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more general problem by the expedient of imagining » — m blank cards to be
added at the end of the call deck and regarding these as an additional kind.
It is thus apparent that formulae (13) and (14) apply without modification to
this altered situation.

7. Application to contingency table. Stevens’ has considered the distribution
of entries in a contingency table with fixed marginal totals, and has pointed out
that the problem of matching two decks of cards may be dealt with from that
standpoint. A contingency table classifies data into n columns and m rows,
and we may consider the row as indicating the kind of card which occupies
a given position in the call deck, the columns having the same function with
respect to the target deck. Stevens defines a quantity ¢ as the sum of entries
in a prescribed set of cells, subject to the condition that no two cells of the set
are in the same row or column, and mentions as unsolved the problem of the
exact sampling distribution of c.

We now have at our disposal the machinery for solving this problem. Fol-
lowing Stevens’s notation, let a;, a2, --- , @, denote the fixed row totals and
b1, by, .-+, b, the fixed column totals, while z,, denotesl the frequency of the

cell in the rth row and the sth column. Then, let ¢ = 2 ,,,, , where I does
h=1

not exceed either m or n. Imagine two decks of N cards (N =X = Z b;.),
h=1 ha==l

the first containing a, cards of one kind, a, of another, etc., and the second
containing b, cards of one kind, b, of another, etc. Moreover, let the r;th kind
in the first deck and the ssth kind in the second deck be the same kind (A =
1, 2, ..., D), the other kinds being all different. Evidently ¢ is the number of
matchings between the two decks. Hence, the methods of this paper can be
used to obtain the distribution of ¢. The formulae we have obtained agree with
those for the expected value and variance of ¢ given by Stevens.

ON METHODS OF SOLVING NORMAL EQUATIONS

By Paur G. HoeL
University of California, Los Angeles

There seems to be considerable disagreement concerning what is the most
satisfactory method of solving a set of normal equations. Since such informa-
tion as errors of estimate and significance of results is usually desired in addition
to the solution, in its broader aspects the problem is one of deciding what is the
most satisfactory method of calculating the inverse of a symmetric matrix.

For equations with several unknowns some compact systematic method of

5W. L. STEVENs, Annals of Eugenics, loc. cit.
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calculation is necessary to eliminate much of the labor involved in the ordinary
method of calculating the inverse from its definition. Among the more common
of such systematic methods are those associated with the names of Chio,' Gauss,’'
Doolittle,” and Aitken.® In addition, A. A. Albert' recently called attention
to a method implicit in elementary matrix theory. There are also various
iterative schemes, and schemes which are but slight variations of the above
methods. In this note only the methods associated with the above names will
be considered, and for convenience they will be labeled with those names, regard-
less of who should be given credit for them.

The purpose of this note is to show that when the calculation of the inverse is
systematized, all of the above methods are fundamentally equivalent and merely
involve a different arrangement of work. Consequently, any advantage in calcu-
lating time for any particular method will arise through such features as a
simpler technique or less copying, rather than through fewer multiplications and
divisions.

By the method of Chio is meant the evaluation of determinants by the pivotal
method of reduction. Since all of the methods mentioned above use pivotal
reduction, the method of Chio will not be treated as a distinct method. Fur-
thermore, since Gauss’ method is incorporated in that of Aitken, it will be neces-
sary to consider only the methods of Aitken, Doolittle, and Albert as distinct.

First consider the method of Albert, which is based on the following matrix
properties. Let the matrix A be subjected to a sequence of row transformations
leading to the matrix A’. Then, writing A = IA, it follows from a theorem in
matrix theory that A’ = I’A, and consequently that A’A™ = I'. If row trans-
formations are chosen which make A’ = I, then A™' = I'. This states
that if the same row transformations are applied to the identity matrix as were
used to reduce A to the identity matrix, then the resulting matrix will be the
desired inverse. The customary manner of reducing A to I is to work for zeros
in columns as follows:

an 1 a2 Q1n
ay a1
i Qg ++- Qin
ag1 g
Qa1 Qg -+ Qgn 0 <Gaz — Q12 —) see (azu — Q1n ——)
. . , an au/ ||,
Ani Cng +++ @ : : :
(3 n, nn | anl anl
0 Ang — Q12 — eee | Qpn — Q1n —
an an

1See, for example, Whittaker and Robinson, The Calculus of Observations, p. 71 and p.
234.

2z See, for example, Croxton and Cowden, Applied General Statistics, 1939, p. 716.

3 Roy. Soc. Edin. Proc., Vol. 57 (1936-37), p. 172.

4 Am. Math. Monthly, Vol. 48, No. 3 (1941), p. 198.
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ubg || | a1 . Dan
an an an

0 1 b23 b2n
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where new letters are introduced for new elements after each reduction. After
zeros are obtained below the main diagonal, zeros are obtained above the
diagonal by starting with the last column. If now these operations are per-
formed in the same order on I, the result will be A™.

Next consider the method of Aitken, which is based on the evaluation of a
bordered determinant, namely,

A ++e A1j o+ Qin O

Aig soo Qij +o+ Qin 1
. . « | = cofactor of a;;.

Any oo a”"--. Ann 0
0 «e¢c —1... 0 O

To obtain A™ it is merely necessary to evaluate determinants of this type and
divide them by | A |. Aitken’s method evaluates all such determinants simulta-
neously, using Chio’s reduction technique in much the same manner as illustrated
above with Albert’s method. Thus,

ain Qi e+ Qn |1 0 e 0

Qan Qg +++ Gy |0 1 ... 0

Gn1 Qa2 *+* Onn O 0'-‘1
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When zeros are obtained below the main diagonal to the left of the vertical
dividing line, the matrix in the lower right section will be A~ This follows from
the fact that the elements of this matrix will be the evaluations of bordered
determinants, like those of the previous paragraph, divided by anbss --- = | A |.

It will be observed that the operations on A in Albert’s method which produce
zeros below the main diagonal are the same as those which occur above the hori-
zontal dividing line in Aitken’s method. This set of operations is performed
simultaneously on I, since the upper right section of Aitken’s scheme is I.  Fur-
thermore, obtaining a zero for an element below the horizontal line and to the
left of the vertical line, is equivalent to obtaining a zero for the element corre-
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sponding to the same row and column in the section above the horizontal, pro-
vided the preceding columns contain zeros above the diagonal. But obtaining
zercs above the main diagonal of A constitutes the second set of operations in
Albert’s method to obtain A’ = I. Thus, the operations in Aitken’s method
which produce zeros in a given column for elements above the horizontal line
are merely the first set of operations in Albert’s method, while those which
produce zeros below the horizontal line are the second set of operations in reverse
order. Since, in Aitken’s scheme, the first set of operations is performed on I
in the upper right section and the results are transferred a row at a time to the
lower right section, where they are in turn operated upon by the second set of
operations, this lower right section is merely I operated upon by the entire set
of operations of Albert’s method. Consequently, Aitken’s and Albert’s methods
are the same except for the order in which operations are performed and differ-
ences arising therefrom. Since Aitken’s method performs these operations more
compactly, it is to be preferred to that of Albert.

Next consider the method of Doolittle, which is described by following
the instructions given in the first column in the table shown on page 348.
The forward solution is completed after » such sectional operations. For a
given & column, the backward solution is obtained as usual by substitution in
the last row of each section taken in reverse order.

If all summations in each section are performed in pairs and the sums recorded
each time, rather than being performed in one operation, the forward solution
of the Doolittle method will be found to be a rearrangement of the work occurring
above the horizontal line in Aitken’s method. Thus the first lines of each
section give the matrix above the horizontal line in Aitken’s scheme. Then,
except for signs, I’ and the sums of the first two lines of the remaining sections
give the result of Aitken’s first sequence of operations above the horizontal.
Then, except for signs, II' and the sums of the first three lines of the remaining
sections give the result of Aitken’s second sequence of operations above the
horizontal, etc.

The back solution involves precisely the same operations as those making up
the second set of Albert’s sequence of operations to obtain zeros above the main
diagonal. Since these were shown to be a rearrangement of operations in
Aitken’s method, it follows that the methods of Aitken and Doolittle are the
same except for the order of operations and differences arising therefrom. Hence
all three methods are basically the same when systematized for a calculating
machine.

Because of this equivalence, the number of necessary multiplications and
divisions will be the same for all three methods, and will be found to be
17’(n + 1). Since Aitken’s method is to be preferred to that of Albert, it will
suffice to compare the methods of Aitken and Doolittle for calculating con-
venience.

The Doolittle method possesses several distinct advantages. First, its multi-
plications occur a row at a time with one of the factors constant for that row;
consequently the keyboard remains unchanged for a given row of operations.
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Aitken’s method, however, consists of calculating successive cross products’
which requires clearing of the keyboard after each such operation. Secondly,
there are fewer additions in the Doolittle method. It sums ¢ quantities at a
time in section ¢, while Aitken’s cross products always involve the sum of two
quantities. Because of the necessity of calculating the complements of negative
sums, this difference becomes important when the number of variables is large.
A third feature in favor of the Doolittle method is the ease of performing the
calculations without previous experience. It may be easier to understand how
to calculate cross products, but actually the calculations of the Doolittle method
are easier to perform. Aitken’s method requires some experience with it, if one
is to avoid repeating certain calculations which would result from calculating all
cross products mechanically. The comparative amount of copying in the two
methods depends upon the number of variables involved.

From the above considerations, it may be concluded that the Doolittle method
is to be preferred among those considered in this paper for solving a set of normal
equations or calculating the inverse of a symmetric matrix. However, if a
single calculating technique is desired which can be used for nonsymmetrical
equations as well, then the method of Aitken is to be preferred.



