SERIAL CORRELATION AND QUADRATIC FORMS IN NORMAL
VARIABLES'
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1. Estimation problems of stochastical processes. In regression analysis of
economic time series a situation often arises in which a certain observed quan-
tity represents a ‘‘dependent” variable at one time and an “independent” vari-
able at a later time. For instance, the following relations may exist between
the price z, and the supply y. of hogs at any time ¢:

T, = a — By + z:
Yo =7 + oz + 2.

The first of these equations expresses the price-depressing influence of large
supplies. The second equation expresses the supply-stimulating influence of
high prices one time unit (in the case of hogs, about 18 months) earlier. The
terms z; and z; represent influences of additional variables and/or random dis-
turbances. Elimination of y, leads to

(2) Ty = € — (T + z,.

The statistical estimation of the parameters e and { of such an equation is
usually attempted by the ordinary least squares method, disregarding the fact
that the observation z, is both a dependent variable at time ¢ and an inde-
pendent variable at time ¢ + 1. The following simple example shows that this
may lead to erroneous results particularly in small samples. Suppose that e = 0,

= —1, and that 2, is a purely random variable with mean 0, while only three
successive observations are available. The least squares estimate of 7 is then
given by the slope of the straight line connecting the points (z; , x2) and (2 , x3)
in the plane of z,.; and z.. This slope, however, has an expected value 0,
because according to our assumptions the conditional expectation of z; for a
prescribed value of z is equal to z;, whatever value that is. Thus the least
squares estimate of { = —1 has an expected value 0 showing an important bias.

Mathematical business cycle theories utilize systems of equations much more
complicated than the example considered [1]. The common feature of these
equation systems is, however, that they reduce fluctuations in a set of economic
variables to .

1. earlier fluctuations in the same set of variables,

2. changes in given non-economic or external variables, and

3. random disturbances.

ey

1 This investigation was carried out at the Local and State Government Section (Prince-
ton Surveys) of the School for Public and International Affairs of Princeton University.
The main results were presented to the Chicago meeting of the Institute of Mathematical
Statistics in September 1941,
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SERIAL CORRELATION 15

An equation system of this type has been said to define a stochastical process
in a number of variables [2]. The statistical testing of mathematical business
cycle theories accordingly requires a theory of estimation of the parameters of
stochastical processes. The operation of stochastical processes is also apparent
in meteorological data. Assuming a normal distribution for the random dis-
turbances, it will be seen that the mathematical prerequisite for an estimation
theory of stochastical processes is the study of joint distributions of certain quad-
ratic forms in normal variables.

In this article only the very simplest problem of this class will be treated,
namely that of testing the significance of { in equation (2) if it is known that
| | < 1 and that e is equal to zero. This is the problem of testing the signifi-
cance of single serial regression, or of single serial correlation, because the dis-
tinction between single regression and correlation coefficients disappears in this
simple case for coefficients absolutely smaller than unity.

In the next section the problem of estimating single serial correlation if the
mean is known will be stated and the difficufties involved will be discussed. In
section 3 a conditional distribution of a quadratic form in normal variables will
be derived. The proof in section 3 covers only forms in five or more variables,
but another proof covering any number of variables is given in section 4. This
distribution is then applied to devise a test of significance of serial correlation
in section 5. The reading of section 4 is not necessary for the understanding of
section 5. Readers desiring to locate only the main results can read those from
equations (3), (11), (16), (21), (36), (61), (62), (74), (79), (82), (92), and (96).

2. The estimation of serial correlation. In the stochastical process
3) Ty = pTea + 2,

where the z; are independent drawings from a normal distribution with mean 0
and standard deviation o, the parameter p may have any positive or negative
values. The process will only be a stationary one if

) lo] <L

For, since

(5) Ex, = Ex,y = Ez, =0, Ez =d,
and '

(6) Ez; = p'Ezi1 + o,

a variance of z, independent of ¢ will be possible only if (4) is satisfied, in which
case

) Exi =
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If (4) is not satisfied, however, Ex; will be an increasing function of ¢ tending to
infinity in approximately geometric progression if ¢ exceeds any limit. In this
article the limitation (4) will be imposed a priori.

It follows from (3), (7), and the assumptions regarding z,;, that the joint

distribution of the quantities 2, , 22, 25 - - - zr is given by
(8) 1—p ! H1—p2)22/0? 1\ —ig 2ot
- —3(1—p2)z2/0 =
( 5ot ) e P <ZT<72> e 72 ‘drydze -+ dzr.
Since the Jacobian of the transformation (3) from the variables z,, 2z - - 27

to the variables z; , 2, - - - zr equals unity, the joint distribution function of the
T successive observations z; , z» - - - £r that make up a sample is found simply
by replacing the z, in (8) by the corresponding expressions in the z,. This
leads to the distribution

(1 _ Pz)é —}[1—2pm+(1+p2)n] /o2
(9) dxl dxz

Yorroia oo dag,

in which the three quadratic forms
l = ai + a7,

(10) m = 1% + Xz + -+ + Tror,
n=2x;+ 5+ - + 274,

are the only characteristics of the sample that enter. In other words, I, m
and n are jointly sufficient statistics for the estimation of p and ¢. It may be
noted that these statistics remain the same if the series of observations is taken
in inverse order.

It seems natural to attempt maximum likelihood estimation of p and o, even
if the usual optimal properties of estimates so obtained have so far not been
proved for stochastical processes. Straightforward calculations lead to the
following third-degree equation for the maximum likelihood estimate p of p:

(11) (m — )L = ) = 20 = 2om + (1 + ] = 0.

Of course the root asymptotically approaching m/n has to be selected. The
corresponding maximum likelihood estimate & of ¢ is given by

(12) & =1 —2m+ (1+ nl

NS =

In view of the complicated definition of j it seems desirable as a first step
to derive from (9) the joint probability distribution of I, m and n. This requires
a transformation of the volume element dz; - - - dzr in (9) to the form

(13) o(l, m, n) dl dm dn,
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which it assumes after integration over T — 3 other coordinates the variation
of which does not change I, m and n.

Since this is purely a problem of integration completely defined by the ex-
pressions (10), the resulting function ¢(I, m, n) is independent of p and 6. The
joint distribution

21}
(14) ((12_;—;2)%% g Mimtemt Ckehnlie® 41 m, m) dl dm dn
of I, m and n will thus be known for any values of p and ¢ as soon as it is known
for two particular values.

If as particular values we choose p = 0 and ¢ = 1, the z, become identical
with the z,, and the problem is that of finding the joint distribution of the
quadratic forms (10) in independent normal variables with mean 0 and vari-
ance 1. Even if so simplified, the problem is a complicated one. While there
are infinitely many common sets of principal axis of the forms ! and n, none of
these sets of axis has a single axis in common with m.

Although no solution is offered for this problem, the following suggestion may
be ventured. Once ¢(l, m, n) is known, the mathematically simplest procedure
for interval estimation of p might well be one that confines attention to samples
having the same values of [ and n as the sample actually obtained. Suitably
chosen percentiles of the conditional distribution of m with [ and » fixed at the
observed values, would be convertible into confidence limits for p with the
help of (11).

A simpler mathematical problem is encountered in testing whether the exist-
ence of a difference between p and 0 can be established, or, in other words, in
testing the significance of serial correlation. If p = 0, the distribution function
in (9) depends only on p = I 4+ n, not on [l or n separately, and exact signifi-
cance limits for m can be derived from the joint distribution

(15) (2ra®) e 1"y (p, m) dp dm

of p and m only. This distribution will be studied in the next three sections.
It is hoped that the methods there applied will provide a useful starting point
in the treatment of other problems of the class described in section 1.

3. Distribution of a quadratic form in normal variables on the unit sphere.
Consider two quadratic forms in 7 independent normal variables with mean 0
and variance 1, '

2 2 2
p=x+x+ - + 27,

2 2 2
q Kxy + KkeTe + -+ + krX7 .

While the characteristic values of the form p are all coincident with the value 1,
the characteristic values «, of ¢ are provisionally supposed to be different from
each other, so that they can be arranged in decreasing order:

(16)
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(17) KL > K2 > o0 > Kp.
The probability density
(18) (2r) e

in the space of the variables is constant on any sphere
(19) p = po = ‘constant,

while the distribution function g(p) of p is that of the x’-distribution with T
degrees of freedom

(20) = Bt
o) = Ty
The hyper-surfaces on which the ratio
(21) r=1
14

of ¢ to p is constant are cones with the origin as vertex dissecting the same
proportion of the metric “surface’” of each sphere (19). It follows that the
conditional distribution function of r for a prescribed value po of p is inde-
pendent of that value p, , and is therefore equal to the unrestricted distribution
function h(r) of . In other words, p and r are independently distributed. Their
joint distribution being

(22) g9(p)h(r) dp dr,
the joint distribution of p and ¢ = rp is found to be
(23) f(»,q) dpdg = g(p)h (%) dpd;? = ‘1%’—) h (f‘,) dp dg.

The function h( ) may therefore also be described as the conditional distribution
function of ¢ on the unit sphere
(24) p=1

Since «; and 7 are the extreme values of ¢ under the condition (24), the function
h(r) vanishes outside these limits.

We shall now derive an expression for h(r) by comparing (23) with an ex-
pression for f(p, g) obtained through the inversion theorem of characteristic
functions. The characteristic function F(7, 6) corresponding to the variables

p and ¢ is
@) Fa0) = @ [ ey dap = D0,0),

where, according to (16), the polynomial D(n, 0) is given by

(26) D(y,0) = ‘ITII (1 — 2in — 2i6ky).
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It follows from the inversion theorem that

(@) 1o, @) = @y [ [ 0D, 0) dn ds,

the order of integration over 7 and 8 being immaterial.
Any elementary factor of D(7, §) may be written

(28) di(n,0) = 1 — 2in — 240, = (1 — 2in) (1 L )

s

Y _1-2in
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Figure 1. Paths of integration in the x-plane

First considering the integration over 8 (while n has some fixed value), we may
instead of 6 use

_ 1 — 24
(29) T T2
as an integration variable. The path of, integration c, in the x-plane then is a
straight line from 0 to — 1 ';f"l o and another straight line from 1 ;fiﬂ ©

back to 0, as indicated in Figure 1, and the transformed integral (27) runs
0,0 = ey [ [ = ginyire [ g

cy
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The integrand

@0 oo (11 (=) (- 55

for the integration over « has singularities only in the points xk = 0 and x = «,,
t =1,2---T. In order to simplify the argument we shall suppose that the
quadratic form ¢ is positive definite, or, in connection with (17), that «» > 0.
The location of the singularities is then as pictured in Figure 1. At x =
the integrand (31) is regular and of the order of magnitude of «°. Conse-
quently a curve integral of (31) along the whole or any part of the circle | x | = R
will tend to 0 if B tends to infinity. TUsing a theorem of Cauchy, it is therefore
permissible in (30) to replace the described path ¢, by another path ¢, which

1 ;?ln R, from there follows the circle | k | = R

starts out along ¢, from O up to —

to the right over an angle = up to the point ! _21.2“7 R, and from there returns

to 0 along c¢,—provided that B > x;. After reversing the direction in which
the path is followed in order to do away with the negative sign in (31), the
path so obtained can again be replaced by the path v,. shown in Figure 1,
which coincides with ¢, only up to a small distance d from the real axis, and
encircles all singularities «, while retaining a distance d from the part of the real
axis to the left of and up to «; . Finally, a path of integration v’ independent
of the value of 7 is obtained by going to the limit in which d = 0. This is an
integration twice along the part of the real axis between 0 and «; , integrating
from O to «; that branch of the integrand which is obtained by passing ‘“under”
each singularity, and going back from «; to 0 with the branch obtained by passing
“around” x; and “over” each other singularity’. The integral so obtained con-
verges at each singularity. This is also true for the singularity x = 0 because
we are dealing only with positive values of ¢, which makes the exponential
factor in (31) tend to O if x approaches zero. We shall now show that if in
(30) the path v is substituted for ¢, (with a change in sign), the order of integra-
tion over k and 5 can be reversed if 7' = 5.
The integral over %, taken from (30),

(32) I = (21r)_1f e—in(p—q/x)(l _ 21'17)—”“ d’?,

(in which « is now a positive real number), is by the substitution x* = p — g/«
transformed to the integral encountered in the derivation of the x’-distribution
(with T — 2 degrees of freedom) by the inversion theorem of characteristic
functions. It may be quoted without proof (see (3] p. 42) that it equals

_(p—q/x T
(33) I'="gergr—1n ifp =g/

I=0, ifp—gq/k £0,0ork =1

)}T—Z e-—}(p—-q/x)

Z0,0rk 2,

2 For even values of T the parts of 4’ for which « < «r can be disregarded, because on these
parts the same branch of the integrand is integrated in opposite directions.
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Tt is necessary to observe, however, that the integral I converges uniformly for
all real values of « whenever T = 5, because then

(39) [ 11— 2in 4 d,

is convergent. Because of this property, the reversal of the order of integra-
tion is allowed for T' = 5.

If now in (30) we first carry out the integration over n and use (33), we are
left with

35  flp,9) = ﬁé;;i__l) " (7’ - %)}M {I,I (1 - %)}_} 2%2’

where v, now is any curve proceeding from x = r into thelowerhalf-plane,
crossing the real axis at a point « > «; , and returning to « = r through the upper
half-plane, as indicated in Flgure 2. (The path directly obtained is a path v
consisting of twice the real axis between 7 and «; , the branches of the integrand
being taken as ; indicated by v,). Comparing (35) with (23) and (20), using (21)

Ficure 2. The integration path v,

and the well-known formula I'(x) = (x — 1)I'(zx — 1), we find the following
expression for the distribution function of r:

3r—2
(36) wry = 2221 f 1% — 1)

- Kt)§

This function vanishes forr 2 x;. In order to arrive at a positive distribution
function for k7 < r < x; that branch of the integrand must be selected which
is positive for real values of « exceeding «; .

It is worth noting that the degree in « of the numerator of the integrand is
two less than that of the denominator. Owing to this fact, indeed, the distribu-
tion function h(r) satisfies the two obvious conditions:

(37) hr)=0 for =« f "R dr = 1.
k7

For r < «r the path of integration in (36) can be replaced by any closed contour
enclosing all the singularities r, kr, - - -, k1 (r is a singularity only if T is odd).
Taking as such a contour the circle | x| = R with R tending to infinity, we find
that h(r) = 0 because the integrand is of an order k> at x = «. Further, if
v, is again replaced by v, which runs entirely along the real axis,
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];:h(r)dr=lT—1 [_/;'ﬁ_(;?;t; ]

(38) ) = %g; 1 y [H (k — m)—* ]:; (k — 7‘)”—2 dr] dk
1 (x — 7')”— -1,

L ~ 2m II<K—K,)*

because the integrand in the last integral is of the order of x at the point
K = o,

The quantities r and «, enter into the right hand member of (36) only in the
form of differences from the integration variable x. The addition of a constant
¢ to both r and the «, will therefore merely result in a change of location of the
distribution on the r-axis without a change in form:

(39) h*(r + €) = h(r).

This could be expected since such a transformation means the addition of ep
to the quadratic form ¢ studied. It follows that the validity of (36) is not
limited to positive definite quadratic forms g, since any other quadratic form
can be transformed to a positive definite form by this operation if a sufficiently
large value of e is taken.

The function A(r) is a different analytic function between any two different
successive characteristic values «, and «;,—; . The expression (36) holds for even
and for odd values of T, and is also valid for any number of coincidences in
the set of characteristic values x,. It is true that integration along the paths
v or v, entirely coincident with the real axis, such as has been introduced in
intermediate stages of the above proof, cannot be done if two or more of the
k. coincide, because of divergence of the integral. Once (36) has been established
for distinct characteristic values, however, it follows from considerations of con-
tinuity that this result holds good also if coincidences occur in the set «; .

The function h(r) has been studied by von Neumann [4] by an entirely dif-
ferent and very ingeneous method for the special case that 7 is even while no
two characteristic values are equal, and for the case that the characteristic
values are equal two by two but otherwise different. The properties established
by von Neumann, and some generalizations of these properties, can be derived
from (36). If T is even, the derivative of h(r) of order 1T — 1 is

= (% - 1)!.(_1)‘}(7’-—5—1)

(39) <£)”-lh(r)4 ’ .I:Ili"""‘li

ar [does not exist forr = x,, t =1,2--- T,

if kg1 <7 < ke and ¢ odd,

= 0 for all other values of r.
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If all characteristic values are distinct, all derivatives of an order lower than

1T — 1 exist and are continuous everywhere. Generally, whether T be even
j

or odd, at a point where k characteristic values coincide (%) h(r) will exist

and will be continuous if 7 < 3(T — k) — 3, and will not exist if j =

3T — k) — 1.
If the characteristic values are pairwise equal,
(40) Kze1 = Kz = Ng, §=1,2-.-- S,

but otherwise distinct, their total number 7 = 28 must be even, and the only
singularities of the integrand in (36) are poles at the points x = \,. Accord-
ingly the path of integration v, can be considered as a closed curve, and the
integral in (36) can be replaced by the sum of the residuals of the integrand at
all poles inside the curve:

8y (x' — r)S—Z .
(41) h(r) = (S - l) p ——‘W)——', if )\.,+1 <r< )\c,.
Here P’()) is the derivative of

S
(42) PO = IL 0 =),
its value in the point A = X, being
/ P :

(43) Pow =2 ] - I o

A= A=, u=l1

uds)

For S = 2 this is simply the rectangular distribution

(44) h(r) = A < < A

1
N — A

The numerical calculation of the distribution (36) with distinct characteristic
values is extremely cumbersome except for very small values of T. If the
characteristic values «; follow some definite pattern, however, it may be possible
in some instances to work out a reasonable approximation formula. Two ex-
amples of this type will be shown in section 5.

4. Another proof that covers also cases with 77 < 5. The proof of (36)
given above holds only for T = 5. Once the form of (36) is known or presumed,
however, another proof of its validity is available, which has mathematical
interest in itself, and covers all cases from 7 = 2 upwards. This is a proof by
complete induction, based on the proposition that, if (36) holds for T variables,
then it also holds for 7 + 1 variables. This proposition again rests on the
recurrent relation
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N TOT 4D s e [ ke
w0 = Sram ¢~ )™ [ = e~ a  an,

if Kr41 < r < K and K141 < Kr,

proved elsewhere in this issue by von Neumann® [5]. It connects the distribu-
tion function hr(r) for T variables with the function hr..1(r’) obtained by the
addition of one variable zr,; and one characteristic value kr1 .

We shall substitute the “presumed” expression (36) for hr(r) with T = 3 in
(45) in order to show that the result for hr,1(r) is the same expression with 7
increased by one. In this proof if has for simplicity’s sake been assumed that
the new characteristic value kr,1 is smaller than any of those already present,
and that no two of the «; are equal. It is then possible again to select in (36)
the path of integration v, which proceeds along the real axis from 7 to ; and
returns along the real axis to r, passing each singularity in the same way as v,
does. If the integral (36) is substituted in (45) in this form, the order of integra-
tion over « and r can be reversed, the result being

iT -1 P(%T + %) 0 — « )}T—l
2ri T(HTAT) ™

: ./; . [{ITI (k — m)}_i j: t (r — )7 — kp) R — dr:l dk.

teml

hr+1(7'l) =
(46)

Writing for greater clarity k74, = a, 7’ = b, x = ¢, 7 = 2, we have to evaluate
the integral
I b — f o\, b ~t ., )T—2d ,

) 2@, b, ¢) = | (¢ —a)" " = b)7(c — )" d
a<b<eTz3,

with the positive square roots taken if z is real and b < z < ¢. Suppose first
that T = 28 4+ 1 or odd. Then the integrand

(48) bos1(2) = (2 — @) %z — b) e — 2)%}

has singularities at a, b and ¢, of which only those at b and c are of a type such
that ¢2541(2) changes its sign if the argument z is turned once around the singular-
ity. It follows that

(49) 25541 = fs $us41(2) dz,

the path of integration § being as indicated in Figure 3. For if the curve 8 i8
contracted so as to run entirely along the real axis, from b to ¢ and back to b,
the two parts of the curve will each yield a contribution equal to I5s41,, the under-
standing being that positive square roots are taken when going from b to c.

The integrand ¢ss41(2) is regular at z = « and of order z~* in a neighborhood
of that point. It follows that

3 I am greatly indebted to Professor von Neumann for communicating this relation to
me before its publication.
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(50) =2l = ./; $2s41(2) dz,

where ¢, as in Figure 3, encloses the only singularity not enclosed by 6. In a
neighborhood of z = a the following expansion of ¢ss+1(2) holds:

S (z—a) [ (oY -4 s-1
(51) bosni(z) = D % (z = b)c —2) .

8=0 s!

The only term contributing to (50) is that with —S + s = —1. Since we
selected a branch of ¢2s;1(2) such that (z — b — z:)s_i falls on the positive
pure imaginary axis for real values of z below b, this term can be written

(52) e gim(a) 6= ac- o

S — 1)!\da ’
where positive square roots should now be taken. The contribution of this
term in (50) is 277 times the coefficient of (z — a)™", and therefore

-7 AN b — ) He — a1t
Ipspy = m'('a—a) (b a)(c a)

“— ~—
)
7 A

¢ é

F1guRre 3. The integration paths 6 and e

3 =hd o BB (5T Cape - e - o

= S — n — Ay S YV, — )L
THTE) b —=a)y""c— a)(c —0b)""

Since I'(3) = =, it follows that for odd values of T
(54) Ir = P——(f;(T%; _1);)(%)

It is easily seen that the same relation holds good if T = 28 is éven. In that
case it follows from (47) that

(a_‘l)“z,,, =3w-21 -0 - ba

b — a) (e — a)Hc — BT,

(55)
= (8 = 2)!(c — a) (¢ — b)L

In a manner similar to the transformations in (53) it can likewise be proved
that the right hand member in (54) has the same derivative of order S — 1
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with respect to c. It follows that the two members of (54) differ by a poly-
nomial Q(c) in ¢ of a degree at most equal to S — 2, the coefficients of which
may depend on a and b. However, both members of (54) as well as their first
S — 2 derivatives with respect to ¢ vanish if ¢ = b. Therefore Q(c) vanishes
identically, and (54) holds for any integral values of T not smaller than 3.

Finally, if (54) is inserted in (46) an expression for hr,1(r') is obtained which
corresponds to (36) with 7 replaced by T + 1.

It remains to prove (36) for some initial value of 7. For T = 2 the integral
in'(36) is divergent, but the form of k(r) is easily found directly. Writing

2 2
(56 =x2+x2, r=g=K11¢1+K2132’
) p 1 2 p _—xf T :cg
we find that
2z 2z -1
a(xly x2) — [ a(p’ T) ]_1 =9, ' 2 ’
ap,r) Lo, = T2, — Zre.
7 (@, ) (@1, 22) > (k — 1) > (kg — 7)
4$1$2(K1 - Kz) 4:(1(1 - 7‘)*(7‘ - Kz)*.

The probability density in the z-z:-plane is, of course, (2r) ¢, but in
making the transformation (57) a factor 4 must be applied to account for the
fact that to given values of p and r correspond 4 sets of values of z; and =z,
differing in the signs only. This leads to the joint distribution of p and r

1 dpdr
27 (K — 7)¥r — xp)¥’

and, after integration over p, to

(58)

1 .
(59) e L A

=0, ifr<k or <,

in accordance with (39).
Finally, if (59) is inserted in (45) with 7 = 2, the result is

i 1 (r - r/)—i
27 Jigrn (1 — A — )} — ko)t

if [ke, 7'] denotes the largest of x, and r’. Writing «x for r, we find that this
integral is equivalent to that in (36) for T = 3, taking into account the rule
established for selecting the branch of the integrand in (36). For, taking the
path of integration v, coincident with the real axis, the equal contributions from
the two parts of the path between «. and «; reinforce each other, while for 7’ < «;
the remaining contributions (intervals between 7’ and «;) add up to zero. This
completes the second proof of (36).

(60) hy(r') = dr, k<1 <,




SERIAL CORRELATION 27

5. Application to serial correlation. We shall now derive the characteristic
values «; in the case that

(61) g=m =2 + T3 + -+ + TraTr.

It will be of interest to compare this case with the slightly modified case of
the quadratic form

(62) M = ity + T3 + -+ + TraZr + o2 ’

which contains an additional term z;z; accomplishing a circular arrangement
of the variables. This modification was originally suggested by Hotelling in
order to simplify the characteristic polynomial. Other simplifications arising
out of the circular arrangement will appear below. It is possible, of course,
that the power of the test of significance of serial correlation is slightly affected
by the substitution of 7 for m, but this presumption needs corroboration by
a study of power functions.

The characteristic values of m are those values of « for which the determinant
of order T

-« 3 0 0
3 —x 3 0
(63) Ar=1{ 0 } —« 0 |=0.
0 0 0 —K
By development according to elements of the first row we find that
(64) Ar = —kAry — A7,
from which it follows that
(65) Ar = il + ok,
if & and £ are the roots of
(66) E+u+i=0,
satisfying
(67) b+ &= - hb = 1

By inserting the known values of A; and A, in (65), the values of ¢; and ¢, are
easily found to be such that

g T
h—§&
Although as a polynomial in « this is a rather complicated expression, the im-

plicit form (68) will suffice for finding the roots of (63). Expressing all other
variables in terms of one new variable w,

(68) Ar =
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1

(69) &= “g, £2=—2——‘;, k= 3w+,
we find for (68),
T+1 —7r—1 T 2ATH)
7 ey e _1_) S -1
( O) AT ( %) 0 — w—l 2‘0 w2 _ 1
The only values of w for which this expression vanishes are the roots of
(71) (02(T+l) — 1’
excepting those that are also roots of
(72) W = 1.
This leaves us with
(73) W = e:l:ﬂ'tl(T+l)’ t = 1’ 2’ e .
The corresponding characteristic values are
(74) x¢=cos-7—,:_—t1, t=12---T,

because the same value of . is obtained whether the positive or the negative
sign is taken in (73). These are 7 different values «,, and hence each one is a
single root of (63).

The characteristic values of 7% can now be derived from (68), although a
simple straightforward method based on the properties of circulants is also
available (see [6], p. 13). Writing

-« 3 0 3

3} —x 1 0
(75) Ar=|0 } —« 0 |=Ar+2(-1D)"'}) "— $Ara,

4} 0 0 —K
we find easily from (70) that

T+1 — 741 —1 — 741
A — (—1\T w - @ _ _ @ -
a B (TEE -t
= (" +0T=2)=—(—3)""(cos Ta — 1),

if
(77) w=é"
A complete set of the values w; for which A7 vanishes is found from
(78) a¢=27"t, t=1,2.---T,

and the corresponding characteristic values* , are, according to (69),

4 In order to simplify the formulae, the numbering of characteristic values according
to decreasing size has been abandoned in (79).
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(79) Tc¢=cosm=cos2—;,t, t=1,2---T.
In contradistinction to the case without circular arrangement, the characteristic
values with indices ¢ and T — ¢ now coincide, such that all characteristic values
are double except one (kr = 1) if 7" is odd, and except two (kr = 1, kir = —1)
if T is even.

Taking advantage of the duplicity of almost all characteristic values, Ander-
son [6] has derived expressions equivalent to (36) for this case, using methods
that depend on this particular condition. On the basis of these results he has

computed 99- and 95-percentiles in the distribution of # = — for the values

T'=23,45,6,79,11, 13, 15, 25, 45, interpolating the percentiles for inter-
mediate values of 7. The 95-percentile for T = 45 is 0.240, as compared with
0.261 for the normal distribution that provides an asymptotic approxima-
tion.

Whereas on this showing the normal approximation is slow in becoming ac-
curate with increasing T, a method for obtaining a much closer approximation
is available, which works out simplest with respect to 7, but can also be applied
to . The principle of this method is applicable whenever the characteristic
values follow a definite mathematical pattern.

The method consists in replacing the finite number of discrete values & in
(36) by a continuous variable A, distributed according to a density function
suggested by, and as closely as possible approximating to, the scatter of the
values %, . According to (79) the values &, are ordinates of the cosine function
at equidistant points spaced out so as to cover one complete period 2r of that
function. It is natural to approximate this scatter by the density function

T

(80) x(\) = =

of the cosine A = cos 2%T of an expression in which the variable 7 has a rectangular
distribution between 0 and T. The numerical factor in (80) is such that

1
(81) [swa=T

equals the total number of characteristic values to be replaced by a density
function. The idea underlying the substitution of %(\) for the &, is to obtain
what intuitively seems to be in some sense the closest approximation to the
exact distribution function R(7) that has continuous derivatives of any order
in any point except the two points (f = —1 and 7 = 1) that limit its
range.

The factor in the integrand in (36) which involves the & is approximated as
follows:

1

4 T 1
_ =\ — —-2—2 log (x—%;) _ T log (K —_— A) ]
©2) :I;Il (e = &) ¢ = exP[ 2r Ly (1 — )t dX |-
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In order to evaluate the integral

_ Ylog (k — \)
(83) J= L=y

we shall first prove that its real part is independent of «, or that
'log (k — A) — log (—2)

d\

(84) R . T = dax = 0,
if R denotes “the real part of”’. The integrand in (84) has singularities at the
points A’ = —1, 0, x, 1. These are of two types. The singularities A = +1

are introduced by the denominator and make the integrand change its sign if
the argument A is turned once around either singularity. If starting from a
point on the real axis we turn the argument A once around either of the other
singularities, A = 0 and A = &, introduced by the numerator, then the real
part of the integrand is not affected, while 2x¢ or — 2x7 is added to the imaginary
part of the numerator, depending on the sense (clockwise or anti-clockwise) of
the rotation and on the sign of the logarithm in (84) responsible for the singular-

F1GuRe 4. The integration path g8

ity. It follows that one revolution along a closed curve 8 containing all four
of the singularities, as indicated in Figure 4, carries us back to the same branch
of the integrand, after mutually offsetting additions to the imaginary part of
the numerator and after two changes in sign. This is in accordance with the
regular character of the integrand at the point A = o.

It follows furthermore that the left hand member of (84) can be replaced by

log (k — A) — log (—X)

(85) o [ RSV g W g,
For, if the curve 8 is constricted to a path 8’ running along the real axis from —1
to +1 and back to —1, the contributions, of the two halves of the path will be
equal to each other, also with respect to sign. This is also true for the parts
of the path 8’ between 0 and «, because the behavior of the real part

log |k — A| — log |\ |

of the numerator in passing either of the points 0 and « is independent of the
side along which the singularity is passed".

5 For the same reason it is not necessary to specify in (84) on what sides these singularities
are passed, although this is necessary with respect to x in (83) where the imaginary part has
not been eliminated.
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Finally, if 8 in (85) is replaced by a large circle | X | = R, the validity of (84)
follows from the fact that (85) tends to zero if R tends to infinity because the
integrand is of the order of magnitude of A2

The real part of the integral in (83) accordingly is

log |\ | ' log A
(86) RJ = [ =2 [ g B

or, by the transformation A = sin z,

2RJ=2./; logsinxdx=2/ logcosxdx:f log (sin z cos ) dz
0 ]
(87) .
2
=f log(%sin2x)dx=’§'10g%+%w,
0

so that
(88) RJ = —xlog 2.

In order to evaluate the imaginary part 3J of (83), it is necessary to specify
on which side the singularity « is passed by the integration variable X\. In fact,
both cases need to be considered; the passage of X “over’’ « for values of x on
the first part of the path of integration v, of « in (36), where « goes along the
real axis from r to 1; and the passage of A “under” « for values of x on the second
part of its path v, , from 1 back to r. If the upper sign in the following formulae
relates to the first of these two cases, we have

(89) ]J = +1rzf (1—)\2)*— F wiare cos «,

and, from (88) and (89), we find for the last member in (82)

(90) e—}TJIr = 2}1‘ ed:if‘isrc cos k

Writing

(91) arccosk = a, k = cosa, €7 — ¢ = 2 sin 1T,

we find the following approximation for i(7) by inserting (90) in (36) as indicated
in (82):

(cos @ — )2 sin T sin a da

i 4T parccos 7
(92) h(7) ~ u ];

™

Calculations of the distribution function and of its percentiles will be much
simpler for this approximation than for the exact function.

In the case of r = m/p in which no circular arrangement is made a slight
complication arises. The characteristic values «; given in (74) are again ordi-
nates of the cosine function at equidistant points, but they do not cover a com-
plete period or half-period of this function. Probably the most accurate pro-
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cedure would be to replace the limits of integration in (83) by cos [(3#)/(T + 1)]
and cos [(T + 3)x/(T + 1)], so as to have each discrete integral value of ¢ in
(74) contribute an interval (¢ — 3,¢+ 3) of unit length to the range of
the rectangularly distributed variable 7 now defining the distribution of
A = cos [#7/(T + 1)]; while making such an adjustment in the numerical
factor in (80) that. the equivalent of (81) with the new limits of integration is
satisfied. However, the evaluation of (83) and the simplicity of the result essen-
tially rest on the fact that the limits of integration coincide with singularities
of the integrand. In these circumstances a rather simple result can again be
obtained by introducing two further changes which very nearly compensate
each other. The first change is the arbitrary extension of the limits of integra-
tion to what they are in (83), while increasing the numerical factor in (80) in
such a manner that the integral in (81) will be 7 4 1 instead of 7. This leaves
the described contributions of the discrete values of ¢ in (74) to the range of 7
unaffected, but adds to that range the two intervals (0, 3) and (T + 3, T) of
half a unit length not representing anything that was already present. This
can be largely offset by introducing two additional discrete values ¢ = 0 and
t = T + 1, each with the negative weight — 3§, if the weight of all other discrete
values is considered to be +1. Instead of (82) we then have

T
—4 3 log (k—x¢)
e t=1

(93) e [_T+1 'log (x — A)
exp 2r L, @ — ap

If this expression is inserted in (36) with v, constricted to v, , the argument of
(94) e(i) log (x—1) _ (x — 1)1/4

is —wt/4 when « goes from r to 1, and x¢/4 when « returns from 1 to r. On
account of

dX+i108(K—l)+ilog(x+l)]

1 - &)Y = sin? a,
TVl _ NIl — 9 sin [3(T + 1)a — n/4],
the result now is
(%T _ 1)2ir+1

™

(95)

h(r) ~
(96) arc cos r
) j; (cos @ — )" ?sin [3(T + 1)a — =/4] sin*” & da.

It is not necessary to prove by direct integration that the conditions equivalent
to (37) are satisfied by the approximate expressions (92) and (96). This follows
from the fact that the difference of 2 between the degrees in « of the numerator
and the denominator.in (36) is preserved by the substitutions (82) and (93);
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that the numerical value of the limit for x — « of «* times the integrand in (36)
is not changed; and that no singularities outside the segment —1 =< « < 1 of
the real axis are introduced.

There is, of course, a certain degree of distortion involved in replacing the
exact distribution functions by the smooth approximations derived. Such dis-
tortion is most serious in so far as it occurs at the tails of the distribution, where
the usual significance limits are located. For instance, the exact distribution of
7 is asymmetric if T is odd, and ranges from cos [(T — 1)x/T] to +1, whereas
the smooth approximation is symmetric and ranges from —1 to +1. In the
case of r both the exact distribution and the approximation are symmetrie, but
the former ranges from cos [Tx/(T + 1)] to cos [x/(T + 1)], the latter from
—1to +1. However, this difference is to some extent compensated by a curious
anomaly in the function (96). This function actually dips below zero on sym-
metrically placed small intervals adjoining —1 and 41, the length of which is
of the order of the difference 1 — cos [x/(T + 1)] between unity and the highest
characteristic value. Percentiles must ¢herefore be counted on both sides from
two points absolutely smaller than unity, defined by requiring that the small
parts of the area ‘“‘under’” the curve (95) outside these points are algebraically
zero each.

These distortions have importance only for small values of T. Anderson
finds ([6] p. 52) that the exact function %(7) is symmetrical within three-decimal
accuracy for all values of T = 11 (the modal value k(0) for T = 11 is about 1.27).
There are in the case of 7 three characteristic values &, exceeding the 95-percen-
tile as given by Anderson for T = 7; 5 for T = 13; 11 for T = 25. Correspond-
ing numbers for the 99-percentile are 3 for T = 13; 9 for T = 25; 17 for T =45.
These numbers suggest that the approximations (92) and (96) will provide good
significance limits long before the normal approximation is acceptable. Accurate
calculations will be needed to find out from what value of 7 onward the ap-
proximations can safely be substituted for the exact distributions.
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