A STUDY OF R. A. FISHER’S z DISTRIBUTION AND THE RELATED
F DISTRIBUTION'
By Leo A. Aroian
Hunter College
1. Nature of the problem. Consider two samples of N; and N, drawings,

each sample drawn from one of two populations consisting of variates normally
distributed with equal population variances ¢*. We define the two sample

N Ng
DI DL
means &; = "Xr , & = % , zi's and z;’s independent variates. We calculate
1 2
from the two samples
Ni 9 N2
_Z (v — &1) Z (z; — )"
si==L _ and st=122_ m=N;—1,n =N, — 1.
m N2
82
The distribution of z = 3 log -—; is well known.
S2
2ni™ nim e
(11 P(z) = de.
\ ) ( ) B(”_’ﬂ. n2> (nleu+n2)}(n1+n2)
2’2

We shall denote the ordinates by y(z). The purpose of this study is.to discuss
the seminvariants of the z distribution and also to find useful approximations
for them; to show that as n; and 7. approach infinity in any manner whatever
the distribution of z approaches normality; to find the upper bound of the ab-
solute value of the difference between the distribution function of z and the
function determined by the approximate seminvariants of the distribution of z
for n; and n. large; to approximate the z distribution by the Type III distribu-
tion, the Gram-Charlier Type A series, and the logarithmic frequency curve;
and finally to invesztigate the same properties with respect to the F distribution,
§
s—; :
of n, and n, is noted and explained on the basis of the distribution of the quo-

2 . ‘ .
where F' = ¢ = The non-existence of the moments of F for certain values

tient Z.
X
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430 LEO A. AROIAN

2. General features of the z distribution. The 2 distribution is always uni-
modal, asymmetrical if n; # n,, and symmetrical if n; = n,. We see that
interchanging n; and n, is the same as replacing z by —z. Fisher [7] noted that
the two parameter family of curves includes as special cases the normal curve,
the x* distribution, and Student’s distribution. The mode is at z = 0, the
maximum ordinate is

2nim nim

ny Ne
3(3.%)
or approximately

-4
(2.1) y(0) = \/2 {1 <1 + n%)} for n; and n, large.

The two points of inflection are

y(0) = (m + ng) At

(22) 2 = % log {nln2 + m + ng + \/n% + n; + 27’2%71,2 + 2n1 ng -+ 2n1n2}.
N1 Ne

They are equidistant from the mode, a property also of the Pearson system of

frequency curves [24]. Also lim z"ddzf‘Z) =0
z—too

3. The moment generating function and seminvariants. The moment gen-
erating function of the z distribution is

ne—0 ni+86

A
272 2 2

The seminvariants of Thiele are defined by the following identity in 6:

3 4
(3.2) logM(e)—xlo+>\2 +)\30+>\40+-~.

To find A, we take the logarithm of the moment generating function, expand it

0 . .
in powers of 6 and choose the coefficient of = A complete discussion of proper-

ties of seminvariants may be found elsewhere [4].

4. The seminvariants of z. Now by the following formulas [11] p. 38:

4.1) logT(1 4+ 2) = lz| < 1,

1 2 3 s
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8250

4
(42) logT(1 — 2) = sz + = +83’” L AT

T ’ |CII|<1,

where in both formulas

s; = lim (1 +%+é—+i+---+%—logn),

n—*o0

1 1 1 1
s"_1_7¢+§¢+3_n+4_n+’ nZ 2
Also
z’ z® zt
1 1) — - Y T o
43) log B(3[1 + =), & log 7 a1x+022 033+0'44 ,
lz| <1,
where
1 1 1 1
== — 4 — 4. >
=Tt t nzl
and

Hence from (4.1) and (4.3)

2
logI‘(l_;x>=%logw—x<a1+s§l)+%<oz+;—2z>
xs 83 x4 S4
_§(03+§‘ +Z(04+§4)_”

1 )s,.,n_2 we may write (4.4) as

(4.4)

Since o, = (1 =

(4.5) logI‘(l_gx)=%log1r—x( ) ’;( l)kk( %,;)sk

From (3.1)

log M.() = log T (n2 2_ 0) +logT <n1 ;_ 0)

8 - - ) _ i
+—2-(logn2 log n,) logI‘<2> logI‘(2>.

The results assume slightly different forms for (A) n, and n; each even; (B) n,
and n; each odd; (C) n; even, nz odd; (D) n, odd, n; even. The general formula
for A,.. for all cases is

(4.6)
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(=)= 1) (r— 1! ,
4.7) Arie = kg{ e ol v 2k),},

This result is not so useful from the point of view of numerical applications as
the formulas which follow.

(\%

2.

6. Case A, n, and n; each even. From (4.6)

logI‘<n—’_0) = log(m——_2—0>+log<n—————2_4—o>+ .

2 2 2

(5.1) ; .
+log(1——-2->+logI‘(1—§).

Now log (1 - ) = Zw‘, 1 ( 6 >,c There will be 22 — 1 series of
ne — 2 ik -2 2

0 k
this sort, and only one series of the type log T (1 — g-) => %"(g) as given by
k=1
(4.1). In the above expansion and those succeeding, terms not involving 8 are
omitted, since such terms are not needed in finding the seminvariants of z. The

series log T (1 - g) will always occur. Then
ng — = 1 [/} k 0 k
o ("5) = -Zi[ () + () +
(5.2) . .
6 ]
@) -]
or

n— 0\ _ sef0) “1*"2"‘((9)"
(53) ‘°g‘"(‘““2 )‘Z:E(z) 2 & &)

We remark that the double sum is zero if n, = 2. Similarly

log P<m;_0> lg( - {<"1 0— 2)k + (nl i 4>k L
)
or

(5.5) logT (nl ;- 0) E (= l)k ( ) Z (= l)k o %4 (E)k

k=1 k=1 =1 2l

By use of (5.3) and (5.5) we have for the seminvariants of 2z, when n, and n,
are even

56) A= '2,1)! {(s - tfl ,-01) + (—1)'(s, - &’nf %)} r= 2.

=1 =1

™

(5.4)
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For \i.. = Z we have by (4.6), (4.3), and (4.5)

1 {no—1 1 fny—1 1
(57) Az = ~l:<10g ne — Z _> - <10g nm — Z _):l
2 =k =k

6. Case B, n: and n; odd. We have

log I‘(n2 2_ 0) = log ("’L__Z?_—_?) + log (@___g‘_:f) 4o
+ log (-—-) + log (1_"2;?>

6.1)

Expanding log T (1 5 ) by (4.5)

ne—0\_ [ ¢ 6" o"]
I°gr< 3 )" I:;;k(nz—Z)k+k(n2—4)’°+ T

+o<al+s‘>+2 ( 1)sk.
=k 2k
1

However sk(l - ?> = ilz + % + 517 +71-,; + .-, k > 1, which we shall denote

hereafter by . Hence (6.2) becomes

ny — 6\ _ 81 6" _“1*‘"2“”( 9 )"
(6.3) logI‘( 5 ) 0(1+ )+Z; = 2 ; i)

(6.2)

Also
1ogp(m+0) _ Iog(r_n_izv:_?) 4 log <_+_20_)+
(6.4)
+ 1+6
+log<—-2——) +logI‘( 5 ),
and
m+0\ _ <+ (—1)"_1[ o* 6" e"]
©.5) logr< 2 )~k2=:1 P lm— T mmr T T
—0<al+s‘>+;2( D'
log P(nl;0> = — 9(61 +§-1>
(6.6)
( l)k (_ l)k——l 1=4(n;-3) ak
l?-:a b +Z =0 (2L 4+ 1)*.

Combining both these results (6.3) and (6.6) we have



434 LEO A. AROIAN

(6.7) ETE T
1) _ - >
+ ( 1) (tr Ig (2]6 F 1)1)}’ rz2.
o 1 $(na—3) 1 > 1 Hs® 1
(6.8) M:z—z—<§1°g"2 & 2% + 1 _<§1°g"‘_ & 2k+1>'

7. Cases C, D, and values of s, ox, {r . The formulas for case C, n; even,
ny odd are

_ 1(n2-3) 1 (_l)r n1—1 1
(7.1) N::—(r—l)!{(t,— ) (2k+1)'>+ L (s,_ 5 12)} 2o,

—1

Ed

3
.

H $(n2—3)
ny 1 : 1
log == 4+ =
o8 m 2 fe=

1
P& Zyiov

(7.2) A=z = ;

-

The results for case D, n; odd, n; even are

1 ing—1 1 . 1(n1-3) 1
(73) >\r:z = (T - 1) '{Q‘,(sr - kE ’E’) + (_1) (tr - E (2—10_"_—1)',.)}7 r g 2

= k=0

$(n1-3) 1 1 ing—1 1

Ng
log “—ot 2 G ri~s &b

1
(7-4) Mz =2 Q

We list the numerical values of sy and ¢, k¥ = 10. The values of s; are from
Stieltjes [20],

(7.5) s = 0.57721 56649 (7.6) o1 = log2 = 0.69317 0206
s = 1.64493 40668 . = 1.23370 00550
s = 1.20205 69032 ts = 1.05179 97903
s4 = 1.08232 32337 ts = 1.01467 80316
ss = 1.03692 77551 ts = 1.00452 37628
s = 1.01734 30620 ts = 1.00144 70767
s; = 1.00834 92774 &z = 1.00047 15487
ss = 1.00407 73562 s = 1.00015 51790
s, = 1.00200 83928 t, = 1.00005 13452
810 = 1.00099 45751 : tow = 1.00001 70413

By means of the formula ¢ = sk<1 — Qli)’ k > 1, t, was calculated from s .

From the well known results for the Zeta function of Riemann ¢(s), [22], (p. 265,
p. 267),

k=1

R N S | [‘”x’“‘e" >
(7~7) g.ﬂ_'sk_z—‘—r—(gj‘ A 1—_8__.xd$, S=1, E>1.
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1 L xs—l
78) o (1—2_;1) (6 = 15 fo L ds  and

a9 u=16(1-42).

8. The mean of the z distribution. From our previous formulas for z we
prove thatif ny = ny,2 = 0,and 2 < Oforng > n,,2 > 0forn; > ny. The
maximum absolute value of A;., will occur when m=1n=ow,0rn=w,n=1,

and from (7.4) or (6.8) we have max | Ay, | = + 1log 2 = .6352.

9. Formulas for Ao,y u2:z y N3z y M3:zy Az y @nd s, . We have four cases from
(5.6), (6.7), (7.1), (7.3):

1 $(n1-2) 1 1(n2—2) 1
Ao:e = [282 - > - X —.,]
=1 k? =k

1 $(n1-2) 1 $(n2—2) 1
=.822467—£—1( kZ:l I—c§+ LZ:I P)’ N1, Mg €VEn.

(n2—3) 1 $(n1-3) 1

1
(9.2) Ay = 2.467401 — ;( L GrmT & Gty

9.1)

> R Ny, ng odd.

1 $(n1-1) 1 i("i—:‘l) 1 d
(9.3) A2:z = 1.644934 - z( ’; p + & m) 5 ny even, ng O d.

§(n1-3) $(ng—2) 1
12 + T2
= (k4 2 + 3 =1 k

In all cases of course A;;; > 0 and moreover ;.. — 0 as n; and ny — . We list

1 ini—1 1 $ng—1 1
(9.5) A= —< 1; 5w > E")’ N1, Ny eVen.

(9.4) Ay, = 1.644934 — ( >, ny odd, ne even.

4 k=l

1 (i("l—3) 1 1(ng—3) 1

‘ 1 _ . — , dd.
(9.6) s i\ & &+ = (k-l—%)a) N1, N2 O

$(n1-2) 1 $(n2=3) 1

1
(9.7)  As:. = 1.803085 + 4< k_zl & m)—a), n; even, 71y odd.

1(n1-3) ‘ 1 $(ng-2)

1 1
(9.8) As:z = —1.803085 + 4( ]g m —_ ~ IE:;)’ n Odd, Ny €even,

{nz—l in1—1 1

(9.9) Ay, = 811742 — —( Z E l?‘)" N1, Ny €Ven,
k=1

$(n2=3) 1 1(n1-3) 1
+

12.17614 - 6 ( ’g (2k—-l-]_)4 = (m), ’n1 ) n2 Odd.

(9'10) A4:z
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$(na—3)

1 b 1)
9.11) A = 6.4 - L 1y
(9.11) g, = 6.493939 6( k2=; TES % =

012 i'fz 1 $(n1-3) 1
(« . ) Ati:z = 6.493939 - 6( =~ ]?4 + ~ m),

We see ... > 0 whenever riseven. If ris odd A, < 0ifng > ny,and A, > 0
if ng>mny. Also pn, >0, ny > ny, r odd, greater than one. Similarly ... < 0,
rodd > 1, ny > ny.

ny even, ny odd.

n1 odd, ne even.

10. Skewness, excess, and values of «, . We take for our measure of skew-
M3 . A3 .
ness az; = ;Wz = 35 Formy > n, a3 < 0. Further the skewness increases
2 2
negatively if 7; remains constant as ne — «. Thus negative skewness will be a
maximum for ng = o, n; = 1, and positive skewness will be a maximum when
ng = 1,n; = «. The absolute value of maximum «; is

ls

2
(10.1) |las| = |77 = 1.5351.
2

. M4 A
As our measure of kurtosis we use ay = ;2 =3+ - As a measure of excess,
2 2
A\

E, weuse B = as — 3 = Nk The excess is always positive.
2

11. Approximations for A,.. by the Euler-Maclaurin sum formula. The exact
results given previously for the seminvariants become unwieldy for n; and n,
large. Hence we develop useful approximations for the seminvariants, and give
the maximum error of the approximation. We find first our results for A,..
when n; and n, are even and » > 1. We begin with (5.6)

N, T 1)!{(8' _s kl> + (=1 <s, ) ,%)}

2r

k=1 k=1
and rewrite this as
(r—1)! { =1 P 1)
. e = =+ (—1 LAY
(11.1) A o ,2,3 (D k_Z; 7

Now find the two sums of (11.1) by the Euler-Maclaurin sum formula [21]
using the first three terms, and obtain

Ny = (r — 2)![(7&2-]'7‘ -1 + (;1),n1+7;— 1)

2 n; ny
rr—1)( 1 (=1)
(11.2) + (ngﬂ + F‘)
rr =D+ Dr+2)( 1, (=1)Y]
B 45 (n;“ + 'F*“)j
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We use the following theorem [10] (p. 539), to find the error:

If f(x) is of constant sign for z > 0, and together with all of its derivatives,
tends monotonely to zero as ¢ — «, Euler’s summation formula may be -tated
in the simplified form

Yge= [ @ e+ 30t 0+ D=+

( - l)k—l B2k k—1) __ (2k—l) 0B2k+2 (2k+1) __ (2k+1)
@ (f )+ @ T 2),(f )
where0 < 6§ < 1and B, = 1/6, B, = 1/30, Bs = 1/42, Bs = ]./30, By = 5/667

etec. If we use

(11.3) Aris = ("_2)!<"2+r_‘1 + (—D"Lr,_l),

-
2 Ng ny

+

then the error committed is of the same sign and less than

rf1 +(—1)'}.

31 \n;+l it

If we take
G —22)![(”" troly - 1)"Lrl>
Ny nm
(11.4) ( ) (1) -
rir —1 —-1)
+ 3 (né'“ + it ).I ’

then our error is less than, and has the same sign as

L1 (-1
90 n'2'+3 n;+3 *

Finally if we use (11.2), our error has the same sign as, and is less than

(7‘+4)!{ 1 n (—1)'}‘

945 n;+5 nvl'+5
12. Approximations for other values of n, and n,, » > 1. Now in case m
and n; are odd we have from (6.7)

00 0 1
121) Ne=(r—1 —_— .
( ) ( )t {kﬂé—l) (2]9 + 1) + (= k-g(zn;_n 2k + 1)'}
Applying the Euler-Maclaurin sum formula to each of the sums in (12.1) we
are led to exactly the same results given in paragraph (11). The other cases
are obvious combinations of the sums in (11.1) and (12.1), and so for all values
of n, and n, the approximate results for A,.,, » > 1 are
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Ariz

_ (r—2)!{n2+r— 1 +(_1),'n1+7‘— 1}

2 ny ni

rlf 1 (=D 1 (=1)
St G~ o

(12.2)

Formulas (11.1) and (12.1) prove the result previously given for \,.. (4.7).

13. The approximate values of \;.;. From (5.7)

1 tnazl g in1—1
Az = = [(log ng— —) — (log m— 2 —>] ,  myand n, even.
2 = k =k

We use the Euler-Maclaurin sum formula on the sum

§nz—11 ing—1 1 > 2}
kZ{ E‘{g <k+1 o

and the similar sum involved in A;;,. Hence we have

1/1 1 1/1 1 1/1 1
131) Ma=o(2-L)ygl(_1y_L1(1_1}) > 2.
13D 2<"fz n1>+6<n§ nf) 15 (né n‘{) ™ e >

The errors committed by using one, two, or three terms of (13.1) are less than,
and of the same sign respectively as

1<_1___1.> _L<l_l> _8_<l_l>
6 \n2 nl/)’ 15\n; i/’ 63 \nd i/’

For n, and n, both odd we find the same result as (13.1). The restriction =, ,
ny > 2, may easily be replaced by n,, ne = 2 (for n,, n even) and n;, ny = 1
(for n,, me both odd). When 7, is odd, n, even, the formula is again the same
as (13.1) if n; and n, are sufficiently large; but if n; and n, are small we find
in this case

1/1 1 1/1 1 1/1 1
*—2(——)+6(—~) re:(— ‘)

1 1 1 1 1 1 1
+§<1 ‘§)+6<l ‘4) _T5<1 ‘1—6>‘§‘°g2-
Another method of finding (12.2) would have been to use the asymptotic ex-
pression for log I'(z).

(13.2)

14. Approximate values of )., for values of r. We list the approximate
values of A... to three terms.

1/1 1 1/1 1 1 /1 1)
A== — = ol (I I (1
T2 <n2 "1) + 6 <n§ nf) 15 <n§ ni
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et (G n) s Gt
( T3\t T sata
)+ () -
< + ny  ni
e +”‘+3>+4< +ls) —8(—1—,+—1-,>
n2 ny Mo n
Nsis = 3("”;4 "1"'4) +20 <1 %) — 56 (ls - ls>
Ne 'nl n2 ny Yz n1

12<n2+5+n1+5>+120< n 1) 448<1 " lg)

nz n1 'ng n1 nz n

The approximate values given by Cornish and Fisher [8] (p. 319), are similar,
but have fewer terms. Cornish and Fisher give no remainder term. From
(14.1) and (12.2) we see the maximum absolute values of Ag;41:., 7 = 1, occur
whenne = ©,m; = 1l,orn, = 1,n; = «. Similarly Ae,.., r = 1, has its maxi-
mum value for n; = ne = 1. The standard seminvariants of z are defined

2:z

3:z

(14.1)

1
2
1
2

£rp = )%17 , 7 = 2. We also note that for ne > 71, f241:. < 0, 7 = 1 and hence
2

M
“In
)
for:2 and £yr11:. 0ccur when ny = 1, s = o orne = 1, n;y = o« ; and also for as,

and ag-y1. Approximately then

agrp1 < 0 also where a, = Moreover the maximum absolute values of

r— 1!

(14.2) max .. = (—1)" 3

r =2

The exact value for maximum ay., is 3 + — b4 = 7.07.
t3

16. Approach to normality of the z distribution. We prove the theorem: The
distribution of z approaches normality as n; and n; — « in any manner what-
ever, with z = %(n% - %) , 07 = %(% + ;};) . We also find an upper bound
of the absolute value of the difference between the z distribution and the func-
tion determined by the approximate seminvariants of z when n; and n; become
large. To prove the theorem we start with the original distribution of 2, and
find when n; and n, are large,

1 1 + ng $(n1tn2)
15.1 P(z) = —— —_— = ™2 dz.
( ) @) \/ 2r o, {nl €% + my o dz

We change to standard units z = to. + Z, then
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1 Hmtne) nyto+ny 2
(15.2) P(t) = 7 {nle?‘:”;‘; :_2 ng} emiotmE gy — o <t< w,

We rewrite this as

$(n1+ng)
153) P@) = L { _ m+ } dt.

,\/é; m e2nz(tv+=)l(n1+n2) + nze—2n1(tv+2)/(n1+nz)

2n9(to+2)/(n1+ng)

Expand nye and nge "1 tP/ (M) 404 add term by term. Divide

this result by 7, + n, from the numerator of P(t) to obtain

2n1my(to + 2)° 1
(15.4) L+ (1 + na)? O {(nl +nz)’}'

Hence

— 1 2n1 ng(to' -|— 2)2}“5(n1+n2)
(15.5) P() = Nr {1 + A dL

We evaluate (15.5) for n; and n, large by using logarithms.
=\2
m -;— N log {1 + 2n; ny(to + 2) }

("ll + ng)?
- n + Ne [{2’”1 nz(to' + 2)2} 1 {2711 nz(tO' + 2)212
2 (1 + ma)? 2\ (m+m)? |
E (=)™ {2n1 ny(to + Z)z}']
r=3 r (n1 + 71/2)2 ’
This gives
—2 s\2\ 7
I AEE S | =2 ning 4 {2n1m2(te + 2)°)
5 Gt 22+ 2) + oo (e 4 2) +E( D=
We reduce this then to
£ g (2™ 1 2nins (te + 2)*
g~ A 5 T3 (m + m0)?f ny+ ng
+ terms involved in the above summation. Let U = ¢ 2 < o. Since
=2 —2 2
im ¢=0, lim U=0. Similartly lim %2~ = lim % =0. Con-
n1,ng—0 s o ni,ng—w 4 " , nl.ng—'m4 n1,ng—r0 .
. niNg _ o (o +2) t+ U) t+0)
to = . H li
Slder( 1+ 7 )3( +2)'= 4(m 4+ n) " 4(m+na) encenliﬂw4(n1+n2)

0. In like fashion
2 (—1)'{2n1n2 } te +2)" _ (=10 " (o +2)"
=8 2r n 4+ ne) (n1 + np)™? =5 2r(ng 4+ ny)™?

Now clearly from our previous discussion for r = 2, we see
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. 0 (_l)r a_—zr(ta + 2)2r
li =
"lv”?iw ';3 2r (nl + nz)"—l
This completes the proof.

We now consider the function, f(z), determined by the approximate semin-
variants of z. We start with

)\l:z='1‘(l——];> and )\ru:(7—2)!{n2+r_1+(_1)r7_ll_tlr::_l}’ r>1,

2 n; ni

from (12.2) using only the first term. We may easily prove then that as n,;
and ne approach infinity in any manner whatever the function f(2) represents
a normal frequency distribution with

PR -L) wna = (),

ne M 2 n: nf

This further shows the identity of f(2) and y(2) in the limit as n; and ny — .
Since the moment generating function of f(2) is

$(ng—1—0) $(ny—1+0)
(-2 )
No ny
we have

L 0\ H(ng—1—if) '\ H{n1—1+i0)
(15.6) f(2) = 1 f e (1 - ﬁ) <1 + 3‘-’-) ds.
27 Lo

Ny n

I have not been able to evaluate (15.6). ,‘We instead shall find an upper bound
to the difference | f(2) — y(2) | as n1 and np become large. We form f(z) — y(2).
Then by use of Stirling’s formula for n! with the remainder term and by the
Fourier Integral Theorem,

(15.7) | f2) — y(2) | < (P/*"B/%"2 _ 1)y(z) where 0 <85 < 1,0 < B <1,
and

(15.8) lim |f(z) — y(2) | = 0, and for this case f(z) = y(2).
n1,ng—r0
Of course (15.7) furnishes the upper bound of the absolute value between the
frequency distribution of z and the function determined by the approximate
seminvariants of z for any values of n; and 7. .
Up to this point we have assumed that there exists a function determined by
the seminvariants

>\lzz=l<—1"—l> and xr:‘=(7_2)!{n2+7‘+1+(_1)rnl_'*"_1_'—_1}’ r>1.

2\n, m 2 ny ni

This may readily be proved by using the following theorem [18] (p. 536): The
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determined character of the moments problem for an infinite interval is insured if

E cailtn diverges (c,, = f z" dF(x)).

nml

16. The Pearson types of approximating curve. In discussing the types of
the Pearson system which may be expected to approximate the z distribution
we shall use the results of H. C. Carver [1], and the further exposition of C. C.
204 — 3a3 — 6

Craig [3]. To find the Pearson type we compute § = T3 We
. N
shall find it convenient to use the approximations a; = M and
\ . Vi (m + n)
ay =3+ 14 (ni — mm + ny) to obtain
m nz('nl + 'n‘z)
2
(16.1) (nl + n2)

0= — ) 2 2)
3nyne + 3ning + 2n7 — 2n1n. + 2n;

and consequently 0 < § < 4. The only possibilities are Types IV, VII, VI,
or V since the greatest value of a3 by (14.1) is 2.3565. Now if n, = ns, we have
Type VII, since a3 = 0, 8 > 0. In all other cases we shall have Types IV, V,
or VI according as a3 < 48(8 + 2), af = 4505 + 2), o} > 45056 + 2). We
neglect 5°. Hence o) < 85 implies

na(m — 2) + n3(16nF + 6ny) + ni(15nd — 8nl)

16.2
(162) + ma(ni + 6n3) — 2n} > 0.

A simple investigation reveals then the following results:
Type IV for ny, ny 2 2, 7y % n,.
TypeIVfornm = 1,1 Zn £ 2l50rm, =1,1 £ n <21
(16.3) Type VIforn, = 1, n, > 22.
for n, = 1, ny > 22.
Type VII for ny = n,.
Clearly the z distribution has features comparable to Type IV since both have

infinite range. However, Type IV is irksome to fit in practice.

17. The Type III approximating curve, the logarithmic curve, and the
Gram-Charlier Type A. The criterion for Type IIl is § = 0, a3 > 0. We see
that as n; and n, increase the value of 6 will decrease. Even for small values
of n; and n, Type III will furnish a fair approximation to the z distribution.
For example n, = 10, n, = 5,6 = .094. The advantage of the Type III approxi-
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mation rests on the fact that Salvosa’s tables may be used. From the chart in
[16] since of < 2.3565, we are assured that the approximating Type III curve
is bell shaped. For m; = 1, 2, n, = any value, this approximation is not all
that could be desired, although even in such cases it does have value. We note
that Type III has limited range at one extreme (— E, oo) while the range of
a3

the z distribution is (— «, «). Salvosa’s tables extend as far as a; = 1.1,
and since max a; = 1.5351, we see in some cases, and these only for n; = 1,
ny large, we shall be obliged to make use of Pearson’s Tables of the Incomplete
Gamma Function [14]. The logarithmic frequency curve

1 1 u — a\’

Je) = V2r c(u — a) eXpl: 2¢? <log b ) ]
will be useful in approximating the z distribution. While it has been discussed
by many authors we shall follow Pae-Tsi Yuan [23], where a full bibliography
may be found. In our discussion we use the 8 = a3, B2 = a4 chart of the
Pearson system as given by S. J. Pretorius [16] (p. 147), since the logarithmic
frequency locus connecting of and a is already drawn in. The justification of
this curve for fitting is due to the fact that in the 8;, 8. chart of the Pearson
system as given by S. J. Pretorius [16] (p. 147), the logarithmic frequency locus
lies in the Type VI region between the Type III locus and the Type V locus,
and consequently closer to the Type IV region than Type III itself does. Hence
since Type III fits fairly well under certain conditions and Type IV fits well we
can expect the same for the logarithmic curve. Furthermore when o3 is small
the logarithmic curve is similar to Type III [23] (p. 42), and as a; becomes
larger, a3 = 1, the difference between the two types is pronounced. However,
it is-just when a3 becomes large in the region n; = 1, n, = 22 that we find the
logarithmic curves give a fine fit, since in such cases the point (o} , 8;) lies prac-
tically on the logarithmic locus [16]. To fit the curve [23] (pp. 37, 48, 49), we
find the values of the three parameters a, b, c. To find ¢ we solve the equation
w® + 3w’ — (4 + af..) = 0 for w using the table [23] (p. 48) given by Pae-Tsi
Yuan. Knowing w we can easily solve for

¢ = (log )}, = <w + 2) wle,,
(17.1) R
. (w+ 2)a, L z—F T
a=z%— 2 T2% o =t
o3:2 02 (6 - 1)

where the value of £ must be obtained from the table of areas under the normal
curve, if the z distribution is approximated by use of areas.

Since the Gram-Charlier Type A series generally approximates a Pearson
Type IV fairly well when aj is not too large, it is to be expected that the Type A
series will approximate the z distribution in those cases when n; = 7, , and also
when aj is not too Jarge.
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18. Levels of significance and approximation methods. We shall apply the
results of the previous paragraphs to the determination of the value of z for

any level of significance «, i.e. the value of z such that L y@)dze =1 — a.

We have such levels as the median (the 509, point of significance), the 20%,
5%, 19%,, and .19, points as given in [9]. Where these tables apply there is no
need for other methods. It would be desirable to extend the results for any
level of significance whatever. The methods which we shall use are (1) the
logarithmic frequency curve, (2) the Gram-Charlier Type A, and (3) the Type III
approximation. For finding the levels of significance by the Incomplete Beta
function, the reader is referred to [13], (p: Iviii, topic (viii)). The logarithmic
curve is very simple to use in conjunction with the table of areas under the
normal curve. Trom Pae-Tsi Yuan we have
(18.1) p= here (¢! — 1)}

. et where (e
takes the same sign as az. The value of z is obtained from the table of the
aormal curve, 1.64 for the 5%, level, 2.33 for the 19, level; the value of ¢ is
obtained from w (17.1), and consequently the value of ¢ (18.1). Then we have
Za — 2

Tz
and o, are the values of the mean and standard deviation of z as given by the
proper formulas in {5), (6), 7). We illustrate with examples:

(18.2) 5% point of 2, ny = ©, ny = 1. a3 = 1.5351, w = 1.2264, 2 = 1.64,
t = 1.88,% = .6352, 0, = 1.11, and as a result zs9, = 2.72. Fisher [9] gives 2.7693.

We can also find 2 easily forny = 1,m, = . Hereas = —1.5351, w = 1.2264,

if z, = value of 2z for any level of significance, { = to solve for z, , where 2,

r = —164, t = 1197, 2 = — 6352, 0, = 111, zg, = .694 compared with
Tisher [9] 259, = 6729.
(18.3) 19, point for ny = 4, ny = 3, & = —.0701, 5, = .:819, a5:; = —.3619,

w = 1.0144, i = 2.17 and 215, = .976, while the accurate result is .9734.

From experience the values of z for any level of signiticance obtained by the loga-
rithmic frequency curve will possess an error less than 2%, of the true value of z
for the ievei of sigmficance i a; and ny are greater than twenty. It would
seem that for other vaiues of 7; and n, the error could not be greater than 10%,
and usually would be much less.

19. The Gram-Charlier Type A. "V : take the series in the form
; ~4t?
T = o) = 4000 ¢ dedVE), P00 = =
N i
‘/ == :;-"—': 4: g —'—__“.' Aiul TER e .
s ! RI
Some examples foilow.
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(19.1) We use the material of (18.3) and employ three terms of F(f). 2z =
—.0701, ¢, = .4819, A\s:; = —.0405, \;. = .0336, A; = .06032, A, = .02596.

Fitting F(f) by ordinates we have ¢ = 2.17, and consequently z = .976.

(19.2) Wetaken, = n, = 5,2 = 0, 0. = .4952, 3. = 0, Ag;, = .02798, 4; = 0,
A, = .01939.

5% point: By ordinates ¢ = 1.57, z5, = .777, while Fisher gives .8097.

19, point: By ordinates t = 2.325, 21, = 1.15, while Fisher gives 1.1974.
(19.3) We take ny = 3, np = 20, 2 = —.15909, o, = .5099, \s;, = —.10222,
Ay, = 08822, A; = .12854, A, = .05438. By ordinates ¢ = 1.523, 2, = .618,
Fisher gives .5654. ¢ = 1.989, 21, = .855, Fisher gives .7985. The Gram-
Charlier Type A is recommended only for n, = 7, and n;, n, = 20.

20. Type III approximation, the median, and 59, point. Since for Type III
the median, m,, is approximately two-thirds of the distance from the mode
to the median if as is moderate [12], [6], then we have further assuming =,
ng = 20.

1/1 1 1/1 1
@01 m"'r;(a‘a)*g—(a‘z:)'

From experience this result will furnish an accuracy with an error less than 29,
of the true value in the range above indicated.

(20.2) ts, = 1.6437 + .2760a; — 0450605 .
This was found by use of Salvosa’s tables and for a3 > 1.1 by [14].
(20.3) zsp, = 0,[1.644 + 276005, — .0451a3..] + .

We illustrate the use of (20.3) with some examples.

(204) mi=mn =1, o, =15706, a3, =0, z2=0, 2z = 2.582,

while the accurate value is zs%, = 2.5421.

(20.5) ny = o, ny =1, 03 = 1.5351, 2 = .6352, ¢, = 1.11, 25, = 2.81. The
accurate value is 2.7693.

(20.6) m1=mny =50, = 4952, @, =0, 2=0, z9 = .8141, while the
accurate value is z5, = .8097. '

(20.7) n, =4, n, = 8,2 = —.0701, 0, = 4819, a3 = —.3619, 259, = .6712,
while the accurate value is .6725.

(20.8) my = 1,ny = 10,2 = —.5835, ¢, = 1.1353, a3 = —1.4333, 259, = .7283,
while the accurate value is .8012.

In a future paper exactly the same methods will be used for any per cent point
of z whatever in order to compare with the results of W. G. Cochran [2]. If
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n: and ny are large we may use the approximate formulas for o,, as:, and 2
to obtain to the order of a%,

(20.9) 7z = 1.6440, + 7760 (l - _1-), where o, = 4/ (% - l).
ng M 2\nz m
We expand Fisher’s result [9]
1.6449 1 1 o 1
2% = \_/n_—-—_:l + .7843 o by the binomial theorem, where b = b to
obtain a comparable result
(20.10) 25, = 1.6450, + 7843 <l - l).
N2 m

The numerical examples given in this chapter illustrate unfavorable cases as
well as favorable ones.

21. The distribution of F. Historically Snedecor [19] was the first to use ¥
for €. We find

dny, dng F}nl—l

211) PF) =2 dF, O0=<F<
e B (ﬁ ’L) (m F + ) ™ ="
2’2
The distribution of F is J shaped if n, < 2, and bell shaped for n1 > 2, and for
na(ny — 2)

n: > 2 one mode exists, Fo = The two points of inflection, which

m (nz + 2) '

exist for n; = 4, are equidistant from the mode. The moments are

p <n_ ir_2_m> r (tﬂ)
’ (M) 2 2
Hm — y ng > 2m
2 2

_ 2ns(ny + me — 2) 1 1 >
g nl(ng - 2)2(7),2 - 4) 2( * o)’

= Ng
F=_—"— ng > 2
Ny — 2’ 2> %
o3 2\/5(2% + ns)
PN e
V/mina(ny + n2)
The exact results for us, ps, as, and oy are omitted because of length. We
have the theorem that as n,, ng — ° in any manner whatever the distribution

of F approaches normality with mean F=1 0= /‘/ Z(nl + %/;) The proof
1

is omitted. The only type of approximating curve of any value is Type IIL.

Of course the distribution of F is Type VI. No tables exist for Type VI.

Furthermore the # distribution approaches the Type IT1 function so slowly as

to make most approximations of little value unless az.» < 1.1, Other possible
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ni(ng + 1) mF .
t 6 = ——— =< F,and H = ——— | [13]. | =
parameters are mm D an ey b [13]. Since | asy |
2 | a3 | approximately we see that the distribution of H is more skewed than
that of 2. We mention briefly also S; — S where Si = i si, 83 = % s .
1 2

Clearly 2, F, 6, and H give equivalent levels of significance. This is not true

for z and S} — S%.
2

Finally, since F = i—; , it may be interpreted as a quotient [5]. When the
2

moments of F do not exist, it is due to the distribution function of s .

22. Conclusion. We have found the seminvariants for the z distribution, and
approximations for them. Type III, and the logarithmic normal frequency
functions are shown to be excellent approximations to the z distribution. The
approach to normality for the z distribution is proved. A formula is given for
finding the 59, level of significance for z. The F distribution is studied along
the same lines. As far as the construction of tables for levels of significance is
concerned, the z distribution is much easier to use. My sincerest thanks are
due Professor C. C. Craig for his helpful guidance and many suggestions.
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