THE MEAN SQUARE SUCCESSIVE DIFFERENCE

By J. von NEuMaNN,! R. H. Kent, H. R. BELLINsON AND B. I. HART
Aberdeen Proving Ground

1. Introduction. In making measurements, every precaution is generally
taken to hold the conditions of the experiment constant, in order that the
population, whose parameters are to be estimated from the observations, shall
remain fixed throughout the experiment. One wishes each observation to come
from the same population, or what is the same thing if normality is assumed,
from populations having the same means and standard deviations.

There are cases, however, where the standard deviation may be held constant,
but the mean varies from one observation to the next. If no correction is made
for such variation of the mean, and the standard deviation is computed from
the data in the conventional way, then the estimated standard deviation will
tend to be larger than the true population value. When the variation in the
mean is gradual, so that a trend (which need not be linear) is shifting the mean
of the population, a rather simple method of minimizing the effect of the trend
on dispersion is to estimate standard deviation from differences. It is for this
purpose that the mean square successive difference
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is suggested. The subscript ¢ in this expression refers to the temporal order of
the observation z; .

In using 4’ for estimating standard deviation, the distribution of 8 in random
samples is of interest, since questions of bias, efficiency, and confidence interval
require consideration. & may be used, in addition, to determine whether a
trend actually exists; in this case one must know whether & differs significantly
from
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which measures variance independently of the order of the observations, and
consequently includes the effect of the trend.
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The distribution of &* is considered in this paper; it is hoped that others will
shortly publish methods of estimating the probability that §* < ks* as a function
of k and the sample size n.

2. History. A somewhat similar procedure is suggested by “Student” [1]
and E. S. Pearson [2] who consider the situation in which a shift may occur in
the mean of the population, but where pairs of observations may be made with
no shift in mean between them; standard deviation may be estimated from the
differences between these pairs. The method can be generalized, and
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is an estimate of the standard deviation. = must, of course, be an even integer.
This estimate has the advantage that its properties are fully known: &' is dis-
tributed as the standard deviation with f = n/2 degrees of freedom. It will be
noted that this estimate does not involve the successive differences, but only
the alternate ones. Although there are n — 1 avyailable successive differences,
this estimate uses only the n/2 independent differences. The mean square
successive difference is based on all n — 1 successive differences, and should
therefore provide a more efficient estimate of o than does ¢'.

There is, of course, nothing new in the concept of estimating the standard
deviation from differences. Even as far back as 1870, an interest in the method
appears to have existed. Jordan [3] devised methods based on sums of powers
of the differences. Helmert [4] gave more careful consideration to the case of
the first power, i.e. the sum of the absolute differences. In both these cases,
however, all the n(n — 1)/2 differences that can be established from a sample of
n observations were included in the estimate, so that the estimate was of no
value in reducing the effect of a trend. Helmert realized this, for he pointed
out that the estimate obtained from the sum of squares of the differences is
exactly that obtained by the more conventional procedure of squaring deviations
from the mean.

The usefulness of the differences between successive observations only appears
to have been realized first by ballisticians, who faced the problem of minimizing
effects due to wind variation, heat and wear in measuring the dispersion of the
distance traveled by shell. Vallier [5] appears to have been the first to estimate
dispersion from successive differences. Cranz and Becker [6] commended the
mean successive difference

n—1
& | Zop1 — @i
E; = —T
To establish the precision of E; in estimating ¢, Cranz and Becker quoted
Helmert’s paper, and so erred in saying that their method was superior to that



SUCCESSIVE DIFFERENCE 155

of the mean deviation. Helmert’s procedure, based on n(n — 1)/2 differences,
is indeed more precise (for » > 10) than the mean deviation

2z — |
MD=51—7—3
but the mean successive difference is based on but n — 1 differences, and so is
not as precise.

Bennett [7] appears to have suggested the use of successive differences inde-
pendently of the European ballisticians. In recent years, the method of esti-
mation by the mean square successive difference 6° was put into practice in the
Ballistic Research Laboratory at the Aberdeen Proving Ground, U. S. Army,
by L. S. Dederick

3. Bias and efficiency. The moments of 4° in samples drawn from a normal
population are derived in Section 6 of this paper. The moments are used at
this point to establish the estimate of variance, and the efficiency of this estimate.

The mean value of §° in samples taken at random from a normal population is

@) E@") = 24°.
8* consequently offers an unbiased estimate of variance, and this estimate is
n—1
(4) 62 ;l (zﬂ-l - xs')2
2° " 2m—1

The second moment, i.e., the variance, of §° in samples of size n *

s _ 4@n —4) ,
(5) o’p——?n—_—i)Ta'.

As the sample size is increased, the distribution of 8° appears to approach
the normal. It is therefore appropriate to consider the efficiency as defined by
Fisher [8). Accordingly, the efficiency of 8 is

[ 052 032 ]
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Since

ol = 2(n — 1)
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o,

and
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the efficiency of &° in estimating the standard deviation is

2 — 1) _ 2 1
© 3n—4 _5[1+3n_4]'

The efficiency is unity for n = 2, since in this case the two statistics have
the same distribution. It therefore appears that the efficiency decreases as the
sample size increases, but approaches 2/3 as a limiting value for n very large.

4. Summary of procedure. Having a statistic which estimates a parameter
of a population, it is desirable to know the distribution of that statistic as com-
puted from samples taken at random from that population. At present, the
distribution of 4 in samples of n has not been obtained. The difficulty is in the
fact that the successive differences are not independent. The first difference,
dy = z; — 71, and the second difference, d; = x; — z., are related in that they
both involve z;. Similar correlation exists between every successive pair of
differences between successive observations.

For n = 2, and samples taken from a normal population, the distribution of
8’ is known. Since

2
E=(x— o) =22 (m — ) = 4§,
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the distribution of &’ is similar to that of s* for this sample size.

For n = 3, the distribution of &’ has been derived analytically. The deriva-
tion is indicated in Section 5 of this paper. For » > 3, only the moments of
the distribution have thus far been obtained. A Pearson type distribution has
been fitted to the first three moments to obtain an approximate representation
of the true distribution.

6. Distribution of 8*. In the case of a sample of 7 taken from a normal popula-
tion, the probability that the first observation lies between ; and z; + d=;,
while the second lies between z, and z, + dz,, ete., is

@ [.; 1.2w]n ¢ CHEH I ddy - da.
If y; = 2441 — x:, this expression becomes
1 n

® [a 5}] g v 0 G dy, dys -+ dya,
where Q is a quadratic form in z; and the y’s. Since
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the probability that &° shall be less than some value &; is

1 n +o0
(9) P(az < 5:) = [U‘\/z—ﬂ'] f[ e f [ 0‘0(2"”1""”"—‘),2” dxldyl cee dy,n_l,
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After the integration with respect to z; is carried out, the quadratic form in
the exponent may be normalized by a transformation to new coordinates z;
linearly related to the y’s. The z’s may be so chosen that all the terms z; in
the exponent have the same coefficient, in which case

n—1
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As a result of such a transformation, the sphere of integration in (9) becomes an
ellipsoid in (10). By changing to polar coordinates, with

n—1

P = Z z'?’
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In which @ is the solid angle in the space of » — 1 dimensions. The limits of
integration with respect to @ as a function of r must be found; this involves the
evaluation of the solid angle subtended by the surface bounded by the inter-
section of the (n — 1)-dimensional sphere and the (n — 1)-dimensional ellipsoid.
Ife= ¢(T)’

12) P (52 < 63) = Cy f ) ekt ¢(1‘)T"—2 dr,
0

in which a is the longest semi-axis of the (» — 1)-dimensional ellipsoid cor-
responding to the given value of &
For n = 3, (9) becomes

P@ < &) = [6 12—1]8 ff [:ﬂ exp [—3;1;,(11? + ¥z + ny)

ViHi<as
2
(13) - 2%(:51 + ?—”‘—3—.——'””) ]dxldyldyz
= 2\/1?; 7o’ f f ¢ Wit gy, gy,
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Normalizing the quadratic form in the exponent,

(14) PG <8 =5 \/lng f f ot gy g

24,2 2
zl+z’<28°
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and in polar coordinates

P@ < &) = 5\—/157’-2 [ v [ T perrenst ek int ot gy g,
0 0

—_L_ 302 —r2/22 " 72 sin2 0/302
= o3 '/; re [ j; e do] dr.

The <integral in brackets can be shown to be a Bessel function of zero order;
for let

(15)

r*/3¢" = —24u,

™
¢ - i - 20,
then
27 L4
(16) f greintonet go _ —iu [ ¢ 4 = Qe Jo(u).
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Consequently, (15) takes the form
1 30v/2 e
2 2y _ —r2/303 - — 2
(17) P(B < 50) = 0‘2\/5 ‘l re Jo (60‘2> dr F(&o).
The probability density function
n _ dF()
p() = “dot
_ l .-252/3,2 ( '1:52 )
(18) = 0_2\/56 Jo g;z
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6. Moments. The ¢-th moment of §° about the origin is defined by
(19) pe = E[(5)1,

or

=0l = B([ L (e = '] )
= E([Z Zn‘, 2 — (2 + 7)) — 2 nz—lxmx;]l)

gl $=1

(20)

For any value of ¢, the expansion can be performed, and similar terms col-
lected and enumerated. The values of z can be considered as true errors, i.e.
as deviations from the true mean, without affecting the conclusions. If the
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original population from which the samples have been drawn is normal, with
standard deviation ¢, then:

E@*N) =0
(21)
E(z™) = (23’2,' )

and since, in the null case where the mean of the population remains constant,
successive observations are independent, then

E(ziz}) = E(=z™), 1=j
E(ziz;) = EQ@)E("), 1 # ]

These relations are sufficient for the evaluation of u, . For example, in the
case of the second moment, { = 2:

@ e-vu=-B(2Nd et -25 ] )-
Now:
[2 g z2i— @i+ 22 -2 “Z—:l x,-,,lx.-]z

=4 (g x) + (af + 23)° + 4 (i: x.+m)

n n—l1 n—1
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(22)
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n—1
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+ [terms containing odd powers of z].

The mean of these terms is found by using (21) and (22), and.the number of
each type of term present is enumerated:

4[n(3¢*) + n(n — 1)d*e*] + [3¢* + 20%° + 3¢'] + 4[(n — 1)o%’
— 486" + o*(n — 1)é® + F(n — 1)6® + 36"] = (4n’ + 4n — 12)o".

Consequently
r_4@*+n-3) ,
(29 M= "m0

The first four moments about the origin were evaluated by this procedure,
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and from these, the moments about the mean are readily determined. The
results are:

p = 24"

;_An*+n—3) ,
Mz——--————(n_1)2 4

r 8mP 4 6n' 4 2n — 21)
g = 4

(n — 1)
ul = 160"+ L4n” + 830’ — 8n — BY) ,
(25) 4 (n - ].)4

wm=0

_ 4(3n - 4:) 4
S RV

-1 °

_ 48(9n° + 46n — 112)

M= (n — 1)¢ 7

It should be noted at this point that the above fourth moment is incorrect
for n = 2. One of the terms in the expansion of the right side of (20), for
t=4,is

n—1

zizh 21 T i
For n = 2, the mean value of this term is
E(ziz3z3 i) = E(z1)E(z3) = 9¢°,

whereas for n > 2, the mean value is

n—2

Bl + B(deh 3 olust) + Blelrhash) = (o4 9"

7. Pearson type fit to distribution of 5>. From the moments it is found that

g = K3 _ 16(5n — 8)*
(26) A G-
=™ 3(9n° + 46n — 112)
Tl (3n — 4)? :

As n becomes large, 8, and 8. approach 0 and 3 respectively; the distribution
therefore appears to approach the normal for large samples. For finite sample
sizes, the values of 8, and 8. correspond to those of the Pearson Type VI
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52 5 a2 f52 —-q
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The origin of this distribution is at 8° = —a,6”, but the origin of the true dis-
tribution must be at 8 = 0. By taking a; = 0 so that the origin is at 8* = 0,
we obtain what appears to be a suitable approximation ‘

82 82 ['H] 62 —q1
m )
The parameters are determined by equating the 1st, 2nd and 3rd moments of

(27) to the corresponding moments of the true distribution, with the result that
3n' — 10n® — 18n’ + 79n — 60

distribution,

&= 8 — 50n + 48 ’
o= 4 — po(ge + (g2 + 3)
(8) 4 — po(ge+ 1) !
o=2@—®=2
Q2 +1 ’
agl-n—l

Cc= .
B(ga+ 1,1 — g2 — 1)

Values of these parameters for selected values of n are given in Table I. The
sixth and seventh columns of this table give the values of 8, for the distribution
(27) and for the true distribution, respectively.

TABLE 1

) @ ®) @ (5) ®) @ ®)
B2 B2 Ratio

" @ 2 G ¢ (27)  True (6)/(7)

5 24.4391 0.6391 26.6000 5.8800 X 10* 8.807 8.504 1.036
7 31.1286 1.3857 23.2571 4.9285 X 102 6.948 6.758 1.028
10 41.2830 2.5079 20.9667 9.4934 X 10 5.658 5.538 1.022
15 58.2113 4.3806 19.2659 4.0240 X 10" 4.718 4.645 1.016
20 75.1210 6.2543 18.4351 1.8063 X 10% 4.269 4.217 1.012
25 92.0189 8.1285 17.9417 8.1097 X 10¢ 4.006 3.965 1.010
50 176.4443 17.5018 16.9651 1.3386 X 10%2° 3.494 3.475 1.005

The Tables of the Incomplete Beta-Function [9] can be used to evaluate the
probability integral of the distribution (27),

62 62 ag/vs 62 a2 62 —q1 82
rG<d)=<[" ) Gra)e(5)

(29) =1-La—-—¢—1¢a+1)

L
+ 85/0"’



162 VON NEUMANN, KENT, BELLINSON AND HART

forn £ 14. For n > 14, the probability integral may be determined by quad-
rature. Some values of the probability integral for n = 50 are given in Table II.
A comparison with the integral of the normal curve having the same first two
moments indicates that a sample of somewhat more than 50 is required before
the normal curve becomes a satisfactory approximation to the distribution (27).

TABLE II
2 2
P(%2 < g;) Jorn = 50
ss/a’ (29) Normal
.50 -00000 .00118
.75 .00031 -00563
1.00 .00647 .02129
1.25 .04393 .06418
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