ON THE JOINT DISTRIBUTION OF THE MEDIANS IN SAMPLES
FROM A MULTIVARIATE POPULATION

By A. M. Moop
University of Texas

It is well known [1] that in the case of a population having a single variate
distributed according to a density function satisfying certain general conditions,
the median of a sample is asymptotically normally distributed about the popula-
tion median as a mean. It is the purpose of this paper to extend this result to
populations involving more than one variate. Besides the theoretical interest
of such a result, there may be some practical value in it when one is dealing with
samples from a population for which the median is a more efficient statistic than
the mean, as, for example, when the population variance is not finite.

The complexity of the exact distribution of the sample median increases
rapidly with the number of variates which describe the population; it is almost
impossible to write out completely the distribution for the .general case of &
variates. For this reason the author has chosen to give first a detailed presenta-
tion for the case of two variates, then use a condensed notation to establish the
general result. This is a circuitous route, but it seems to be the only feasible one.
A condensed notation is necessary for the general case, but presented alone it
would be well-nigh incomprehensible.

1. Distribution of the median in two dimensions. An extension of A. T.
Craig’s [2] geometrical argument will be used to obtain the exact distribution of
the sample median. Let us consider two variates z; and z, with density funetion
f(x1 , x2) which shall satisfy the following conditions:

1. f(zy, 2) >0
[:f(x" 1'1\7> day = [:f(xl: 0) dx1+0<1%r>

2. ‘[:f(% xz) dz, = [: f(0, ) dzy+ 0 (%)

3. [ .[ f(:vl, xg) d$1 dxz =1
4. Each of the equations

[i f_:f (21, T2) dzaday = %
[: .[:f(xlr x) dridx; = 3

has a unique real root.
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DISTRIBUTION OF MEDIANS 269

If & and & are the respective roots of the two equations of this last condition
then the point (£, , &) is defined to be the population median. It will be assumed
in what follows that the coordinate system has been so chosen that § = 0 = & .

Let a sample of 2n + 1 elements (214, Z2a)(a = 1, 2, , 2n + 1) be drawn
from this population. The sample median (%, , %) will be deﬁned as an element
(not necessarily in theé sample) whose z; coordinate is the middle, with respect
to magnitude, number of the set of numbers x,, , and whose z, coordinate is the
middle number of the set of numbers 2., . Now let us compute the probability
that the sample median will lie in the rectangle

B — 3dE < x < % + L dEs T =1,2,

This rectangle will be denoted by R’”. The remainder of the plane will be divided
into eight other regions Ry, - - - , R4 as indicated by the dotted lines in Figure 1.
The probability that an element will fall in the region R{” will be denoted by

(’) f f J(z1, 2) dzy dib'z

Fia. 1

Neglecting terms involving differentials of higher order we have

P = _/: L:f(xl, Z3) dxadzy

D2 = _[ lj: f(z1, x2) dzy dzy
@
! = ‘/: f(:vl, 5’2) d:tl di'z

p" = f(%, %) d% d3; .
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We shall consider now that the sample is drawn from a multinomial population
with probabilities p;, ..., p”’ and pick out those terms which give rise to a
sample median in B”. If the median is an element of the sample, then that
element must fall in R” and the other elements must fall in the regions R;,
R;, R;, and Ry in such a manner that

nm+n=mn-+n=n

Il
3

o+ Ny =ng + 7
or so that
2) n = ngand n, = ny
where 7, is the number of elements in B;. The probability that this occurs is

2n + 1)!

"1 N2 ] N3
nit+nomn nlpm!z P7P1 P2 Pa P

3

Now suppose the median is determined by two different elements of the sample,
for example one in Ry and one in Rz, then there must be n, elements in R,
n1 + 1 elements in R , and 7, elements in each of B; and R, with

4) nm+n=n-—1
The probability in this case is

2n + 1)! ny! _ng _n n
(5) p;p; - Y nl! En——l + 1))! 73,2!2 P1 lf'pz 2 Ps3 1+lp4 L

Continuing in this manner we obtain the distribution of the median, and letting
D(%,, %) represent the density function giving this distribution we have

(2n + 1)!

D(%, %) d% d%; = p"' 2 . (P1ps)™ (P2pa)™
' 1 (2n + 1)! ny ng
(6) + (psp1p2 + Pr1psps) = T F DInk (P1ps)™ (P2ps)

r ’ (2n + 1)! ny ny
+ (P2p1Ps + Dap2ps) = Bl (m+ D1 (P1p3)™ (2 pa)™.

2. Asymptotic distribution of the median in two dimensions. As a simple
notation

A = B(1 4+ 0(1/+/7))
will be abbreviated to read
™ 4 =. B,
the dot after the equality sign indicating the omission of the factor 1 + O(1//n).
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As is customary, the second term of this factor represents any function such that
lim NO(1/N) = L < .

N—=x

In order to get an approximation to (6) for large n we shall use the normal
approximation for the multinomial distribution and compute the sums (these
cannot be put in finite form) by integration. We use then the well-known result

r r—1 r—1
® —— II o7 =-[4/@r)" exp (_ 32 A-':‘z‘z") II ¢z,
H 7'“! 1 1 1
1
where
(9) z = (mi — mp:)/\/m, i=1,2..,7r—1,
(10) u——+—' Aij=-l.
i pr p"

Returning to (6) it is to be noted that the fraction immediately following =
in the first sum has one more factor in the denominator than the corresponding
fractions in the other sums. This first sum may therefore be neglected in the
asymptotic form as it is of order 1/n in comparison with the others. We con-
sider now the second sum in (6) and let it be represented by the letter S

(2n - 1) ny3+l n2

(11) S=2n@n+Lpipz 2, pitprpsttpi

ni1t+ngmn—1 nl! (n1+ 1)! nﬁzn
Employing (8) and omitting certain terms of order 1/n we have

3
(12) S =-an’pip; 2 [4/(2n)*) exp (— 3 ; A.-,-z.-zj) dz, dz dzs,

in which the A;; are defined by (10) with r = 4, and

(13) z = (n; — 2np:)/A/2n, i=1,23.
In view of the relations (2) between the n; we have
=Va@G-m—p)—an=wm—2

=V (pr—p) —a=u—u,

in which relations we have defined the new symbols u; and u, . It will be recalled
that in (8) the factors dz; correspond to factors 1/4/m, we therefore let dz, and
dzs in (12) cancel a factor 2n from the coefficient of the exponential, and after
substituting (14) in (12) find that

(14)

1

s = 2opipi 314/ oxp { - 3 [A(% + 2+ L+ 1)

2 2
+2zl(u1+u2_3‘__1+’i2)+ (ﬂj-_ui)_ +11+?2]}d21.
Pa Ps P4 D2 ps

(15)
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The summation can now be performed to within terms of order 1/4/n by inte-
gration with respect to 2z, between the limits — « and + « ; this gives us

2%
(16)

2
U, U U,
$_ <_1'|'__2
s y2

P4 P2

r 3 2 2
Y21 P2 P3 Ps

2
_’il+u_.2)/<l+l+_l_+_1_):|}
Pz Ps P P2 DPs Ps

At this point some new symbols are required. We let ¢; and ¢: represent the
results of replacing %; and #; by zero in the integrals of the relations (1)

QG = j:b fomf(xl, xz) dz, dzs

0 .3
g2 = ‘[” £ Sz, 72) dzy dx,

17 o 0
g = ‘/_‘w [wf(:cl, Z9) dz1 ds
QU= j:‘[:f(xl,xz) dz, dz,
then
(18)
and
(19) 0 =0a,
Also we let
(20) o =g+ g,
(21) = \/2_7& o,

We have now

P =-4q,
(22) P.f =. q;{di':z )
p: =- q;dil )

Also

¢ = fo " f(a, 0) day
i = [ 10,2 dz
q{; = [wf(x1, 0) dz,

0
¢ = [0, 2) dos

91+Q2=93+Q4=Q1+94=Q2+Qs=%

QP = qa
®m=q+da,
Yo = \V/2n a:%: .
1=123,4,
1 =13,

1= 2,4,

wm=2nG —p1— p2)

= \/2_”'.[: j:'f(xl, 3) day dizs
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23) = Van s [ S, 05) du, 0s6<1,
—. \/27,52[ (1, 0) dzy
=. V2 a2
=. Y.
Similarly
us = V21 (py —
(24) 2 \/ (¢ Ds)

= = + ).
The result of substituting (22), (23) and (24) in (16) with some further simplifica~
tion using (18) and (19) is
2nq1q: ( 1yi — 4(g — @y + yi) _
25 S=. —=—exp|—= di, d%, .
25) 21r\/ q1Q2 P 2 4q1¢2 Y100

The other three sums of (6) will give rise to the same expression except that the
factors ¢igs will be different; it is clear then that

2n(g1gs + g1 + ¢35 + ¢304)

D(%:, &) d%,d%: =

2/ _ql—qg
2 2
X exp (—% v — 4 4q3122)y1y2 + yz> d%, dz,
2na10z a1 — 4 — @ ti % + o 5?§) "
26) =. 2 ex <—n a3 di
( 21"'\/Q1 Q2 P 4q1q2 1d2,,
1 1yi — 4(g — @y + yﬁ)

27 =. ex (__ .
0 27vVag P\72 401 Y10y

This is the asymptotic form for the distribution of the median in two dimensions.

3. Distribution of the median in k& dimensions. We consider now a population
characterized by a density function f(z,, - - - , 2x) defined over a euclidean space
of k dimensions satisfying conditions like those required of f(z,, 2.) in section 1,
and we assume that the population median is at the origin so that the integral
of the density function over any half-space determined by a coordinate hyper-
plane is .

A sample of 2n + 1 elements will have a median (%, , - - - , &) each coordinate
of which is the middle number of the set of numbers giving the corresponding
coordinate of the elements of the sample. To obtain the probability that the
sample median lies in the hyperparallopiped Z. — 3d%. < %. < %« + % dZ.
(¢ = 1,2, ..., k), we divide the space into 3* regions by means of hyperplanes
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perpendicular to the coordinate axes through the points Z. & 3 d%. on the co-
ordinate axes. These regions are illustrated in Figure 2 for the case of three
dimensions. The coordinate axes have been omitted in this figure. There
will be 2* primary regions denoted by R:, R;, - -- , Ra corresponding to the
octants of the figure; k2" regions with one differential dimension denoted by
R, R{, ceey, Rizi—1 corresponding to the quarter slabs of the figure; (’20) 2t
regions with two differential dimensions corresponding to the half strips of the
figure, and so forth. Probabilities associated with these regions are defined by

pfa) — _/;z(i)f(xl’ ...’xk)dxl eoe dxg.

Fig. 2

If the sample median is determined by & different elementn of the sample there
will be one of these & elements in each of k regions R; whose differential dimen-
sions are mutually orthogonal and the other elements of the sample will fall in
the regions R; in such a way that n elements of the sample will lie on either
side of any of the k hyperplanes z. = Z,. The probability of this occurrence
for a particular choice of & of the regions R; is

(28) 5= 0o, 2 & DT

in which the 2* indices n; are subject to k independent restrictions of the type

(29) Z'ni =N — Ca,
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where c, is an integer such that 0 < c. < k, and the prime on Z indicates that

the sum is to be taken over all #; on one side of a hyperplane z, = %.. n;is
the number of elements in R; and besides the &k conditions (29) we have also

2k
(30) ;n,-=2n-—k+1.

In order to include all ways in which the median is determined by % different
elements of the sample we must add together 2°*™ sums of the type (28). If
the median is determined by less than k elements, say k¥ — h elements, then the
fraction (2n + 1)!/In;! will have h extra factors in the denominator and hence
the sum will be of order 1/n* as compared with that of (28) and may be neglected
in obtaining an asymptotic expression.

Thus we need only find the limiting form of (28)

k _ 2k
S = (2n+1)(2n)---(2n—k+2)Ile$.Z(2—n—I—I’;:—l)!111p?‘,

which after substituting (8) and neglecting terms of lower order becomes

k-1

@) 8 =-@n)* ok T A/@0)" ™ exp (=} T dyziz) ] da,

in which the A;; are defined by (10) with » = 2* and

(32) 2= (i — 2np)//20, i=1,2...,2 =1
Now we define
(33) e = V203 — Z'py), a=1,2 ...,k

the =’ having the same significance as in (29). These conditions (29) may now
be put in the form

2o =+Ua — La(2),

in which L.(2) is a sum of a certain subset of the variables zx41, «+ -, 2251
Care must be taken in labeling the regions R; in order to be able to solve for

2z, -+, % in this form. After substituting these relations in (31) we replace
k

11 dz. by (1/2n)*2 and perform the summation to within terms of order 1/4/n
1

by integrating the remaining z; from — « to -+ o ; the result is

k k
(34) S =.(2n/2x)*"? .,I.Il pi, VB exp (—% Zl) B..gu,,up),

in which the B.g are functions of the p;, and B = | By |. Asin (17) and (20)
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we define

g = f f(xly cee ) xk)dea
(35) q: = 'f(xl, cee, xk)II’ da:a

R
Ay = f of(xl, e, o)l da, = E’q,{,

in .which R; is the set of regions bounded by the coordinate hyperplanes R;
are regions into which the coordinate hyperplanes are divided by the remaining
coordinate hyperplanes. II’ indicates that one of the differentials is omitted
and the variate corresponding to that differential is put equal to zero in
f(@y, -+, x1); 2’ indicates the sum over all ¢’ determined by regions lying in
the hyperplane z, = 0. It is clear that

Pi =-Q
(3;5) II i, =11 ¢i. dz.

Ua =+4/2n é SaplpTs = D das¥s,
where

0= £1o0r0, and v = \/2nasis.
Making these substitutions in (34) we have
k k
37) S =.(2n/2n)** I] ¢i, A/C exp (—n > Caﬁa,apiai,g) 11 dz.,
1 1
and adding together all possible sums of the type (28) we have the asymptotic

form of the distribution of the sample median

(38) D(%,---, %) [] dia
k k
=.(2n/27)""? le ae\/C exp (—n ; Caaa.,ag:ia:?:p> 11 dz.

(39) =.(1/20)"\/C exp (=} T, Castcti) I e,

in which the C,s are functions of the ¢; .

4. The case of three dimensions. The computation of the coefficients Cqp
of (39) requires the evaluation of a determinant of order 2* — L for each one of
them. This work was quite laborious even for ¥k = 3 and the author made
no attempt to find their explicit expression for larger values of k.

If we let a subscript + indicate integration of the density function
f(x1, 22, x3) from O to «, and a subscript—indicate integration from — « to 0,
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as for example,

Jr—= /: f: [:f(xx, T2, 3) d2sdxs day

then the g; of (35) will be defined as follows

@ = St & = ft
(40) ¢ = fi+- g = f——
@ = fi—tr @ =f—
@ = fi— g =f—

The coefficients C,s may be written

DCu = 2(q1 + ¢5)(22 + o)

DCyx: = 2(q1 + ¢3)(g2 + q4)

DCys = 2(q1 + ¢)(gs + @)

DCr = ¢s¢s + 0ugs >~ &7 — @245

DCy = q@s + g7 — 0198 — Qs0s

DCos = 205 + 00~ — mqs — ¢sgs

(41)

where

1 1 1 1 1 1 1 1
DeBn (m @2 ¢ Q4) 22198 (qs q Q7 Qs)

+ 2(gs + ¢6) (@7 + 28) (12 + ¢394)

(42) + 2(gs + ¢)(gs + 98)(g195 + ¢294)
+ 2(gs + ¢8)(gs + ) (0106 + ¢205)
+ 8(91949697 + 929395 2s)

(41) and (42) can of course be put in different forms by using the four relations
between the ¢;. The a, of (38) are defined in (35); for k = 3 they are

a = j: [: 50, x;, x3) dzodxs
(43) = [: [: f(2, 0, 5) day s

a3 = [: [:f(xl, x2, 0) dz, dzxs.
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5. The normal distribution in two dimensions. If the density function of
the second section of the paper is normal

(44) mmm=memVﬁ?nw[ 1 (“—%““+§}

T2 =)\ a1 | of

we find that the parameters of (26) are

1 1 . - 1 . -
(45) n=gtginTe  G=g—gsinTe,
a = ——_];—- g = 1
‘\/21!’ 61’ vV 211’0’2.

These give an interesting result—the correlation coefficient of the asymptotic
distribution of the sample medians is

(46) Pm = 2 sin”'p
m

hence

47) I Pm I < | P I

the equality sign holding only when p = 0 or =%1.
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