EXPERIMENTAL DETERMINATION OF THE MAXIMUM OF A
FUNCTION'

By Harorp HoreLLING
Columbia University, New York City

1. The necessary background for efficient experimental determinations. We
shall deal with the problem of arranging an experiment for determining the
value of z for which an unknown function f(z) is a maximum or minimum.
This problem is to be distinguished from those of estimating the maximum or
minimum itself, and of studying the distributions of such estimates, problems
to which Bernstein [1] and Rice [2] have contributed.

The range of applications in which determinations of maximizing and mini-
mizing values are important is extremely wide. Among these are the deter-
mination of the time of year at which the number of algae or bacilli in a lake
is a maximum, and the amount of fertilizers and of irrigation water making the
yield of a crop a maximum. The magnetic permeabilities of permalloys, per-
minvars and permendurs as functions of the induction, and the hardness of a
copper-iron alloy as a function of the time of aging at 500°C., possess smooth
maxima having interest in telephony, [3], [4]. The effective range of a gun is a
function of the speed of burning of the powder, a variable which can be con-
trolled. Almost every entrepreneur has a fervent desire to know the selling
prices that will yield a maximum profit, and a few have undertaken controlled
experiments with a view to finding out. There are also numerous practical
problems of minimizing costs; for example, the cost of operating a ship as a
function of its speed possesses a minimum. We shall confine our attention
chiefly to the experimental determination of maxima, since such problems seem
to occur naturally with greater frequency in applications; there is no loss of
generality in this, since f(z) has a maximum where —f(z) has a minimum.

We shall assume that, for each value of = in the set we shall select, one or
more observations will be made on ¥y = f(z), and that these observations are
afflicted with errors which are independently distributed about zero with a
common variance ¢>. From this it follows that if f(z) is a linear function of
known functions of z, with unknown coefficients 8o, 81, --- , 8, (for example
a polynomial in z), the most efficient method of fitting is the method of least
squares, which yields unbiased estimates by, ---, b, of B, --- , 8, having the
least possible variances; this is true whether or not the errors are normally
distributed. If the fourth moment of the errors is finite, and if the number N

! Presented at the joint meeting of the Institute of Mathematical Statistics and the
American Mathematical Society at Hanover, September 10, 1940.

20

IR

o e

. . e /)

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [Pz
The Annals of Mathematical Statistics. RIKOIS ®

Www.jstor.org



MAXIMUM OF A FUNCTION 21

of observations is large, the estimated coefficients will be distributed in n
approximately normal manner; and so also will any function of them that is
regular in a fixed neighborhood of its “population value.” By the “population
value” of a function ¢(bo , - - - , b,) we mean ¢(B, ---,Bp). In particular, if

@) = Bo + Bz + Bott® - - Bp2”

has & maximum for z = £ of the simplest type, such that f/(£) = 0 and f/(£) < 0,
so that £ is a simple root of the equation

F© = B4 2Bak + -+ + pBE" = 0,

and if o is an estimate of £ found from the polynomial fitted by the method of
least squares, so that

b1 + 2bexo 4 -+ + pbprf—l = (0,

this last equation defines x, as a function of b, ---,b,. The function is, to
be sure, multiple-valued when p > 2; but for sufficiently large values of N the
probability will become arbitrarily great that the roots obtained from a random’
experiment will each differ by an arbitrarily small quantity from one of the roots
of f'/(x) = 0. Then provided we have a sufficient preliminary approximate knowl-
edge of £ we may choose the root nearest £; and the probability distribution
of this root, which in nearly all experiments will be a single-valued function

¢(b1; MR bp)y

will approach normality of form, with standard error of order N2, about a
mean differing from

£=¢(ﬁl: “’:BP)

at most by terms of order N™*, which are thus negligible in comparison with the
standard error. The situation will be effectively the same if, without knowing £
in advance even approximately, we choose the root x, giving the greatest value
f(zo), provided f(&) is greater than any other value of f(z).

From these considerations it appears advisable, whenever the unknown funec-
tion is capable of being represented adequately by,a polynomial of degree p
considerably less than the number N of observations, to fit a polynomial of
degree p by least squares, and from it to determine the maximizing value by
differentiation. In practice, however, there are obstacles to carrying out such
a procedure with confidence. The form of the function is usually not known;
it is far from clear what value should. be given p even if the function is to be
regarded as a polynomial; the use of a polynomial which does not give a suffi-
ciently good fit, with observations taken at a considerable distance from the
maximizing value, perhaps separated from it by other maxima and minima,
appears to be a highly dubious proceeding; and if p is taken large, the labor of
calculation becomes excessive. For all these reasons it is desirable to assign
the values of  which are to be the basis of the experimental work close enough to
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the maximizing value £ so that a polynomial of very low degree will fit ade-
quately in the neighborhood.

We shall restrict ourselves to functions having continuous derivatives of all
relevant orders’ in a neighborhood of £ Such a function can in a sufficiently
small neighborhood be approximated by a polynomial of the second degree.
The necessity of using a polynomial of higher degree can therefore be avoided,
when a fairly good knowledge of the function s .already in hand, and wheil the
number N of observations that can be made is large enough, by choosing all
the values of z in a sufficiently small neighborhood of £. We shall suppose that
this is done; that is, a regression equation

Y = bo + blx + b2x2

is fitted by least squares to a large number of observations after choosing the
values of z quite close to the true maximizing value £; and the estimate z, of ¢
is a solution of dY/dz = b, + 2b,x = 0, so that

Y
o 2bs

We shall examine the errors in z, arising both from the inadequacy that may
exist in the quadratic approximation and from the random errors of observation,
and shall consider what distribution of  may most appropriately be chosen to
reduce the errors of both kinds, and to place them in a suitable balance with
each other.

It will be observed that a fairly definite preliminary knowledge of the function
under investigation is required for such a program. Any criterion for the selec-
tion of values of z for experimentation must involve not only the value of £
but also the values of the first few derivatives in a neighborhood of £, or some
similar information. The requirement of preliminary information is essential
for the efficient design of experiments in general. For instance the efficiency
of an agricultural field experiment depends on the correctness of the appraisal,
before the experiment is laid down, of the general nature of the fertility gradients
likely to exist in the field and of the variances due to error and main effects
which will be revealed more accurately by the experiment itself. If the pre-

2 Other cases may well arise in practice and deserve separate consideration in connection
with the particular investigations in which they arise. For example various physical
properties of alloys, regarded as functions of the proportion of a particular constituent,
have maxima, but may have discontinuous derivatives because of the phenomena of crys-
tallization and solution of one metal in another. The assumptions appropriate to an in-
vestigation, parallel to that of the present paper, of the proper organization of experiments
for finding such metallurgical maxima must be drawn from metallurgy. The case of con-
tinuous derivatives is however of widespread importance. If no regularity assumption is
made about the function, one set of N values of z is as good as another, and no set is likely
to tell us very much about the function if it is one of the violently irregular ones utilized
in the theory of functions to emphasize the necessity of studying that subject.
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liminary information is incorrect, a properly arranged self-contained experiment
will nevertheless give results which are valid, in the sense that the significance
probabilities calculated from them by accurate methods are correct, but will be
tnefficient, in the sense that another experiment of the same cost, based on better
preliminary information, would be more likely to detect real effects through the
smallness of such a calculated probability. The efficient conduct of experi-.
mentation thus proceeds in stages of ascending magnitude. A large-scale in-
vestigation should be preceded by a smaller one designed primarily to obtain
information for use in designing the large one. The small preliminary investiga-
tion may well in turn be preceded by a still smaller pre-preliminary investigation,
and so on,’ like an army marching after an advance guard, which follows a more
advanced smaller detachment, which follows a still smaller and still more ad-
vanced unit, which follows a “point.” At the very beginning of the process of
chain experimentation will stand work based on little or no clear information
of the kind required for efficient design. This first phase will be speculative
and exploratory in character. Neither its cost nor its accuracy can well be
estimated in advance. It is a favorite, but not exclusive, preoccupation of men
of genius. Many of its results turn out to be worthless. But it is an essential
preliminary to well-organized research directed to definite aims defined qualita-
tively in advance.

After the first speculative and unsystematic phase in the knowledge of a
subject is past, but before the careful, economical organization of an accurate
investigation, an intermediate type of exploration is needed to supply estimates
of the parameters required for the design of the full-scale investigation. In the
present case such a systematic though small-scale experiment might perhaps
consist in dividing a range within which the desired maximizing value £ is known
to lie into equal parts, making at least two observations at each of the ends of
these intervals, and fitting a polynomial of at least the fifth degree by least
squares. This will make possible estimates of the parameters o, 81, 82, - , Bs
(and hence of £) required for using the efficient designs which we shall obtain.
At least six different values of = are required for fitting the polynomial of the
fifth degree. The fitting process is facilitated by taking them in arithmetic
progression and using orthogonal polynomials.

3 A remarkable example of such a series of investigations is the chain of sample censuses
of area of jute in Bengal carried out for the Indian Central Jute Committee under the
direction of Prof. P. C. Mahalanobis annually beginning in 1937. Each year’s work is
designed primarily to obtain information for planning the next year’s, and a sequence of
four or five such investigations, each considerably larger than the preceding, is plamned
to lead up to an eventual annual sampling of the whole immense jute area in the province.
A partial account of this'is given in [5], a fuller one in confidential but printed reports of
the Indian Central Jute Committee, Calcutta.

Certain multiple-sample schemes in manufacturing inspection also provide good
examples of chain experiments, [6].
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2. Sampling errors and bias in the quadratic approximation. Let us measure
all values of z from the value £ under investigation which makes f(x) a maximum.
Then £ = 0, and in the expansion

1 @) = Bo + Bz + Bz’ + Bz’ + -+

we shall have 81 = 0 and 8; < 0; we shall assume that 82 < 0. An observation
Y« corresponding to a chosen value z, will have, by assumption, an error A, of
zero expectation and variance ¢°, such that

(2) Ya = f(xa) + Ae.
A quadratic estimate
3) Y = by + bix + b2’

of f(x) is obtained by means of normal equations which may be written

aobo + a1by 4+ azb; = Sy
4) abo + aby + asb: = Szy

by + asby 4+ asdb; = Sx2?/,
where S stands for summation over all the observations, so that, for example,
Sy = ZYa =91+ y2 + -+ + y~, and where
5) o = Sz*.
In particular, @ = N. A determinate solution is possible only if there are at
least three distinet values of z; we shall always suppose therefore that this is
the case. This is equivalent to assuming that the determinant a of the coeffi-
cients in (4) is not zero. A greater number of observations y is necessary to
obtain an estimate of the variance ¢*, and furthermore we shall suppose this
number large in our approximations, but since repeated observations may be
made for each value of z, it is not essential that there be more than three valueg

of z in the distribution to be selected.
If we put

(6) b = by — B, 1= SaA,
for k = 0, 1, 2, substitute (1) in (2) and the result in (4), and utilize (5) and
(6), we obtain
aodby + @18b1 + a2db2 = vo + asfs + asfs + .- -
(n* a10bo + a20b1 + azdbe = v1 + a4fs + asBs + .- -
a20by + asdby + asdbs = v2 + asBs + aebs + - -

From these equations it follows that the errors by, are homogeneous linear func-
tions of the right-hand members and will therefore be small if the quantities on
the right are small. Of these quantities, the v’s will be stochastically of the
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order N'* for large samples with any fixed set of values of z. When the equa-
tions are solved, their coefficients will be of the order of N, so that the product
is of order N™'*, and becomes negligible if N is large enough. The coefficients
ai0f B3, B4, - - - can be kept smallif the values of z are chosen tolie within a sufficiently
restricted range. Of course the coefficients a; in the left members of (7) will
also be small in this case, but not small enough to offset fully the smallness of
‘those on the right. To see this, we observe that if all the values of z be multi-
plied by any quantity g, a; is multiplied by g*, while

@G o o
(8) a= a1 G as
Gz Qa3 Q4

is multiplied by ¢°. The cofactors of the last column are proportional respec-
tively to ¢*, §° and ¢*. Hence, in the expression for b, , the coeflicient of B; is
of order g, that of B, is of order ¢*, and so on, the coefficients of the 8’s of higher
orders vanishing more and more rapidly with g as we go on in the sequence.
The like is true of 6b, and 8by , which vanish even more rapidly with g. Thus
we may, by restricting sufficiently the range of # on the basis of the assumed
preliminary knowledge of the function, and taking a sufficiently large sample
of observations, bring: it about that the probability will be arbitrarily close to
unity that the 8bs’s are less than any assigned limits.

Let us, in particular, restrict the range sufficiently and take a large enough
sample to make it reasonable to regard b, as negligible in comparison with g,
The error in the estimate

__ b
(9) To = 53;
of the maximizing value ¢ will, since we are taking £ = 0, be =, itself, and may
be written
3by abl( 8b >
oy = — — o = 1y %2,
B T mray - R\ THm )

where the terms other than 1 in the last parentheses are negligible. The problem
of minimizing the error 6z, is then virtually equivalent to minimizing the error
6b; . In section 5 it will be shown that it is not until we reach terms of the
order of g° that the errors 3b; need be taken into account. We shall first discuss
the errors in x, of lower orders in g, and thus confine the discussion to 8b, . For
the present we shall take as the quantity to be made as small as possible the
expectation of the square of this last error, E(3b,)*. This is not the same as the
variance of b, , since Edb, is not in general zero. We have, in fact, by trans-
posing a familiar formula for the variance,

(10) E(3by)* = (Hoby)? + o3,
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thus dividing our minimand into two parts, due respectively to the bias arising
from the neglect of terms of third and higher orders, and to the usual sampling
erITors.

By the usual least-square theory, the sampling variance of b, is

(11) 0'12,x = ua’z,
where u is the cofactor of the central element in a, divided by @, that is,
(12) p = (st — a3)/a.

Since  is of the order of g%, we may reduce the sampling variance as much as
we please by taking the values of x sufficiently far removed from ¢ If f(z) is
definitely known to be only of the second degree, a wide dispersion of the desir-
able values of z is thus indicated, since in this case Esb, = 0, as appears by tak-
ing the expectation of each.term in (7). But if, as will usually be the case,
f(x) has terms of higher orders than the second, an excessively wide dispersion
may increase the bias E6b; to such an extent as to render the quadratic approxi-
mation inapplicable.

In taking the expectation of each term of (7) and then solving for Esb, we
obtain, since Ev; = 0 according to the definition of vx, and because EA = 0,
a result of the form

(13) Egby = BsBs + ByBs + Bsfls + - - - .

We shall call B;, By, and Bs respectively the cubie, quartic and quintic com-
ponents of the bias, or simply biases. If we denote by A, u, », the ratios to a
of the cofactors of the second column of a, so that

(14) Aay + pog + vaz = 1,
we shall have for the components of bias,
B; = Naz + uas + vag
(15) By = Mg + pas + vas
By = \ay + pas + vaz,

and so forth. Since A, u, and » are of respective orders —1, —2 and —3 in a
multiplier g of all the values of z, B; is of order 2, B, is of order 3, and the higher
biases are of higher orders. Thus if we begin with any particular distribution
of z and apply a sufficiently: small multiplier g, we can make the quartic bias
negligible in comparison with the cubic, the quintic in comparison with the
quartic, and so forth, provided none of these biases is zero. But in reducing
g we increase the sampling variance, which is of the order of g~ '
Under these conditions it is reasonable to consider what types of distribution
having a fixed value of the sampling variance make the cubic bias a minimum
in absolute value; then if there is more than one distribution of this kind, to
seek among them a class minimizing the absolute value of the total of cubic and
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quartic biases; and among these a class minimizing the absolute value of the
total of cubic, quartic and quintic biases, with the modified meaning of the
quintic bias taking account of b, .

3. The cubic and quartic biases. We find, somewhat unexpectedly, that
there exists a class of distributions of z for which the cubic bias is actually zero.
To exemplify this we need give the variable no more than three different values,
which we may call z, ¥ and 2, and we may assign to them the arbitrary fre-
quencies k, m, n of experiments (k + m 4+ n = N). If we put

1 1 1
(16) P=|z y z|=@—yHy—2@E—2),
x2 y2 z2

and consider a matrix of three rows and N columns, of which % columns are
identical with the first column of P, m with the second, and » with the third,
it is evident that the sum of the squares of the three-rowed determinants in
this matrix is kmnP?. But this sum of squares is also equal to the determinant
formed from the sums of products of the three rows, and this is @ (formula (8)).
Thus @ = kmnP? 5 0, since z, y, 2 are all different. Together with the fore-
going 3 X N matrix consider another,

1... 1..00. 1...
2 2 2
a7 Teee Y e 2z,
3 3
z Yoo 2

having % columns identical with that first written, m identical with the second
written, and n identical with the third. The only non-vanishing three-rowed
determinants in this matrix are formed of these three different columns, and
equal (zy + yz + 2x)P; there are kmn of them. The sum of products of cor-
responding three-rowed determinants in the two matrices is therefore
kmnP*(zy 4+ yz 4+ 2x). But this sum is also equal to the determinant, formed
from the sums of products of corresponding rows, ‘

Gy Q2 a3

a as a4,

a; Qs Gg
which, by (15), equals —aB; . Tt follows that
(18) —Bs = zy + yz + zz.

There are many real solutions of the equation
(19) zy + yz + 2z = 0,
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with the three values all different, for example —2, 3, 6. If we assign such values
to our variable, and an arbitrary number of experimental determinations to each
of these values, the cubic bias B; will be zero.

It will be noticed that:such a solution cannot have zero for one of the values.
If, for example, z = 0 in (19), then z or ¥ must also vanish, in violation of the
condition that there must be at least three distinct values. Moreover a solu-
tion cannot be symmetrical about zero; if x + y = 0 it follows from (19) that
z = y = 0. A solution may or may not be symmetrical about a value other
than zero. The values 3 — 24/3, (3 — v/3)/2, v/3 satisfy the equation and
are in arithmetic progression, while the solution —2, 3, 6 is ‘asymmetrical.

If we modify (17) by replacing the cubes of the variables by their fourth
powers, and apply the same procedure to the modified matrix, we find that

(20) Bi= —(z + y)(y + 2)(z + ).

Thus there exist sets of three distinct real values making the quartic bias vanish,
for example any set for which  + y = 0; but no such set can at the same time
nullify the cubic bias (18). Since it is ordinarily more important for the cubic
than for the quartic bias to vanish, distributions nullifying (20) are not in
general to be recommended. But in exceptional cases it may be known that
Bs is zero, or very small in comparison with 84, and then the vanishing of B,
is a more valuable property than that of B;. It will be shown that no distribu-
tion of three or more values exists such that both the cubic and quartic com-
ponents of bias are zero.

Let us denote by D, the p-rowed determinant having a..;» as the element
in its sth row and jth column. Thus D; is the same determinant which we have
in (8) called a, and

G a1 G2 a3

a G Q3 Q4

21) D,
Gy Q3 Q4 Gg

g Q4 Qs Qg

For every distribution, every D, > 0; and a necessary and sufficient condition
that a distribution have p or more distinct values is that D, be greater than
zero. [7, p. 362]. If D, is positive, so is each of its principal minors. In
particular, since we are requiring at least three values in a distribution, D; =
a > 0, and therefore

(22) g0y — a3 > 0,
and

(23) aa: — a3 > 0.
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We shall now consider distributions for which the cubic bias Bj; is zero, and
consequently, by (15),

(24) Aas + pas + vas = 0,
and expand Ds;. From the definition of A, u, », we have
(25) Aaz + pas + vag = 0. .

Multiply the last row of the determinant (21) by », and add to it A times the
second row and u times the third. The last row is thus, by (14), (25), (24)
and (15) transformed into

1 0 0 By,

while the determinant has been multiplied by ». Let this new determinant be
expanded with respect to its last row. The cofactor of the first element 1 is

a1 G G
G=—\a a3 dil.
az Qa4 Qap

Let the last row of this determinant be multiplied by », an operation having
the effect of multiplying the whole determinant by »; and let A times the first
row and p times the second row then be added to the last. The last row is
thus, by (14), (25) and (24) reduced to

1 0 0.

Hence )
q = "(0'204 - ag))

and consequently
P2D4 = v(aB4 + G)

26
(26) = vaBy — (axas — a§).

Since the first member of this equation is positive or zero, (22) shows that it is
impossible that B, should equal zero when B; = 0 as we have assumed. That is,

Either the cubic or the quartic bias of every distribution having three or more distinct
values must be different from zero. .

If v were zero, (26) would contradict (22). Hence » = 0. With every dis-
tribution of z there is associated another obtained from it by changing the sign
of each value of z. Such a pair of distributions we shall call opposite. When
we pass from a distribution to its opposite, the power-sums a; remain un-
changed when k is even and change only in sign when k is odd. Since a is
always positive, and since

@7 v = (@102 — mas)/a,



30 HAROLD HOTELLING

v has opposite signs and the same absolute value for opposite distributions.
The conclusions to be reached shortly will be equally valid for a distribution
and its opposite, and in reachir » them we may assume » > 0. It will then
follow from (22) and (26) that By > 0.

4. Distributions nullifying cubic bias with minimum quartic bias. We can
now prove the following theorem:

Among distributions for which the cubic bias vanishes and the standard error of
b has a fized value, those for which the quartic bias is a minimum have exactly
three dustinct values of the variable. These values satisfy the equation

(28) zy +yz + 2z =

Since the standard error ¢ of a single observation is not affected by the dis-
tribution chosen for z, fixation of the standard error of b, is equivalent by (11)
to fixation of the value of the expression u given by (12). We suppose therefore
that p has some fixed positive value and that Bs = 0. Since u, B; and B, do
not involve the distribution of z excepting through the power-sums ay, a1, - - -,
as , we may treat these power-sums as the independent variables in trying to
make B; a minimum. Their region of variation is limited by the inequalities
referred to in the preceding section,

Di=a>0, D;>0, Di=a>0 Dy>0.

The inequalities D, > 0 for p > 4 involve power-sums of orders higher than
the sixth and are irrelevant to our.purpose.

The definition (8) of a shows that it is independent of a5 and as ; consequently
M\, 1, and » are also. According to (15), B; involves a; but not as ; while of all
the expressions we have considered, only Bs and D, are functions of as. There-
fore when a9, a1, ---, as are given any definite values, as may. be chosen to
make B, a minimum without any regard to the fixed values of u and B;. Now
(15) shows that By is a linear function of as with a coefficient which, at the end
of the last section, we have proved not to be zero and assumed positive. Thus
B,, which is also positive, is an increasing function of as. Its minimum will
correspond to the least value of as consistent with the condition D, > 0. But
(21) shows that D, is also a positive linear function of as with a positive coeffi-
cient, ¢. The minimum of as, and therefore that of B,, require therefore
that Dy = 0. But Dy = 0 is exactly the condition that there should be no more
than three dlstmct values in the distribution. Since there must be at least
three distinet values, and since if there are only three they must satisfy (19),
the theorem is proved.

The minimum value of Bs with respect to variations of ag when B; = 0 may
be found by putting Dy = 0 in (26). Designating this minimum by b and
using (27) we have

2
G204 — O3
29 ;e — aoas’
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where the numerator is intrinsically positive, and the denominator is positive
for the class of distributions we are now considering, though we might equally
well consider the opposite distributions, for which it is negative. We have also
from (20),

(30) (z+y)y+2)(z+1x)= b

Substituting for each of these binomials its value as given by (28), we may write
this in the simpler form

(31) zyz = b > 0.

It was shown at the beginning of section 3 that when there are only three
values in the distribution, with frequencies k for z, m for y, and n for 2,

(32) a = kmnP® = kmn(z — y)’(y — 2)’(z — z)°

The first two rows of (17) form a matrix such that the sum of the squares of
its two-rowed determinants is

(33) mn(y® — 25 + nk(@ — 2°)° + km(2® — )%

Since this is equal to the determinant of the sums of products of the rows,
namely

@ o
a; al’
it follows from (12), (32) and (33) that
@ +2' (z 42’ @+’

B = a2 me— = T - — o

It is desired to minimize this expression, which is the factor of the variance
that is independent of the accuracy of the individual observations, while hold-
ing b = zyz fixed; or to minimize b while holding u fixed. In either case the
values of z, y and z are to be chosen to satisfy (28). The relations established
by the solution of either of these virtually equivalent problems will fix z, %, and z
except for a factor of proportionality, which must then be adjusted to provide
a balance as satisfactory as possible between random errors and bias.

6. The quintic pias. Effect of éb,. With any distribution determined in
this way will be associated its opposite distribution, which will have the same
minimizing properties so far as the variance and the cubic and quartic com-
ponents of bias are concerned. The appropriate choice between these two op-
posite distributions will in general involve the quintic component of the bias.
At this point we must, for the first time, take account of the errors in the de-
nominator be of x .

Since b, converges stochastically to Eb, , and b, to Eb, , the error zo = —3b;/b,
converges stochastically (for large samples) to —3Eb;/Eb,. By keeping our
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values of z close enough to £ we may insure that Eb, differs as little as we please
from B: , and hence that the series

B B B D @)

Eb; B+ Edb, B B2 5

converges rapidly. Let us rearrange this series after inserting for Eb, and Edbs
their values, so as to obtain a series in ascending powers of a common multi-
plier g which may be applied to the values of z. We recall that in the expression
(13) for Eb, , B; is of the second order in g, By is of the third order, Bs is of the
fourth order, and so forth. In the same way, we find that

Edby = CsBs + CiBs + - -+,

where
G a1 az

1
Cs=-\lm a a4
a
a az ag

is of the first order, C, is of the second order, and so forth. Thus in

ﬁz% = B3fs + (Bifis — Bscsﬁg/ﬁz)
2
+ (BsBs — BiC3B3B1/8: — BsCiBsBs/B: + BsC383/83) + - -- ,

the first term is of the second order, those in the first parentheses are of the
third order, those in the second parentheses are of fourth order, and the re-
maining terms are of higher orders.

We have seen that we can choose distributions for which B; = 0. In this
way we get rid of the second-order term and reduce the third-order terms to
ByB;. We shall in the next two sections show how, under various conditions,
to select from among the distributions for which B; = 0 an opposite pair for
each of which | By| is a minimum. In choosing between these two opposite
distributions, the criterion we shall adopt is that the terms of third order and
those of fourth order shall have opposite signs; for while the fourth-order terms
may be made much smaller than those of third order in absolute value, still it
is desirable that they should offset them, in order to reduce the error. The
terms of third and of fourth orders reduce respectively for B; = 0 to B48: and
to BsBs — ByC3BsB4/B2. Our criterion is that these are to have opposite signs,

and consequently that
ByB2B4(BsB2Bs — BiCsBsBs) < 0.

We shall however modify this criterion whenever ¢ is not negligibly small.
A more precise criterion will be obtained by expanding z¢* in a series of powers
of 6bs, taking the expectation term by term, and reducing the moments thus
obtained of orders higher than the second to those of first and second orders by
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means of the theory of the bivariate normal distribution of b, and b,. It is
then necessary to make some assumption regarding the order of magnitude of
z, y and z relatively to N in order to assemble terms of like magnitude in a
criterion resembling that above but involving ¢. The appropriate balance in-
dicated by the results of the next two sections calls for x, ¥ and z to be of the
order of N/, This leads to the following criterion:
Ba(BiBifaBiBs — BiCaas — Cifuc?) < 0.
We have seen that By = b = zyz. To evaluate C; and Bs, which latter
may in accordance with (15) be written
Gy Q2 Qs
1
Bi= —|la1 az as )
a
Az a4 Qg

we proceed as in section 3, replacing the second row of (17) by the first
powers to obtain C3, and replacing the third row of (17) by the fifth powers
of z, y and z to obtain B;. In this way we find

1 1 1 1 1 1

1 2 2 2

z Yy z|, B5=—nyz.
4 2 4 2
Letting =z, 22z, etc. stand for the symmetric functions of z, y and z of which
one term is written in each case after 'S, we may reduce these expressions to
C; = Zz,
Bs = —Z2%y — 2% — 224%ye.
With the help of (28) and (31) we find
Z2’yz = zyzZz = b2z,
iy = (Sxy)’ — 22%yz = —2b3z,
2%y = ZayZa® — Zalyz = —bZa.
Therefore Bs = bZz. Substituting these values for By, C3 and Bs in the

last inequality gives the rule:
Choose that one of a pair of opposite distributions for which

(35) (x + y + 2)B:{0%B:(B2Bs — BiBs) — Bs uo?} < 0.

It will be remembered that 8 is negative for a maximum of f(z), positive for a
minimum. The other 8’s can only be estimated from preliminary experimen-
tation, or possibly in particular cases from general knowledge or theory.

Quite different algebraic methods are appropriate to minimizing u with a fixed
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b according to the limitations to be placed on the frequencies k, m, n; the meth-
ods leading very simply to a solution in one case involve troublesome complica-
tions in another. We shall deal with two of the leading cases.

6. The case of equal frequencies. Some experimental situations call for equal
frequencies for all values of the variable. If ¥ = m =n, then ¢ = N = 3n.
Let aj = a;j/n. Then aq = 3 and a; = Zz. Inasmuch as

(36) Zzy =0 and zyz = b,
We may express az , a; and a4 as functions of a; and b as follows:

a; = Zz* = (2z)' — 232y = a1’

a; = 22 = (Zz)* — 322’y — 6ayz;
and since =2’y = ZzZzy — 3zyz we have from (36),

a; = ai® + 3b.
We have also
as = 2z' = (22)* — 425y — 622%’ — 1222%se,
and since
2y = Sy’ — 2aye, S2’yz = xy2Zz = a{b,
2%y’ = (Say)® — 222’yz = —2asb,

it follows that.
ae = ai* + 4ah.

Therefore
! 2
3 ay a

’ 12 3
a=na a’ a’ + 3b
’ ’ 14 !

a12 als + 3b az + 4a1b

Upon subtracting a; times the second column from the third, and a; times the
first from the second, this becomes

3 —2u 0
a=n'b|a 0 3| = —n*b(das® + 270).

a® 3b al
Also, : »
awas — as = n*{3(a* + 4a1b) — (a1)?} = 2n’(ar* + 6ard).

Hence, by (12),
@37 p=t 22
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Differentiating with respect to a; to find a minimum, we obtain
0 = (4ai® + 27b)(4a® + 6b) — 12a’(ar* + 6aidb) = 4a;® + 60as® + 162

The minimum of p, for b fixed, and satisfying the condition 4a;® + 27b < 0,
which is equivalent to @ > 0 since we assume b > 0, is attained when a;® = bq
where ¢ is the numerically greater root of the equation 4¢” + 60g + 162 = 0;
that is,
g = —(15 + 1/63/2) = —11.468 626 97.

The elementary symmetric functions of the values z, y, 2 composing the dis-

triBution are
Sz =a; = (b9)"®, Zzy =0, ayz=h
Hence z, ¥ and z must be the roots of the equation in u,
(38) W — (bg)"** — b = 0.
If we put w = (bg)"™,
=+ g =0.
Calculation gives approximately
¢~ = —.087 194 396, and for the roots of the equation in v,

.2628, —.3729, —.8899,

numbers which are therefore proportional to the values of the variable that
should be chosen when the frequencies must be equal. If any values z, y, 2
proportional to these are used, the value (37) of u is

/__E g+6 1s,-2s
(40) W= "Nagrzd ®

and is the minimum consistent with any fixed value b of zyz.

Choice of the factor of proportionality will involve a compromise between
the criteria of minimum sampling variance and minimum bias. If we ignore
components of bias of orders higher than the fourth and recall (10) and (11) it
will appear that the appropriate combined criterion is that

(41) b’8% + wo®

shall be a minimum. Putting for u its value u’ from (40) and differentiating
with respect to b gives

(39)

4'¢” ¢+6 m_
N 49+ 27 !

o _20_2 q + 6 1/3)3/8
b=0 “( Nedg+r 2! )

2683b +

or
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The product of the three roots (39) is —¢~". Numbers proportional to them and
having the product b’ will be obtained by multiplying them by — (d’¢)"?, that

is, by
0_2 >1/8< q + 6 >1/8 a8 < 0_2 )1/8

Multiplying (39) by 2.3318 gives numbers
(42) .6128, —.8695, —2.0751,

which must still be multiplied by = [¢°/(NB)i]"® to give the set minimizing
Esb?. The ambiguous sign is to be fixed according to the rule at the end of
the last section. Thus we arrive finally at the conclusion:

If the numbers of observations are required to be the same for all the values of the
variable used, these values should for greatest efficiency deviate from the estimated
maximizing value by the products of the three numbers (42) by

4 02 1/8
(43) *(ﬁ> )

choosing the ambiguous sign so as to satisfy (35).

The product b’ of the three values is to be substituted for b in (40) and (35),
and the value of u thus obtained from (40) is also to be substituted in (35).
These substitutions yield

(@ + y + 2)B2Bs(B:85 — 4BsB1) < 0

as the criterion for choosing the sign in (43).

The expectation of the square of the error in the estimate of the value z, of £
is, according to (9) and (10), given approximately by the ratio of (41) to 463,
and it is this that will be a minimum when the foregoing rule is followed. The
minimum of (41) is obtained by replacing b by b’ in (40) and (41), and sub-
stituting (40) for u in (41). This gives

2 _ 2 Q+‘6 o _ \l/4lj2 3/2,
that is,
(44) " E(8b)’ = 4.889 N8,%"".

7. Adjustable frequencies. If the total number N of observations to be made

can be distributed freely among the values of the variable, the efficiency of the
experiment can be increased by a proper selection of the individual frequencies
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k, m, n along with the corresponding values z, y, 2. We shall choose these
six unknowns, subject to the three conditions*

(45) k+m+n=N,
(46) 2y + 2z + yz = 0,
47 zyz = —b,

to minimize u. The last condition fixes the quartic bias, the preceding one ex-
presses the vanishing of the cubic bias. It is of course understood that k, m, n
are all positive, and we shall, as before, suppose initially that b is positive. No
two of z, y, z can be equal, and it follows that none of them, or of the sums
of two of them, can be zero while satisfying the second condition. We shall
lose no generality in assuming that

(48) z>y>0>z

Furthermore, it is easy to see that 2 + y, £ + 2, and y + 2z are all positive.
Therefore the quantities

+z z+z z+y
(49) r = y— S = — = —— <2
-y —2’ -9y —2)’ (z—2)(y —2)
are all positive. From (34) we have
2 2 2
T § L4
(50) M= k + 7;& + ;7,
The values of k, m, » making this a minimum while themselves subject to the
limitation that their sum is N must if they were continuous positive variables
be proportional to r, sand t. Of course the frequencies are integers, but we are
supposing N large, so that the values found by differentiation will be close
approximations, and we shall disregard this complication. Put therefore

(51) r = kp, s = mp, t = np,

where p is a multiplier which evidently is not zero. If we use these equations
to eliminate r, s, ¢ from u we obtain, with the help of (45), » = Np’. But if we
use them to eliminate k, m, n from (50) we have instead,

w= -+ s+t
Now from (49),
(52) ‘ r4+t=s,

4 The condition (47) is here used instead of (31), from which it differs by the introduction
of the negative sign, because it simplifies the argument of this section slightly to have the
quantities (49) positive. There is no essential difference, since we. are seeking a pair of
opposite distributions.
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so that u = 2sp. Therefore Np = 2s, and finally u = 4s°/N. Therefore u is
a minimum when the positive quantity s is a minimum. In the expression
(49) for s we substitute from (46) and (47)

s+ 2= —wz/y = b/y’,

(63) ,
-y —2=@+2y—z—y =2y -y,
so that
b
(54 T Y@ -y

Since ¥, s and b are positive, this shows that y® < 2b. The value of y on the
interval from 0 to 2b making s a minimum is found by differentiation to be
27133 Substituting this in (53) and (47) gives

T+ 2= 22/3b1/3, Iz = _2113b2/3’
whence
65  z=0/2"A+3), y=0/2" z2=0/2"01—-3).

From (45), (51) and (52) it is seen that k 4+ n = m = N/2. Thus half the total
observations are to be concentrated on the middle value. From (51) and (49)
we have also

wherefore

With (55) this shows that

k=N@2-—4/3)/8 m=N/2, n=NE2++/3)8
= .03349 N, = .46651 N.

(56)

We have seen that u = 4s’/N. Substituting in (54) the value found for y
gives s = 2*°p7*/3. Therefore the minimum of x for a fixed value of bis

(87) , u = (16/9N)(2/b)""

Inserting this in the expression (41) for the total expectation of the squared
error and then differentiating with respect to b gives

(58) b = 93 s NG B



MAXIMUM OF A FUNCTION 39

When this value is given to b, (41) becomes
(59) 3.8207TN"g}5*".

The greater efficiency of experiments with the frequencies (56) and the corre-
spondingly adjusted values z, y, 2, in comparison with the case in which the
frequencies must be equal, corresponds to the smaller coefficient in (59) than in
(44). To obtain as great accuracy with equal frequencies as with adjusted
ones it is necessary to have more observations, in a ratio obtained by equating
(59) with (44) after inserting different symbols for N in the two cases. In this
way it is found that the number of observations required with efficient distribu-
tion of the frequencies is almost exactly 72 per cent of the number required
when the frequencies are equal, if the values z, y, z are in each case given their
most efficient values.
Substituting (58) in (55) gives the numbers

(60) 2.1520,  .7877,  —.2110,

multiplied by (43), with a change of signs if necessary to satisfy (35), as the
values z, y, 2z of the variable to be used. The more concentrated character of
this distribution with adjustable frequencies is emphasized by the small propor-
tion, less than 3% per cent, of the frequencies (56) that pertains to the value most
remote from the tentative maximizing value.

When (58) is substituted in (57) and, with the result, in (35), this inequality
reduces to exactly the same form as that obtained in the preceding section for
fixing the sign of (43).

8. Introduction to the two-variable problem. Functions of two or more
variables are of greater practical importance than functions of one variable.
The recent work on factorial experiments [8] makes it clear that in the experi-
mental determination of maxima of functions of several variables, considerable
improvements are possible over the practice of trying the effect of variations
in only one variable at a time while holding the others constant. It seems likely
that the methods worked out in the previous sections for experimenting with
one variable are capable of generalization. However certain difficulties enter
which have not yet been surmounted. The object of the present section is to
indicate something of the nature of the problem of extending the foregoing
results to two variables, z and y.

Let us suppose that a quadratic regression equation,

Z = by + bt + buy + 2(be7”® + 2buzy + beays®),

will be fitted by least squares to observations of z = f(z, y) based on N combina-
tions of x and ¥, each of which represents a point in a plane. Since there are
six coefficients to be determined, there must be at least six distinct points
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(z1, 41), -+, (%, ys). The coefficients in the normal equations may be written
ajr = Sz’y", so that ay = N. The determinant

Qoo [T G0 Q11 Qo2

Q1o Gy an G30 Q21 Qr2

Qo1 G Qo2 G21 Q12 Qo3

Qg0 Q30 Q21 Qg Qa31 T2

an Q21 Q12 Q31 Qg2 Qg3

Qo2 1z Qo3 G2 Q13 Oy
must not vanish. Let the function under investigation be
I, y) = Z28uz’y"/(G + k),

and suppose that 80 = 0 = o, so that the origin is the point sought at which
the first derivatives vanish. We shall assume that

B = Puboz — i1 >0, P <0,

implying a definite maximum. The estimates z,, yo of the maximizing (or
minimizing) values obtained by differentiating Z are

Lo = (bubm - b02b10)/ b, Yo = (bublo - bzobm)/ b,
where
b= bzoboz - bfl .

For large samples and values of z and y taken not too far from the origin, b will
approximate to 8, and x, and y, respectively to

(Bubor — Bo2bro) /B, (Bubo — Bzobor)/B.

Some means is needed of combining into one the two desiderata of minimizing
the errors z, and yo. A combined measure of these deviations is

BaTs + 2Buyo + Boays -

This expression is constant except for terms of higher order when z, and y,,
while remaining small, vary in such a way that f(x, y) maintains a constant
value. Substituting in it the approximate values of =, and y, gives 8" times

Buzblo — 2Bubober + Baobis -

The expectation of this measure of error may be separated into two parts by
means of the formulae for the variances and covariance,

080 = Ebly — (Bbi)®,  0sy00, = Ebrobe — (Eby)(Eby), etc.
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One of these parts is a generalized sampling variance,
2 2
Bo203,, — 2811051450, + B2 0by,

and tends to zero with order N~ as N increases provided the values (2 , yi) are
fixed. The other part,

(61) Boz(Eb1)* — 281u(Eby)(Ebor) + Bzo(Ebor)?,

is a bias which does not tend to zero as N increases, but which may be kept
arbitrarily small, at the expense of the sampling variance, by restricting the
values (z:, yx) to be sufficiently small. This expression is a negative definite
quadratic form in Eby and Eby, , and therefore cannot be zero unless both these
components of bias vanish separately.

We may proceed as in paragraph 2 to express Eby and Ebo in terms of the
coefficients of f(x, y) of orders higher than the second, among which those of
third order will be of leading importance. In this way it may be shown that,
if we neglect terms in f(z, y) of orders higher than the third, Eby, and Eby are
given by the ratios to a constant multiple of a of determinants obtained from
a by replacing respectively the second and the third columns by the column

Bs0azo + 3B21a21 + 3Bz + Bosaos
Bsoaso + 3B21a31 + 3B12a22 + Bostis
Bsoas: + 3B2aze + 3B12a13 + Bostos
Bsoaso + 3B210a + 3Bi2asz + Bostas
Bsoaar + 3B20as2 + 3Pr2aes + Bosars
Bsoasz + 3621023 + 3B12a14 + Bosos .

It is desirable to select a distribution of points (xx , yx) such that these compo-
nents of bias will vanish, no matter what may be the values of B3, Ba1, Biz.and
Bos . For this it is necessary and sufficient that all the determinants vanish
that are obtained from these two by replacing the column written above by the
terms in it that multiply any one of the four 8;x’s. The single-variable analogy
suggests using a distribution having the smallest possible number of points,
which in this case is six. Let us now take N = 6. The eight determinants will
all be multiples of

1 21 »n 93% Y1 yf

.....................

1 %5 ys T TelYs Ys

To save space we shall indicate determinants of this character merely by writing
a single row without subscripts, thus:

P=|1z y 2 =y |
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If we define

Ap=|1 o y & =y ¥,
Pay o,
and multiply each of these determinants for whichj + £ = 3 (j, k = 0, 1, 2, 3)
by P, columns by columns, we shall have exactly the determinants whose van-
ishing is the condition for nullification of the cubic bias. If we multiply P by

itself in the same way we have P* = a. Therefore P % 0. Therefore the re-
quired condition is that the distribution satisfy the eight equations

AW =0 An=0, A=0, Au=0,
Am =0 An=0 Aip=0 As=0,

and the inequality P # 0.

In seeking distributions nullifying the cubic bias we have twelve unknowns
Ty, +-+, %, Y1, ,Ys which must satisfy these eight equations. This sug-
gests that we give arbitrary values to four of them and then solve for the other
eight by straightforward elimination. Unfortunately, since the eight equations
are each of the tenth degree, reducing to the ninth degree when coordinates
of two of the points are given numerical values, a straightforward elimination
would seem to lead to an equation of degree 9° = 43,046,711. The number
of algebriac operations in performing the elimination, solving the equation for
one of the unknowns, substituting back, and solving for the others, would be a
large multiple of this number, and would doubtless be sufficient to occupy a
large and efficient computing project for many millenniums. At the end of this
period it might be found that the roots corresponding to the original arbitrary
values chosen were all complex or made P = 0, and were therefore unusable.
Thus indirect and less elementary methods are called for, and some qualitative
investigations of such distributions, if they exist (which is not certain), are in
order.

The set of conditions as a whole is invariant under all non-singular homogene-
ous linear transformations of z and y, as is easily proved by making linear
combinations of the columns of each of the determinants A7 , Aj and P, and
by making linear combinations of these determinants themselves. These
linear transformations leave the origin invariant. They have four degrees of
freedom, which is exactly the right number to take care of the excess of un-
knowns over equations. This points to the possible existence of a finite number
of fundamental solutions, from which all solutions may be obtained by linear
homogeneous transformations. Geometrical properties of the configuration will
be represented by invariants under linear transformations. Thus the condition
P 5 0 means that the six points must not all lie on any conic section. From
this it follows at once that no four of them can lie on a straight line, since this
line, with the line through the other two, would constitute a degenerate conic.
As a matter of fact, we can go further and prove that no three of the points

A;’,,=|1 r = o
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may lie on a straight line. In the proof of this and other properties of the dis-
tribution it is convenient to use the arbitrariness provided by a linear trans-
formation to pass the axes (which may be oblique) through any two of the six
points, and then to adjust the scales of measurement so that the coordinates of
these points become (1, 0) and (0, 1), except that one of them might conceivably
be the origin. If three points are collinear, their line can be taken to be the
z-axis if it passes through the origin, or the line y = 1 if it does not. Even with
the help provided by such procedures the proofs are rather long, though straight-
forward. We shall content ourselves here with stating, without proof, the fol-
lowing properties necessary for sets of six points for which P > 0 and all com-
ponents of the cubic bias vanish:

No three of the points can lie on a straight line.

No two straight lines through the origin can contain four of the points.

No four of the points can lie on the vertices of a parallelogram.

The set cannot consist of the origin and the vertices of a regular pentagon with
center at the origin.

These conditions have been established by calculations of a rather straight-
forward and laborious sort, too long to be reproduced.

If 2, = ax + syr and 2 = % — yx , the conditions P 5 0, Aj, = 0 = Ap,
may be written

L 1222228 | =0, | 1232527 | =0, | 122822278 | =0.

9. Some further unsolved problems. Since it is useful to demarcate the
frontiers of knowledge by pointing out what lies a little outside them as well
as what is within, a few of the many questions may be mentioned which this
paper falls short of answering. Besides the extension to two variables men-
tioned in the last section, and to an arbitrary number of variables, it is desirable
that the whole theory should be developed from an exact, or small-sample,
point of view rather than on the basis of the large-sample approximations used
here. This however appears to be an extremely large enterprise. A simpler,
but still quite difficult, problem is to modify the criteria obtained in paragraphs
6 and 7 so as to fit problems of economic experimentation, such as those of
determination of maximum monopoly profit or minimum cost, in which the cost
of each observation consists largely of the lost profit, or excess cost over the
minimum, occasioned by the deviation from the value sought. In such a case
the limitation of cost replaces the limitation of the total number of observations.

Another important problem is to take account of the inaccuracy of the pre-
liminary information on which the design of the experiment is based, and to
utilize the relations thus involved to design efficient sequences of experiments.

Determination of limits of error in terms of the maxima over an interval of the
derivatives of f(x) should be a fairly straightforward problem in analysis and
have practical importance. With this are associated various problems dealing
with maxima of functions having discontinuities in the first or higher derivatives
at or near the maximum.
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An important extension would deal with the case in which the maximum is
estimated from a least-squares polynomial of degree three or more. This might
be a connected with the difficult wider problem of deciding on the degree of a
polynomial to be fitted in g particular case.

10. Summary. In determining the value £ of z for which f(z) is a maximum
or minimum, a quadratic polynomial may be fitted to observations made for
chosen values of . The errors considered are of two kinds: sampling errors
resulting from the inaccuracy in each observation, which diminish as the number
of observations is increased, but increase if the values of x are chosen too close
to the value sought; and biased errors resulting from the fact that f(z) is not
truly quadratic, which do not decrease when the number of observations in-
creases with a fixed set of values of z, but do decrease when the deviations of =
from the value sought are reduced. The biased errors may be separated into
components corresponding to the third, fourth and higher powers of £ — £ in
the expansion of f(x), and these components will ordinarily be of diminishing
importance as we go on in the sequence. However it is possible to choose values
of x making the cubic component zero and the quartic component at the same
time a minimum. Such a set consists of only three values of z. These values
may be further adjusted to minimize the expectation of the square of the total
error in £, as far at least as the term of fourth order in the bias, by a proper
balance between the sampling variance and the quartic bias. The values of
satisfying these conditions, measured from the true maximizing or minimizing
value £, are the products of [¢*/(NBI)]"® by the values u in the table below.
Since the root will usually be extracted by logarithms, the common logarithms
of the values are given. The first set are the most efficient when the frequencies
must be equal. The second set is appropriate when the frequencies are made
proportional to the quantities in the last column; in this case only about 72 per
cent as many observations are required for any specified accuracy as when the
frequencies must be equal. The approximate expected squared errors in the
estimates of £ in the two cases are given respectively by formulae (44) and (59).
All these results are approximations of the kind appropriate to large numbers of
observations.

Equal frequencies Adjustable frequencies
U logio % u logou Frequency
—.6128 —.21267 —.2110 — .67572 .46 651 N
.8695 —.06071 L1877 —.10364 .50 000 N
2.0751 .31704 2.1520 .33284 .03 349 N

The signs of u should be reversed if B28:(8:85 — 4B83s8:) > 0. Here By is the
coefficient of (z — £)* in the expansion of f(z), and ¢° is the error variance of
an individual observation. For designing an efficient experiment it is necessary
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to have some knowledge of these quantities. It may be gained from preliminary
experiments of smaller scale.

A suitable preliminary experiment, where knowledge of the function is ex-
tremely scanty, might consist of a fixed small number, greater than one, of ob-
servations on f(r) corresponding to each of a set of six or more values of z in
arithmetic progression covering an interval that includes the value & sought,
and selected with a view to getting £ in the center of it as nearly as possible.
A polynomial of the fifth degree at least should be fitted by least squares, in
which process all the quantities desired for the design of the later, larger experi-
ment can be estimated, together with their accuracies. Since the values of z
are taken in arithmetic progression, the fitting can be carried out with extreme
ease by the method of orthogonal polynomials.

Numerous subsidiary questions promise to have both practical importance
and mathematical interest.
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