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1. Scope of inquiry. Slutzky [1] applied the moving sum, the repeated
moving sum, and other linear processes to random numbers obtained from
lottery drawings. But the graph of the moving sum becomes, when the vertical
scale is changed in the ratio of n to 1, the graph of the moving average, the simplest
form of graduation. When cyeclic effects are studied, there is no essential differ-
ence between a moving sum and a moving average, nor between a general linear
process with coefficients a;, a», --- , a,, having sum 4 0 and the corre-
sponding graduation, with coefficients a; = a;/A. Thus Slutzky’s work throws
considerable light upon graduation, although his main interest was in summation.

Slutzky found that the graphs of moving sums of random numbers bore
strong resemblance to graphs of economic phenomena, such as [1, p. 110] that
of English business cycles from 1855 to 1877. In fact, Slutzky regards the
fluctuations in economic phenomena as due largely to a synthesizing of random
causes.

In general the undulatory character of such values cannot be described as
periodic; since the waves are of different length. But Slutzky found that, upon
operating on random data having mean zero and constant variance, the resulting
values approach a sinusoidal limit under certain conditions,—in particular, when
a set of n summations by twos is followed by m differencings, and as n — o,
m/n — a constant. Romanovsky [2] generalized thisresult by taking successive
summations of s consecutive elements of the data, with s = 2; but required that
m/n — a # 1. However, the cases which are of interest to me just now are
those for whichm = n — 1 orm = n — 2; and for these cases m/n — 1. Ro-
manovsky considers the case of m = n — 1,—not, however, as leading tb a
sinusoidal limit,—and gives in formula (46) the value of a coefficient of correla-
tion—which I deduce directly. From his formula (43) a corresponding coeffi-
cient of correlation can be obtained for the case of m = n — 2, as the sum of
certain products. A more simple expression than this I need, which I obtain
directly. In my treatment, these coefficients are the cosines of angles; and the
ratio of such an angle to a whole revolution is an expected frequency of
occurrence.

After setting forth in Section 2 some preliminary formulas, I treat in Section 3
the results of applying to random data an indefinite number k¥ + 2 of summa-
tions or averagings, followed by & differencings—the number of terms in a sum
remaining fixed. In Section 4, however, only a few differencings are applied to a
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128 EDWARD L. DODD

graduation. In particular the Spencer 21-term formula is studied in some
detail. In former papers [3, 4] I have dealt with the immediate effects of
graduations upon random data.

The question to be considered in this paper is this: Do the cyclic effects appear-
ing in the graduated values persist in the successive differences? And, if so, do
these affects fade out gradually or on the other hand, do they come to a rather abrupt
termination?

These differences of graduated values, indeed, up to the third, fourth or fifth
are of considerable importance. Henderson [5] defines the smoothing coefficient
of a given graduation as the ratio of the theoretical standard deviation of the
third differences for the graduated values to that for the original values or data.

2. Preliminary notions and formulas. The data to be graduated will be sup-
posed to be independent, or uncorrelated, or as Slutzky expresses it, “inco-
herent.” This will imply that the expected value of the product of two different
chance variates is the product of their expected values.

Now the operations of summing and differencing as used here are not inverse.

To illustrate: Given as independent u, », w, z, y, 2, ---. Summing by twos
yields the sequence v + v, v + w, w + z,x + y, ¥y + 2, --- . But the first
differences of these numbers, w — u, z — v, y — w, 2 — z, - - - are alternately

correlated, thus w — wu is negatively correlated with y — w; z — v with z — 2z,
ete. Indeed, successive differencing following successive summing does not lead
back to the original condition of incoherency. However, under certain condi-
tions, the resulting coherency may be so slight that the final succession of num-
bers may have just about the same chaotic properties as the succession of data.
In my paper [3, p. 262], I set forth a number of features on the basis of which
a cycle length could be defined. One of these involves the frequency of maxima.
Given independent chance variables, each subject to the same law of distri-
bution,
) P(; < 7) = ¥(2);

where ®(x) has a derivative ¢(x). It is then easy to see that the expected rela-
tive frequency of maxima is 1/3. That is:

@ Pl sz 2 o) = [ 0@Pe@dz = 1/3

Now, for a given feature, a cycle length is defined as the reciprocal of the theoretic
relative frequency. Then the cycle length here for mazima is three. It is well
known that averaging tends to remove maxima. Thus, upon averaging or
summing, the cycle length tends to increase. It is almost as well known that
differencing tends to increase the frequency of maxima, and thus decrease cycle
length. Forif z; = Ay; = yiy1 — ¥s, then between two maxima of y; , there is
at least one minimum (strong and weak) of y; ; and following this minimum and
before passing the next maximum of y; there is at least one maximum of z;. Suc-
cessive differencing tends to reduce the cycle length of maxima from 3 to 2,
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that is to make the graph a perfect zig-zag where positive and negative values
of z; alternate. A set of differencings following a set of summings may bring
the cycle length from some fairly large number back to about 3,and thus restore
something like the original chaotic appearance in the graph.

In dealing with the foregoing ®(x) or ¢(z) in (2), it was not assumed that the
distribution be normal. But, in what follows, it will be assumed that

1 - 2/942
3 ¢(x) = s@m)ik eI,
and, for convenience, u will be taken as zero—that is, the data will be supposed
given as deviations from their theoretic mean. Actually, the data used by
Slutzky and the data I have used belong to a rectangular distribution, as noted
in my former paper. Nevertheless the close agreement between actual and ex-
pected results seems to indicate [3, p. 263] that the theory is in general applicable.
It is well known that averaging of observations from non-normal distributions
may lead rather quickly to an approximately normal distribution.

Given n real numbers, a,, a2, --- , a,, let

4) Yi = 0% + @i + -+ - + CaTipn; i=1,23, .-

Then y; is the moving sum if each a, = 1. Slutzky takesj =ztorj=¢4+n — 1.
Again, y; is the moving average if each a, = 1/n. For graduation in general,
the condition Za, = 1 is imposed; and usually j = ¢ + (n + 1)/2. If nis odd,
y; is thus associated with the middle z.

Under the assumption that the z’s are.independent and normally distributed
about mean zero, with constant variance, I have proven [3, p. 256]: The proba-
bility that for any specified j, y;,1 < 0, and y; > 0 is given by P = 6/360°,
where

n—1 r=n
(5) cos0=f_;ara,+1 Z:,af.

The expected relative frequency of up-crossings of the graph of the y’s through
the zero base line is then 6/360°. That is: 6/360° is the expected relative fre-
quency of a change in the sign of y from — to +; also, of a change in sign
from + to —.

But, as Ay; = yi1 — yi, it follows that

(6) Ay; = biz; + b2$i+1 + .- 4+ bnxt‘+n—l + bn+1$:'+n y
where
(7) b= —a, bn+l=an, b = @y — a,, 7‘=2,3,---,n—1

and since a maximum for the y’s at y; occurs when Ay, ; > 0, Ay; < 0, it follows
that the theoretic frequency therefor is 6’/360°, where
n+l

8) cos 6’ = 2 bybpy / El bE.
r=l o=
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In a similar manner, by using second differences, we get the expected relative
frequency 6”/360° for inflexional points,in specified direction. Moreover,
0 < ¢ < 6" < ... =< 180° since inflections must be at least as frequent as

maxima, etc.
If the foregoing formulas are applied to the identical “graduation” y; = z;,
then cos § = 0, cos 8’ = —1/2, cos ' = —2/3. In fact,

9) cos 09 = —t/(t + 1).

This follows from the fact that the b’s and similar coefficients are the binomial
coefficients; and
t t—1

(10) Z tC.;‘ = 2Cy; Z Cre Crp1 = 20Ce1 .

r=0 ra=0

Thus repeated differencing leads toward the perfect zig-zag. An extension of
this feature will be taken up in the next section.

3. Repeated summing and differencing. To indicate the result of the sum-
ming of n consecutive numbers in a sequence, I shall use the notation 1". And
the difference Ay; = y;11 — y; will be indicated by —1, 0" 1. Thusifn =3,
1° and —1, 0% 1 will stand respectively for

(11) ¢ = Tia + T + Tipa;  AYs = —Tia + 025 + 0z + Tige .
If, now, z; = Yi1 + ¥i + Yis1, then
(12) 2 = Tig + 2ziy + 32: + 2701 + Tiya

Since (n) is often used to indicate the operation of summing n consecutive num-
bers, we may write

(13) (3)2‘_‘1:2’3:271; (n)2=1:2"", n_l):ny(n_l):"‘:zyl'
Then, for n > 2,
(14) A = —1",1%  A'(m)* =1,0"", —2,0"7, L.

And, since the operations of summing and differencing are commutative, we
are lead to

(15) F% = (=1)*A*(n)* = 4Co, 0™, —iC1, 0", 4Cs, 0™ ..., (—1)%Cx;

as may be established by induction. For from the foregoing, it follows that

(16) (—1)fa*m)** = kC3, —iCT, -+, (—1D)CE.

Then, since x1:1Cr = Cr + iCro1, We conclude that

A7) F5 = (=) ()" = 1€l , 0", —paCT, 0™, - o, (=1 aChaa
If now n = 2, then from (5) and (15) we find that

(18) cos 0 = 0; 6/360° = 1/4.

v
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Thus, the expected frequency of the changes in sign of A*(n)* is the same as
that for the raw or ungraduated data. Moreover, if # = 3, (8) leads to cos 6
= —1/2, found for the data. For, in this case, at least two zero coefficients
intervene between any two non-zero coefficients. And thus

k k
(19 cos b’ = —2) L /2 Z L= —1/2.
= r=0
In fact, the same factor cancels from numerator and denominator as we take
higher differences, i* a sufficient number of zeros intervene. More explicitly
stated, the formula (9) found for the data is valid also for A*(n)*, provided
nzt+4+ 2
To make this more concrete, it may be noted that cycle lengths corresponding
tot = 0, 1, 2, 3, and 4, are respectively

(20) 4,3, 2.73, 2.60, 2.52.

From (15), we see directly that an element of A*(n)"* is correlated only with
certain other elements which are at distances from it which are multiples of n.

Some of the foregoing results may be included in a theorem as follows:
TaEOREM: Given a sequence of independent chance variates, each subject to the.
normal distribution (3) with mean zero. Upon this material, let k summings or
averagings by n be performed and k differencings, in any order. Then the resulting
sequence has something of the same chaotic nature as the data. In particular for
n = 2 the expected frequency of changes of sign is the same,—wiz., 1/4 for change
from minus to plus and 1/4 for change from plus to minus. Moreover, as n is

increased from 2 to 3, 4, 5, - - -, the expected frequency of other characteristics
becomes the same, maxima and minima, points of inflection, elc., in accordance
with (9).

But, suppose now that after & 4+ 1 summings by =, only k differencings are per-
formed. Is the resulting sequence almost chaotic? Hardly so. At least, it
can be shown that changes of sign in each direction have no longer an expected
frequency fixed at 1/4; but this expected frequency decreases as n increases.
To show this, formula (5) is applied to (16); and setting in (10), C = xCx,
C' = 20y, it follows that

(21) cos 8 = [(n — 1)C — C')/nC =1 — 2k + 1)/n(k + 1).

Then cos § > 1 — 2/n; and the cycle length for expected changes of sign in
definite direction is somewhat greater than that obtained by setting cos 6 =
1 — 2/n. For values of 7 not too small, we may write cos § = 1 — 6°/2, ap-
proximately; and then approximately

(22) cycle length for definite change of sign in A¥(n)** is w/n.

If n = 9, this approximate length is 9.4, assuming & fairly large, whereas the

more exact length is 9.2.
Consider now the result of summing k¥ + 2 times, and then differencing only %
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times. For this purpose, a few formulas for summing squares will be useful.
By the method of differences it can be shown that if I = a + nh, and

@) T=0d/2+ (@+h)'+ (@a+20)"'+ ... + (a+n— 1h)" + I'/2,
then
(24) T = n@d® + ol + /3 + (I — a)*/6n.

Suppose, now, that a/n takes on the values 0, :Co, —iCi, --- , (—1)%Cs in
succession, while I/n takes on the values ¥Co, —xC1, + -+, (—1)%Ci,0. Let U
be the sum of the (k¥ + 1) values of T thus obtained. Then by (10).

k+1

(25) U=n2uCi — 2Ce1)/3+n :Z-% +1C3/6.

_ 7_1,_3(16 + 2)(2k)! + M C

3 Kk + DI 6

Now, by applying to (16) one more summation by n, there are formed (k + 2)
arithmetic progressions of (n + 1) terms each, alternately increasing and de-
creasing. The maximum and minimum terms at the juncture of the progressions
are to be split into two halves to apply (23). Then the sum of the squares of
these coefficients is given by (26). This forms a denominator for (5).

To obtain the numerator for (5) we note that from ab = [a* + b’— (a — b)’]/2
it follows that if
(27) V=a@+h + (@a+h)(a+2r)+ --- + (a+n— 1h)(a + nh);
then, from (23),
(28) V=T-nk/3=T-— (- a)’/3n.

If now W is the sum of such V’s, reference to the last terms of (24) and (26)
shows that
(29) W=U-— (n/ 3)2k+20b+1 .
And hence, from (5),

(26) U

(k + 2)n* — 4k-— 2

(30) cos f = GFOwFomEl
Then

. n — 4
(31) cos 0 > m,
but only slightly greater when k is large. Again
(32) cos 0> 1 — 6/n’;

but only slightly greater when 7 is not small. In this case, cos § = 1 — 6’/2,
approximately. And thus, approximately, for large k, and for » not small
(33) cycle length for definite change of sign of A*(n)*** = 1.81n.

This gives for n = 10 a cycle length of 18.1; whereas, if cos 0 is taken as the
right member of (31), the cycle length is 18.2.
Thus, if a (k + 2)-fold summation or averaging of random data is followed
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by only & differencings, the resulting graduation or linear processing z = A¥(n)*t
is decidedly not as chaotic as the data; as seen from (31) and (33). But further,
Az = A (n)**?; and thus from (22) the cycle length for the expected maxima
of z is about /7.

Now Slutzky [1, p. 109] distinguished conspicuous waves from inconsequential
“ripples.” On this basis, the frequency of significant cyclical features for a
chance variable, such as z, would be less than the frequency of the maxima. It
is not so clear that the frequency of significant features of a chance variable
will be greater than that for changes of sign in definite direction. That turned
out to be true for graduated values such as discussed in my earlier paper
[3, p. 262]. If this be also valid for 2z, we would expect that conspicuous “waves”
of A*(n)*** would have average length between x+/7 and 1.81n, except for small
values of n and k.

4. Graduations or linear processes and their successive differences. If double
summation by = is followed by a single differencing, the result—as indicated in
(14)—is, for n = 3,

(34) Yi = —Zi — Tipn — Tige + Tigs + Tops + Tiys .
Then
(35) Yits = —Tits — Tira — Tips + Tige + Tiyr + Tigs .

'Thus y; and y;4s are negatively correlated; since s, Zit4, and i appear
in each, but with sign changed. This would seem to tend to make maxima
alternate with minima at distances of about 3; or at distances of », in the general
case (14). Here, following Slutzky and Romanovsky, the coefficient of correla-
tion r, between elements at a distance of p is taken as

(36) rp = E(x, %ryp)/E (xr)z-

Using computed averages, instead of expected values, Alter [6] recommends
a “correlation periodogram,” in which 7, is the ordinate for abscissa p.

Moreover, we would expect a graduation (4) with coefficients a; proportional
to the ordinates y of the sinusoid y = sin (@ + 2xz/p) taken forz = 1, 2,3, - --
to impress upon random data oscillations with maxima separated from minima
by about p/2. But such a;, as well as those in (34), have abrupt endings which
introduce noticeable alterations. More satisfactory results come from tapering
ends, such as appear in damped vibration, with coeffi¢ients about proportional
to e~!*! cos 2rz/p or to e *! sin 2xz/p. H. Labrouste and Mrs. Labrouste [7]
give a powerful operator of this description.

Slutzky (loc. cit. pp. 119-123), Yule [8], and Walker [9] make use of damped
harmonic vibration to explain the creation of cycles; while Bartels [10] ap-
proaches by a different method the oscillations that do not last.

Now the common graduation formulas have coefficients not conforming strictly
to damped vibration, as the tapering ends vibrate more quickly. However,
these ends have little more than a smoothing or stabilizing effect. Furthermore,
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the coefficients for first differences are likely to conform to something like
¢! sin 2xz/p. Some experimental evidence will be presented for the following
conclusion:

If the coefficients a; of a graduation or linear process (4) appear to conform
roughly to equidistant ordinates of a damped vibration, +e~*1! cos 2wx/p or
+e 1" sin 2xx/p, with changes of sign at intervals of p/2, then when this process
(4) is applied to independent chance data having zero mean and constant variance,
there is a tendency for the graduated or processed values to change sign at intervals
of about p/2.

A number of standard graduations have first and second differences—see (6),
(7)—which bear a decided resemblance to damped vibrations, while the third or
fourth differences have only moderate, if any, cyclic appearance. This is espe-
cially true of those graduations which are constructed by applying three sum-
mings—the number of terms in a sum being in general different—and a fourth

TABLE 1

Coefficients (X350) for Spencer 21-term graduation and for first four differences.
Also theoretical cycle lengths for change in sign in values obtained from

random data

Cycle
Length

+ 6,18,33,47,57,60,57,47,33,18,6
Grad. _ 2553 2,5,5,3,1 10.7
"D +1,2,2,0 3,10,14,15,12,8,3 7.0
- 3,8,12,15,14,10,3 0,2,2,1 )

d + 273’5;413 374’5)3:2
. - 5.5

D -1,1,0 1,4,7,6,7,4,1 0,1,1

d +1,0 1,1,4,3,3 1 2,1,2,1 3.5
3D, _ 1,2,1,2, 1 3,3,4,1,1 0,1 :
th 4+ 1,1,1 1. 01 4410 1 1,1,1 1.6
47 D. -1 133020331 1 )

process with negative coefficients. This is, indeed, a favorite form of gradua-
tion, with which are associated the names of Woolhouse, Spencer, Higham,
Kenchington, Henderson, etc. The Spencer 21-term formula, for which some
features have already been described, [3, p. 262], will now be examined, with
special reference to its differences. Cycle length for change of sign is one-half
that for change from minus to plus.

In the graduation formula, itself, there are 11 positive coefficients, centrally
located, and relatively large as compared with the negative coefficients. This
11 is close to 10.7 the theoretical cycle length for changes of sign of y, — 4.5,
the difference between the graduated value y, and its mean—the arithmetic
mean of 1, 2, ...,9. The structure of the first and second differences also
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matches closely the corresponding cycle lengths. In the third differences, there
is a break at the center; but still there appears considerable regularity. But
among fourth differences, the zigzag is the prominent feature. Now the theorem
of Section 3 does not really apply to the Spencer formula, with its two summa-
tions by fives and one summation by sevens, and another process. But it is not
surprising that the cyclicity ceases after passing the third differences.

As a basis for comparing observed values with expected values, the tenth
digits in the 600 logarithms from log 200 to log 799 were taken as a random set
of numbers. These 600 numbers had been given a Spencer 21-term graduation
[3, pp. 261-262], yielding 580 graduated values. From these the 579 first differ-
ences were found, the 578 second differences, etc. These numbers, 580, 579, - - - ,
were multiplied respectively by the expected relative frequences of change in
sign of y, — 4.5, of Ay, , A%, , etc., as found by use of (5), (8), and similar ex-
pressions to form the following table.

The most abrupt change in frequency or cycle length appears to occur in
passing from third to fourth differences. In Table I, this is seen in the configura-

TABLE II

Comparison of expected changes of sign with observed changes for a Spencer 21-
term graduation

Expected Number of Observed Number of
Changes from — to + | Changes from — to +
Graduated values—4.5. . ... ........ 27.2 27
First differences. .. ........... ... .. 41.3 42
Second differences............... . .. 52.9 48
Third differences................ ... 90.4 74
Fourth differences................ .. 176.7 146

tion of positive and negative terms, and in the drop from 3.2 to 1.6 in cycle
length; and in Table IT in the corresponding increase in expected sign changes
from 90.4 to 176.7. More spectacular is the increase in the number of zig-
zags represented by —, 4+, —, 4. Among the third differences, there were
found only 13 instances of four successive terms with signs as just indicated,
whereas among fourth differences there were found 75 such instances. For
random material, about 36 such zigzags would be expected—decidedly more than
found among the third difference, and decidedly less than found among the
fourth differences.

The Spencer 21-term graduation appears to be fairly representative of com-
monly used graduations as regards regularity or irregularity in the distribution
of positive and negative coefficients among the differences. For graduations
with a much larger number of terms, the alternation of sign in fourth differ-
ences may not be so rapid, as, e.g. in the 35-term 5th degree parabolic gradua-
tion which Macaulay [11] calls No. 18. On the other hand, for a formula with
non-tapering ends, such as the 13-term formula which Macaulay gives [11,
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p. 64], the coeflicients appearing in the differences are more irregular, especially
at the ends. While the Spencer formula is fairly representative, different for-
mulas have distinguishing features. If it is desirable to form an idea of what a
given formula will do to random data, a table like Table I can be constructed.

6. Summary. When upon independent chance data, summing; averaging or
some more general graduation process is used, the graduated values tend to
assume a wavy configuration. These waves often seem to have a fair amount
of regularity or cyclicity. The first differences usually, and often other differ-
ences of the graduated values, are decidedly cyclic. But, as we go in turn to
the higher differences, the cyclicity may weaken. Indeed there may be a return
to something like randomness. And subsequent differencings may tend to set
up zigzags.

If (k + 2) successive summings by n have been performed on independent
chance data, with n» not too small, say n = 5—then & + 2 differencings will
just about bring back the original chaotic or random condition. But with only
k or (k + 1) differencings, a definite cyclicity remains, at least theoretically, in

the expected values.
In the case of the Spencer 21-term graduation, the coefficients for the suc-

cessive differences indicate the appearance of cyclicity in first, second, and third
differences.
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