family F(e) and satisfying the condition

(76) aﬂ(;l, 'wo)]y-o > aB(:;yl w)]y-o ,

where w is any other region belonging to the same family F(e).

Because of the peculiar structure of the regions belonging to F(e), the problem
is immediately reduced to finding regions wy(¢). According to theory explained
elsewhere [18] these should satisfy the condition

v

where k(T) depends on Ty, T2, - -- , Ty only and is determined to satisfy the
condition of similarity (60). Condition (77) is equivalent to

(78) ‘_9_10_g2(_E;___“‘°”’)] > k(7).

aV =)
Taking the logarithm of (68), differentiating with respect to », putting » equal
to zero, substituting in (78), and combining all the terms which are constant
on W(p) into a single term which we may write as 3hgki(T'), we have

@ "”’(L"‘“")] > KDpE B,

(79) 38+ (Toa = 0 2 B(D).

We note that condition (79) determining, so to speak, the shape of the region
wo(p) does not imply any restriction on the variability of the z’s but only on
the w’s. However, the region wo(p) as determined by (79) has the disadvantage
of being dependent on the values of the £ . Since these are not specified by
the hypothesis tested, we are not able to determine the critical regions belonging
to the family F(e) and maximizing the derivative d8(v | w)/dv],—o. The region
which does so for some particular system &, &, --- , év of values of the s
will lose this property if the system of values of the ¢'s is appropriately changed.
Therefore, our choice of the region maximizing the derivative of the power func-.
tion at » = 0 should be made not from the whole family F(e) but from a sub-
family F;(e) composed only of such regions which also possess the supplementary
property that

3B | w)
v

has a value independent of &, &, ---, év. The determination of this sub-
family Fi(e) embracing all such regions is an interesting problem. Until it is

(80)

] = constant
yel)
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solved, we use an obvious subfamily Fa(e) of regions w which have the deswed
property, but we do not know whether or not Fs(e) contains all such regions.’
The family Fu(e) is defined as consisting of those regions belonging to F(e)
which could be described as cylindrical with their generators parallel to the
intersection of T;yy = z,. = constant, for ¢ = 1, 2, ..., N. In other words
and more precisely, a region w of the family F(e) belongs to F(e) only if the
question of its including a given point E depends on Nn — N of its coordinates,
namely on Ty, U1, -+ ,Un_1, 211, -+ ,2vn2 and noton Ty, Ts, -+, Twya .
We easily show that any region w belonging to Fs(e) possesses the property
that its power function is independent of the &’s. Denote by w’ the set of sys-
tems of values of Ty, U1, -+« ,Un_1, 21,1, -+ , Zv,n—2 corresponding to points
included in any given region w of the family Fs(¢). We see that the power
function 8(» | w), equal to the integral of (68) over w, cgn be calculated by using
the transformations (47), (49), and (51). Then the tegion of integration for
Ty, Uy, -+ ,Un-1, 211, - , 2n.n—2 iSs What we have just denoted by w’ and the
1ntegrat10ns for Tipn = 2. extend from — o to 4+ « irrespective of the fixed
values of the other variables. These integrations are easily carried out by sub-
stituting
(81) Inhov(zi. — &) = (1 + 3nhowSDE .
The final result is

82) B |w) = f e f'p(Tl,ul, cee Uyoa, 211, o0 Zane) @11 - o A2 ons

Here
p(Tl s Uty »o UN—,21,1, = zN,n-2)

(83) _ 2t 1 2\4(n—1)+1/v
= C(V)‘I’(Tl, u, Z) H (1 + znhovS.-) )

where c(v) denotes a constant depending on », ®(T, u, 2) denotes a function of
all the N(n — 1) variables involved, independent of », and S} denotes expressions
(47) for short.” We see that (82) is independent of the £/'s.

Since the region w belongs to F(e), it is composed of sections w(p) selected
separately on each hypersurface T; = constant and T = constant, ¢ = 1,
2, ..., N. Because of the definition of the family Fs(e), the sectionis w(yp) are
independent of T, T, - -+ , T'v41 50 that each of them can be selected only in
accordance with the value of T;. Therefore, we may denote them by w(T1).
As far as property (80) is concerned, the choice is arbitrary. But the property
of similarity requires the fulfillment of condition (60) which, in the present case,
reduces to

(84) f f p(ur, « -« Un—1, 21,1, ** * 2,02 | Ty, --- Tys) duy - - - dey,n2 =€
(T1)

2 Regions with the property (80) and belonging to F(e) but not to Fa(e) exist. Probably
however, each of them differs from one of the regions of F:(e) by a set of measure zero only.
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Applying the method already used, we find that sections @(71) of the region @
belonging to F»(e) and maximizing the derivative 68(v | w)/0v],.— are determined,
separately for each value of T, by the inequality

(85) a IOg p(‘Tl; UL,y ++* UN—, 21,1, 'y ° zN,n—l):| . 2 kz(Tl)

v

where k:(T:) denotes a function of T determined to satisfy (84).
Substituting (83) in (85) we easily find that this condition is equivalent to

N—1 . N—1 2
(86) f=2 Uit (1 -2 u,-) > ks(Th)
where, again, k3(T;) is determined for each particular value of T to satisfy (84).
As (86) does not imply any restrictions on the variability of 21,1 ,21,2, <+« , 2wn—2,

the integrations for the 2’s while calculating (84) must be carried out over the
extreme limits (52). This will reduce the integrand to the relative probability
law of u;, Uz, -+, uny—1 given all the 7’s. This law is easily calculated from
(58) and is

p(ul,uz, uN—1|T1, Tz, TN+1)

(87) %%) (( - sz u;) ;t[: ui)m_;»

= p(ulymy e uN—l)

As (87) is independent of Ty, T2, -+, Ty, it is also the absolute probability
law of the w’s and hence k;3(T;) is independent of 7. In accordance with the
notation adopted for the left side of (86), namely ¢, and since the choice of
ks(T1) depends on ¢, n, and N, we may use {. instead of £3(7;). Then the region
W is determined by the inequality

N—1 N—1 2
(88) §=;u?+(1—21u,-)za
or, returning to the original variables, by the inequality

(89) r=3 st/ (ZNj s%)z > ¢,

=1

where {. is the root of the equation

S [ (- E) ) s

This region @ has the followmg property: of all the regions belonging to the
family F2(e), the derivative of the power function of @ at the point » = 0 is the
greatest. Thus, as far as the values of » close to zero are concerned, we may
say that, for testing H, @ is the most powerful critical region in the family Fs(e).
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8. Methods of determining {.. To calculate {. accurately we must calculate
the integral probability law of {, that is to say,

(91) P{§‘<z} =f...fp(u1,...uN_l)dul...duN_l
{<z

for any 2. The author was not able to achieve this. Therefore some methods
of approximation had to be looked for. This task becomes somewhat simplified
by noting that in most practical problems N will be very large, in the hundreds
or thousands, while n will probably not exceed 5.

To start, we notice that the range of { is limited by

(92) I/NL<¢<1.

The easiest way to see this is to look for maxima and minima of the sum

(93) X=i$

i=1

subject to the restriction that

N

(94) 28 =T
=

We then easily find that

(95) Ti/N <X < T}

and (92) follows directly.
Since ¢ is a polynomial of the second order in the u’s, we may consider .itg
N
moments. These will be functions of the expectations of the products ] wi*

1=1
N—-1

where, for short, uy = 1 — 2, u;. Using (87) we easily find that

i=1

96) 14H¢§= L3NG = D) IF%%@2$M-
= P(%N(n -1+ ; k,.> = 2

In particular, if we let (n — 1)/2 = a

5 _ ala+1)
(97) E(u,) = I—W—a—"i‘—l)

o _  ala+ 1@+ 2)(a+3)
(98) Ew) = NuNa ¥ D(Na £ 2(Na £3)
(99) E@iv) = @a + 1)

~ Na(Na + D)(Na + 2)(Na + 3)°
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N
Consequently and because { = Y ui , we have

=1

(100) E@).=p = (a+ 1)/(Na + 1)

(101) i
(@a+ 1)(a + 2)(a + 3) " (N — Da(a + 1)°

T~ Wat DWe+2)Wa+3) " Wa+ DWa+DWa +3)°
The variance o7 of ¢ is therefore

2 _ 2a(a + DN — 1)
(102) 7%= Na+ 1)*(Na + 2)(Na + 3)°
By a similar procedure we find that
(@ + 1D+ 2)(a+3)(a+ 4(a+5)
+ 3(N — Dala + 1)2((a + 2;((a + 3))
w1 4+ N - 1)V — 2)d*(a + 1)°
103) EQ) = 4 = —— (G F DVa + DNa + OWa + HNa + 5)

7 5
g (@45 + 4N = Dala + 1)g(a+j)

+ 30V — Da I} @+
+6(N — )(N — 2)a’(a + 1)*(a + 2)(a + 3)
+ N = DIV — 29N — 3)a’(a + 1)*

7

,I,,Il (Na + j)

One possible method of approximating ¢ is to use the formulae above, together
with the higher moments whose formulae are easy to deduce. Some convenient
known distribution, say p(¢), could be fitted to have its first two or three mo-
ments coincide with those of the unknown true distribution of {. We would
then look for better approximations by means of the functions

(105) Pm(8) = po(§) é Ajrj

where the 7 ;s denote polynomials which are orthogonal and normal with respect
to po(¢) so that

(104) EG*) = pi=

(106) [ s
™ =
e 0 if j k.
The constant coefficients A ; are formed to minimize the integral
m 2
107) [ (20 - m0) 5 dim) 5’ .
=

They are expressible in terms of the known moments of p(¢).
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This is one possible way to approximate p(¢) which would eventually lead to
the computation of ¢ even for small values of N.
Remembering that we are concerned with large N’s, we can prove that the

normalized distribution of ¢, that is, the distribution of
¢ —m
o¢

(108)

tends to be normal as N — «. However, the process of tending to the limit
is rather slow as may be seen from the following table of K. Pearson’s 8; and G .

TABLE II
Frequency constants of the distribution of ¢
n N w o B B2
3 100 .0198 .001922 .8652 5.042
3 200 .0099 .000693 .4618 4.244
3 400 .0050 .000248 .2410 3.587

Because of this and also because the proof that the distribution of (108) tends
to normality is not very straightforward, we shall not reproduce it. But it may
be well to point out that the cause of this slowness in tending to the limit lies
in the skewness of the distribution of each particular u; and in the mutual
dependency of all the u,’s.

The most promising method seems to be the following. First consider the
two sums

N N

(109) Ty = Z‘i Si and To= 2 8}

Obviously, these two sums satisfy the conditions of the limiting theorem of
S. Bernstein [29], [30] and, therefore, as N — oo, their joint normalized distri-
bution tends to a normal surface. Also, we may expect the process of tending
to the limit to be rapid in this case. If p(To, T:1) denotes the limiting normal
distribution, the probability that { > z can be approximately calculated by the
integral

o0 0
1) Pt 22 =P(Ty> 21 = [ ay [ p(To, )T,

To calculate the limiting distribution p(T,, T1) we need only the expectations,
say A and B, of T, and T, respectively, their standard errors, say ¢; and oz,
and their correlation coefficient . These may be obtained from the moments
of the S¥’s. '

Formula (110) can be used not only for tabulating the integral probability
law of ¢ and for determining ¢., but also for an approximate calculation of the
power function of the test. For, if the limiting probability law p(To, Th) is
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calculated using the moments of S? calculated from (70) with some » > 0, then
the integral (110) calculated with z = . gives us the probability P{¢ > ¢.|»}
of the test detecting the falsehood of the hypothesis tested, that is, the power
function.

To save space, we shall now calculate the constants 4, B, 01, 02, and R as
functions of » > 0. The values appropriate to the case when the hypothesis-
tested is true will then be obtained from the general formulae by the mere
substitution of v = 0.

Since all the constants above depend on the expectations of S we use formula
(70) to calculate them. Denoting the expectation of S3* by w:; we have

2(nho ”/2)§(n——l) L S2k+n—-2

111 = s
MY B =500 30— b T F Ik
Introducing the new variable
(112) 14+ 3nhwS® = ¢!
makes the integration straightforward and gives

_ (l)" r((1/») = TG0 — 1) + k)
B = \nhov T(1/»)T (G — 1) '
This formula holds good if 1/v > k. Otherwise the kth moment uy is divergent.
So this approximate method of calculating the power function of the test is
applicable only for » < .25.

Substituting k£ = 1, 2, 3, 4 in (113), we have

(113)

1 n-1
Y W g
1Y\ nt—1
(114) . (;;7) = ~2)
_ <L)“ (@ — 1)(n + 3)
= ko) T =01 = 2)1 = 39)
_ (L)“ (n* — 1)(n + 3)(n + 5)
= \ah) 0 =00 = 20)(1 = 301 — &)’

and now we have

_Nn-1. B = N n — 1

T nhe 1=’ T (nher (1 — v)(1 — 20)’
e_ N (n—-1C+»n—23)

18) o1 = T =)

a7 2= 2N @ = DE+n = 3)C@Mm +2) —»Gn +7)
27 (nho)t (1 = 91 — 2)2(1 — 39)(1 — 4») ’
2 2(n+ 1A - 2»)(1 — )

W8 B = ot 2 = vGn+ 1A = 30)

(115) A
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Inspecting formulae (115) to (118) makes us see that there is an advantage
in substituting two new variables

_ mh __ (nh)’
(119) tl—A_r(n,———l)Tl’ tz—AT—(n:,z—_—l)To,
for Ty and T,. Their expectations, say ¢4 and &, are
_ 1 _ 1
(120) t’1 - ’1_‘_“”; 02 = (_1:)(1——2_1;)°

Probably without any danger of confusion, the S.E.’s of ¢, and #, may be de-
noted by o1 and o3 also and we shall have

2 _ 24+ V(n - 3)
1T N — 1D — v — 29)°
ot = 22 +v(n — 3))2(n + 2) — »(5n + 7))
? Nm — 1A — 21 — 301 — &)

Of course, the correlation coefficient of # and # is the same as that of Ty and T,
namely R. Obviously, the inequality T, > 2T} is equivalent to & > 2 pro-
vided that

(121)

n+1
Nn-1)"

Now the problem of calculating (110) is reduced to finding
P{s 2z} = P{ty > aiti)

(122) —_—

_ 1 _ 1 (b — 8)°
(123) T 2Zreie/1 - B2 “Zf' { : exP[ 2(1 - Rz){ o
— 2R - 0;)32 — dy) + (& ;202)2}] dty dts.

We may conveniently see the workings of the test proposed by considering for-
mula (123). First consider the case when the hypothesis tested is true. Both
¢; and &; reduce to unity. The region of highest frequency is around the point
ti = t, = 1. If N is large then both ¢, and o; are small so that the region of
significant frequency is rather small. The integral (123) is to be taken over
the region above the parabola #, = 2;t] passing through the origin of coordinates.
When 2; is small and the parabola passes far below the point & = & = 1, the
probability P{{ > 2z} will be close to unity. When 2, = 1 this probability will
be less than } and it will diminish rapidly with further increases of z;. Now
suppose that we have found the value {. for which P{{ > ¢.|» = 0} = eand
consider what will happen to (123) when z = {. if visincreased. Clearly, neither
of ¢; and o nor R are very sensitive to slight changes in ». Also 6; will not
change very much. On the other hand, ¢, will increase rather fast. The final
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conclusion is that the whole frequency surface corresponding to the integrand in
(123) will not change shape much but will shift to bring a greater amount of
frequency into the region of integration.

To facilitate numerical calculations introduce

(124) z = t’_—_‘_’_‘, y = tr — 92 — Roy(ty — 01)/¢71'
91 V1 — R?

Now (123) may be rewritten as

(125) P{t z 2} = 1 [M {e_*"2 L f"o e"*"’dy} dz
V2 - V2 vz

where

21(01 + 0'1%)2 — % — Rdzx
:\V'1 — R
Using formulae (125), (126) and (119) to (122), the following numerical
values were obtained.

(126) y(z, z1) =

TABLE III
n =3, N = 100, v=0.

P{t>z|v =0}

.9126
.7305
.4905
.2847
.1495
.0730
.0335
.0148
.00644
.00288

n
-

Pttt et et ek e e
N W~ OO

ey

.34450 .05000
1.54563 .01000

TABLE IV
Power of the test for n = 3 and N = 100.
€ I $e v = .01 v = .16

.05 .02689 .05823 J .37482
.01 . .03091 .01234 .10699

The figures above are only approximate and we realize that the greater the
value of » the less satisfactory is the approximation of the power function. A
check of the goodness of the approximation and, if it proves satisfactory, a few
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numerical tables for practical applications of the test must be postponed to

another publication. )
It is a pleasure to record the author’s indebtedness to Miss Elizabeth Scott

and also to Miss Julia Bowman for carrying out all the numerical work con-
nected with the present paper.
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