OBSERVATIONS ON ANALYSIS OF VARIANCE THEORY

By Hirpa GEIRINGER!

Bryn Mawr College

One of the important problems of theoretical statistics is the following. Let
Z1, X2, +++ Ty be the results of N observations; by means of these results we
want to test the hypothesis that V(z) is the distribution of the 7th chance
variable z;. In that situation we often decide to choose a test function
F(xy,x2, - - - zy) and to determine the distribution of F under the above assump-
tion. By means of this distribution we compute the probability of & = F = &
and compare this result with the observed value of F.

Suppose there are m groups, each of n observations on m-n chance variables
z, . We may test hypotheses regarding the mn distributions of the z,, in the
way just mentioned. In analysis of variance theory we often use as test func-
tions certain quadratic forms s and s’ (““variance within”’ and ‘“‘among classes’’)
and their quotient (multiplied by m(n — 1)/(m — 1)), usually denoted by z.
Its distribution has been investigated by R. A. Fisher [2] under the assumption
that the chance variables are mutually independent and subject to the same
normal law. ‘“The five per cent and one per cent points of this distribution
have been tabulated by R. A. Fisher and are used to test, whether these two
estimates of the same magnitude are significantly different. One gets thus a
test of significance to test whether our sample is a random sample from a homoge-
neous normal population or not’ If the probability of a certain z-value is too
small we shall reject the hypothesis that the sample is a random sample from a
homogeneous normal population’ [5].

The use of Fisher’s z-test is also recommended if we may reasonably assume
that the theoretical distributions are approximately normal. “Unless some
rather startling lack of normality is known or suspected analysis of variance may
be used with confidence.” This last remark can be understood by considering
that, as we will see in detail, some of the basic results of our theory are inde-
pendent of the normality of the populations. It is however this assumption of
normality which makes possible the complete and elegant solution of the problem
of distribution obtained by R. A. Fisher.

If it is not possible to determine the exact distribution of a test function under
sufficiently general assumptions we may:

a) make simple and particular assumptions concerning the populations

b) investigate an asymptotic solution of the problem, i.e. determine the distri-
butions of the test functions for large samples,’ or

¢) study the mathematical expectations and the variances of the test functions

1 Research under a grant in aid of the American Philosophical Society.
2 My italics.
3 of. statement (a) page 355.
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for small samples under appropriately general assumptions regarding the popu-
lations (this should be done independently of concepts of estimation, unbiased
estimate ete.).

This last procedure provides us with tests which suffice in actual practice.*

It is well known that the expectations of the two forms si/(m — 1) and
st /m(n — 1) are the same even if the populations are not normal, but equal each
other (Bernoulls series). In addition we shall prove the theorem, familiar in
case of the Lexis quotient [9], that under these conditions the expectation of their
quotients equals unity (section 1, (b)). The next step consists in investigating
certain inequalities characteristic of Lexis or Poisson series. The different
criteria will be completed by the computation of the respective variances (Sec-
tion 1, (¢)).

In addition to the above mentioned test functions other symmetrical test
functions have been considered [5]. In studying these we shall again assume
general populations. It will be seen that the Lexis as well as the Poisson series
may be characterized by equalities (instead of inequalities) (Section 2, (a)), and
we can generalize our theorem on the expectation of the quotient (Section 2, (b))
to this case. Then the variances of these test functions will be investigated.

It seems worthwhile {0 omit the assumption of independence of the chance
variables and to study different kinds of mutual dependence. These investiga-
tions lead to interesting relations among the expectations® (Section 2, (c)).
They seem to be related to Fisher’s “intraclass correlation’ and to supplement
his idea.

Most of the results of Sections 1 and 2 can be generalized to the analysis of
covariance (section 3).

1. Variance within and among classes.

(a). The test functions. Let z,, (u =1,---m; v = 1, --- n) be m-n chance
variables and put

1 1
a, = - X, a, = — xX
W n; WYy v mZI WYy

1)
1 &L 1 m 1'11 .
- PIPIL LD ILE SIS

4 The important paper of Irwin [5] assumes normality of the populations. H. L. Rietz
[8] computes the expectations of s2 and s under rather general assumptions for the popula-
tions and considers the cases of Bernoulli, Lexis, Poisson series, but does not consider tests
of significance; nor does he consider the symmetric test functions (section 2 of this paper).
In later papers on our subject the assumption of normal and independent populations
recurs. Another approach [11]in the problem of analysis of variance is to use ranks instead
of the actual values (this has been pointed out by the referee to the author, who is very
grateful for this comment).

5 They generalize previous results of the author.
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We then introduce the three quadratic forms
@2 =22 @w—0) s=22(u—-0% =222 (2w—a)
" » By
with the respective ranks (degrees of freedom)
(3) r=mn— 1, e =m — 1, 7y = m(n — 1).
Then we have
4 =g+, r =7+ Tp.
The m-n theoretical distributions are assumed in this section to be inde-
pendent of each other. Let V,(x) be the probability that z,, < x and
(5) o= [2dVu@, b= [ (&= ) dVa),

where the integrals are Stieltjes integrals; thus the V,,(x) may be e.g. general
arithmetical or geometrical distributions.’®

Let us compute the mathematical expectation of the three test functions with
respect to the m-n-dimensional distribution:

Vn(-’vu) V12(~’612) v Vm»(xm»)-

(6) E[F(zu, - Tma)] = f cee f F(zu, «* Tma) AVu(zu) «* + AVimn(@on).

We have then

@ E I:mnsz— 1: - n—:;z ZZa, + mnl- 1 22y — o,
8) E [msf 1: = "%L 2z + El_i - nZ(ay — a)?,
9) E [m(an—l)] - 7%1% T2t + Mn“l—“‘f) 250 — o).

From these equalities we deduce:
1. If the m-n theoretical mean values a,, are all equal (Bernoulli series), then the
expectations in (6), (7), (8) are equal; i.e.

(10) E; (m ! 1) = B <’r72%) =B (n%ﬁ)

2. If the a, are equal “by rows” but differ from row to row (Lexis series), i.e.
ay = aybut oy # a. Then

¢ V,,(z) is a monotone non-decreasing function. Hence it has at most a denumerable set
of ordinary jump discontinuities; at such a point it is continuous to the right but not to
the left. Moreover it possesses a finite derivative v,,(x) almost everywhere.
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s s _ mn(n.—1) 2
(1) EL[m—l_mn—l:l—(m—l)(mn—l);(a"_a)>0’
. s; 8% _n
(12) EL[m—l_m(n— 1)]—m— 1;(a,.—a)2>0.

3. If the ay, are equal “by columns” but differ from column to column (Poisson
series), then oy = & ; @, = a and

s & m - 2
(13) Ep[m—l_mn—l]__mn_—l;(a'—a)<0’
s s 1 _ 2
(14) Ep[m-—‘l_m(n—l)]——ﬁ—:lz.:(a'_a) <o.

In the Lexis theory’ we speak of normal, supernormal or subnormal dispersion
2

depending on whether the observed value of s_,, i is equal, greater or less than
2
that of o s_ i and we usually consider the quotient
2 2
(15) L=_" s

m—1/ mn—1"

In analysis of variance theory we usually compare s2/(m — 1) (variance among
rows) with s3/m(n — 1) (variance within rows) and introduce the quotient

(16) V=

It follows from (4): If L % 1 then V % 1 and conversely. We may therefore
speak of normal or non-normal dispersion with respect either to L or to V.

The results given by equations (10)-(14) can be expressed as follows: If the
m-n theoretical distributions are all equal the mathematical expectation of s*/r, of
s2/ra and of s5,/r,, are equal. In the case of a Lexis series the expectation of s&/ra
is greater than s*/r and greater than s,/r,, and in the case of a Poisson series the
oppostte 1s true.

We generally use these facts in order to make inferences about the unknown
populations from the observed values of our test functions V,(x). If e.g., the ob-
served value of s3/r, is “significantly’”® greater than that of s*/r we may assume
that the theoretical distributions form a Lexis series. But of course such a
significant deviation can also be explained by quite different assumptions re-
garding the populations (see Section 2, (c¢)).

(b). Mathematical expectation of the quotient of the test functions. We are going
to prove in this section a theorem of some mathematical interest. This theorem
is a generalization of an analogous theorem in the Lexis theory [9].

7 The relation between these considerations and the Lexis theory will be dealt with in

another paper.
8 The meaning of the word ‘‘significantly’’ has of course still to be explained.
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We have seen (10) that the mathematical expectations, defined by (6), of the
three test functions
& ' - s " _ 8%
mn — 1’ m—1’ m(n — 1)’

are equal if the m-n populations are equal (i.e. have identical distributions). We
will show that even in this case

(17) E(%)=l, E(%)=L

Let us put m-n = N, and let the N chance variables be arranged in a one-dimen-
sional sequence. As S’ and S are of second degree in the z, (v = 1,2, --- N )
we may write

S—S=A+me+2aﬁ+;am%
vykp

where the A, B, , C, and D,, are constants. Now form the expectation, defined
by (6), of (8’ — S) under the assumption that the N populations are equa,l

V,z) = V(z) (v = 1 --- N). Denoting by « and o’ the mean value and vari-
ance of V(x) and putting *B, = B, 2C, = C, ZD,, = D we find

E(S' — 8) = A + Ba + C(* + &) + Do’ = 0.

And as this equality holds for an arbitrary distribution V(z), we deduce that
A =B=C=D=0. Letus then compute under the same assumptlon the
expectation of (8’ — 8)/S. Now the expectatlons of 1/8, z,/8, 2/8, z,,/8,
take the place of the expectations of 1, z,, x>, z,2, . But these new expecta-
tions are also independent of the index v, because of the equality of the N popula-

tions and the symmetry of S in the N variables 21, - -+ v . Hence we may write
1 ] A x,
bQ)-n HQ)m #E)m 5w
and we find

' — 8 5
E ___S__ = F g—-l =AM+BM1+CM2+D#3=O’

because A = B = C = D = 0. Hence E(S'/S) =

We may prove in the same way that E(S"/S) = 1.

We have however proved (17) only under the assumption that all the &
populations are equal, whereas (10) is true under the mere hypothesis that the
mean values of the populations V,(x) are the same.

(c). The variances of the test functions. The distribution of our test functions
and of their quotients V or L have been determined and tabulated by R. A.
Fisher under the hypothesis that the m-n chance variables are independent and
obey the same normal Gaussian law. Consequently by means of Fisher’s distri-
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bution we can test only the hypothesis that the theoretical populations have
both these properties.

If in a statistical problem it is not possible to determine the exact distributions

of the test functions under sufficiently general assumptions regarding the popula-
tions, one of the following procedures is frequently used:
a) one tries to find an asymptotic solution of the problem, i.e. to determine the
distribution of the test functions in question for large samples. The distribution
of the analysis of variance quotient, as n tends to infinity, has been established
by W. G. Madow [6]. The same problem for the Lexis quotient was solved as
early as 1873 by Helmert [4]. As m tends to infinity the limiting distribution
is a Gaussian distribution, which follows from general theorems of v. Mises [7].
b) For small samples, i.e. if m and n are finite we may determine the expecta-
tions and the variances of the test functions for appropriately general popula-
tions and establish in this way a test of significance.

In this section we shall compute the variances of our test functions. Let us
first assume arbitrary but equal populations V,(z) = V(z) and denote by M;
the 7th moment about the mean of V(x):

M= [ @~ o) V), G=1,2 ),
(18)
a= fx dv(z), M; = o°.
2
Then we find immediately the variance of S = ns— i using a well-known

formula for the variance of a sample variance

2 — A)? —_
(19) Var{ s } = Var {E—E(“’"” “)} - L {M4 ~mn— 3 Mﬁ}
mn — 1 mn — 1 mn mn — 1

If we need the analogous variance in case of different populations we let

t2=2;(y,,—-b)2 whereb=;(y1+---+y,)
-
and let V,(y), (0 = 1, --- r), be r populations, and
1 r
.Bp - fde,,(y), ;';BP - ﬁr
[w=-8)av.m)=u?, (=12 =12 u =d.
Then the following formula may be used:

Var () = <T : 1>2 zr; [uf? — i

(20)

+47 6, — 8 + 4 R 6 — B+ 5 Dalel

r
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We may check (20) by putting the V,(y) all equal to V(y) and find

(20") Var () = "2 [(r — D — (r — 3)0)

in accordance with (19).
In order to détermine the variance of s> by means of these formulae we con-

sider% > (@, — a)asa sample variance. The n distributions in the nth row
»

are Vu(z), Via(x), - -+ Via(z). Or, if we assume that they are all equal, simply
V(x) = V(z,). Let us put %x,,, = 2z, and V(z,) = V'(z.), and denote by
W(a,) the distribution of the average of the elements in the uth row:

W(a,) = f ‘.- f AV'(2) dV'(22) -+ - AV (2un))V' (@ — 2i1 — *++ — Zyn_v).

There is such a distribution for each row, and we have to find the variance of
Z,, (@, — a)’ with respect to the combination of these m distributions. In order

to be able to apply (20’) we need the second and fourth moments of these
distributions. We have for the mean value o’ of W(a,):

1
o' = n-(mean value of V') = ne-oy=a

©

and for the variance u; of W(a,): ps = Z. We still need us . By repeated use

S

of the formula

[ 1@ = o) + @~ af av () avia
~ [ @ - ave) + [ (@ — @ avian

+6 f (@1 — a0)* dV(z) f (22 — a2)? AV (z2),

and of the fact that W(a,) is simply the distribution of the sum of n variables
2, wWe get:

T U o) I A e

where M, and M; are the values introduced in (18).
We now apply (20’) and get

Var [2(a, — a)'] = "L”:—l [(m — Dug — (m — 3)s].

and substituting the values of u; and us , we find by an easy computation the
final result:
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2 2
mMz-

(21) Va.r{ n Z(a, — a)z} =1 (M, — 3M3) +
m — 1 mn

If we compare this last formula with (19) we see that the right side in (21)
is of order 1/m, whereas that in (19) is of order 1/mn. Therefore, for sufficiently
large values of n, s*/r will be “more exact” than s3/r, . In some presentations
of the Lexis theory it is implied that the value s3/r, is to be compared with the
theoretical or exact value s’/r; we may see a certain justification for this idea in
the result just mentioned. This may lead us also to use s’/r as an unbiased
estimate of the unknown population variance if o, = a (see (7) and (8)).

By means of the simple formulae (19) and (21) we can now easily test whether
the values of s’/ and s./r, whose expectations are equal in case of equal popu-
lations differ significantly from each other. Of course we must compute as usual
approximate values of M; and M, from the observations. If n is comparatively

large—as it usually is e.g. in the Lexis theory—only the term m—z— M; will be

significant. If the hypothetical population is Gaussian (M; = 3Mj) the right

2
M; and that of (19) to M ; hence these vari-
m — 1 mn — 1

side of (21) reduces to

ances are in the ratio of 1 / ; , as one might expect.

Ta
2. Symmetric Test Functions.

(a). New equalities for Lexis and Potisson series. In Section 1, starting with the
formula s* = s} 4 s, we used the test functions s*/r, st/Ta ,85/Tw . This implied
a difference between rows and columns, which is often justified, e.g. in the Lexis
theory. The following decomposition of s* is symmetric with respect to rows
and columns. Let

1< 1 -
'"leﬂ'-: Ay _Exuv=av,

n y=1 m u=1
(1) 1 m n 1 m 1 n
— y=—2 a,=>2 4 =a,
mn ,;1 ; T = ,; o .;1
and
2 2 2 2 2 2
@ s = Z3(xw — a), s; = nZ(a, — a)’, Sw = ZZ(Ty — @)

8§ = 22(zp — ay — @ + a)’, 5 =mz(a, — a)’, 8 = 22(x, — @)’

with the respective ranks
r=mn — 1, re =m — 1, e = m(n — 1),

(3) ) _
R=(m-— 1)n-—1), fa=n—1, o = n(im — 1).
Then

(5) f=s+8u+S=s+s=258+35
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and

(6) T=T¢+f¢+R=Ta+Tw=f¢+fw.

We find the expectations of these forms under the assumptions, of arbitrary
populations V,,(z) which are independent and different from each other. We
then specialize for Bernouilli series, Lexis and Poisson series of populations
respectively. Denoting by a,, and o3, the mean value and variance of V,,(z)
and by

1 1 1 1
(6) a,.=;L;a,,,,, Eh:&?%v; a=ﬁ2a»=1—22&v,

we find for the expected values defined in (6) Section 1:
82 7 1 2 1 2
B[ | = 20+ g 22 =

83 ] 1 2 1 2
E[m—l —n%zzdpv-l_m_lnz(aﬂ—a)’

E[ & ] s e meta — 2,
(@) no 1l mn w1
[(m —1)(n— 1)] 77117@ 2o + l)l(n j 22 (aw & + @)
[m<n - 1>] o 200+ <n1_ py 22w = el

In the Bernouilli case which as far as the author knows is the only one which
has been considered in this connection [5], we get the wellknown result:

s ] n ]
EB[mn—l:l_EB[m—l =& n—1

Now let us assume a Lexis series, with

®)

2 2
9) Oy = Qy ;5 oy # a; a = a, O = Ou

Then (7) reduces to

nz(all - a)2;

S~ Zl~ B~

t4
&

)
+

)

Sa | _
A

2 A
Sa
Bl 5]

-1

2‘7;24 + m;—I . nE(a,. - ’a)z’

4
o
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S _ 1
B [(m T =D " m >
82 7 1 P
By I:m(n — 1) “m Zous
_1_
m

B [Mﬁ—_ﬁ =

From these formulae we deduce—besides the inequalities (11), (12) of Section 1,
and the corresponding formulae where the role of rows and columns is inter-
changed—the further inequalities:

(11) E. [nTi—:“l] > E, [1@52’0:?] > E, [n—%—l]

But there are also characteristic equalities, namely:

R e e R e

These equalities’ seem often to be more appropriate than the usual inequalities
in testing the hypothesis of a Lexis series.
Let us finally consider the Poisson case which is very often neglected. There

we have:

1
20‘2‘ + m E(C(“ - a)z.

- - 2 2
(13) Quy = Oy, a, #= «, o, = a, Ouy = 0y .

Then—beside the inequalities (13), (14) of Section 1 and the corresponding
ones where the role of rows and columns is interchanged—we find the new
inequality:

(14) Ep [

which of course corresponds to the Lexis inequality (11). The characteristic
equalities are now:

I R [ e PO

These equalities (12) and (15) can be used in testing the hypothesis of Lexis or
Poisson series respectively in the same way as the equalities (9) for the Ber-
nouilli case. We shall deal with the variances of these test functions in (d) of

this section.
(b). Mathematical expectations of the quotients of certain test functions. We
2

2
a

-2
Sq — m - 2
m— 1 n—l]_ n—lz..:(a" o) <0,

have seen that in case of a Lexis-Series the expectations of - s_" i of
S2 82

——  —andof —* — areequal. We will show that even in this case

(m—1(n—1) m(n — 1)

® See [10] pp. 81-90 for proofs of these inequalities for the case of normal populations.
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=2 2 -
Sa Sw _
EL[n—l m(n — 1) ] =1
s S ]
B, [m(n -0/ m=Dn-1J L
(16) 2 & -
E"[n— 1/ (m—1D(n—1)_ =1
S? s ]
B [(m “Da=0/ mn=1] "
§2 _ S2
Let us write for the moment: —=* - = Tand ——~ = T. Asboth
n—1 (m — 1)(n — 1)

T and T are of second degree in the z,, we may write:
T — T=A+ Z prx‘w + Z vax:v -+ Z Z Dﬂpii:ﬂz'ixﬂhixﬂzi;
oy v

where the A, B, C, D are constants. The last sum contains }-mn(mn — 1)
terms and not both yy = psand © = j hold. Compute the expectation of T — T
with respect to populations which form a Lexis series V,,(x) = V.(z). Denote
by @, o, the respective mean values and variances. We then have because
of (11):

0=EJT—-TI=A+ > a2 B,
I v
+ Z (”;2& + a:) Z Cw + Z Q) Oy Z Dyyiiuyi
I3 v

H1p2 L)

or introducing Y B,, = B,;2.Cu=20C; > Dyjiiy; = Dyyu, we get:
v v %7

0= EL[-T - T] = A + Z Ot,.Bp "I‘ Z (0',2; +a,2,)C',. + z“: amaﬂzDI‘u‘z .
» u P12
As this equality is exact for an arbitrary set of V,(z) we deduce that A = 0,
Bﬂ = 0; CM = 0: ‘Dl‘ll‘2 = 0. —

Let us now compute under the same assumption the expectation of (T — T')/T.
Here the expectations of 1/T, x,,/T ete. will take the place of the expectations
of 1, z,,, --- . But these new expectations will not depend on the index »
(index within the row) because the populations are the same within each row
and because of the symmetry of 7' in the m.n variables z,, . Hence we can put

2
E(%,) = b, E(%) =1, E(’%ﬁ,) =1, E(’E"T—x"ﬂ> = Dy, etc.

and we get

E[T - T] _ E(% - 1) =Ah+ X LB+ L LC+ X by Dupy = 0,
Lo L K12

because all the coefficients are equal to zero. Our theorem is thus proved. The
same conclusion holds if the denominator—without being symmetric in all the
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m-n variables—does not depend on the row index. And as this last property
holds for s, the expectations (16) are all shown to be equal to one.

Analogous relations are valid for Poisson series.

(c). Non-independent populations. We omit in this section the assumption of
independence of the m-n populations but assume the theoretical population to
be a general m-n-variate distribution:

(17’) V(xll y X1z, "0 Lmn)-

From V(& , T2, * - * Tma) We derive the mn one-dimensional distributions V()
(u=1,---m;» =1, --- n) by letting all the variables except z,, tend to + ,
because V,,(x) is the probability that z,, < z regardless of the values of the
other variables. In a similar way we derive the mn(mn — 1) two dimensional
distributions V,,, .0, (%, ¥), that is the probability that x,,,, < z and Z,,, = ¥.
We get this distribution from (17’) as all the variables Wlth the exception of z,,,,
and z,,,, tend to +«. We denote as before by «,, and o5 the expectation of z,,
and (z,, — o)’ respectively. But the expectation of (Zu,,;, — @upy) (Tugsy — Cugrs)
which was zero in case of the independence of z,,,, and z,,,, may now differ
from zero. Denote by & the expectation with respect to (17'). Then:

6[(“’#1”1 - aﬂlvl)(xuzl'z - aﬂzl’z)]

(17 = f[ e / (T, — amvl)(xugvg - augvz) dV(za, - Tma)

= f[ (z — o‘mvl)(y - 0‘#2’2) den:Vzuz(xy) = Rupiuprs = Bupryinpr, -

Let us first deduce a general formula for the expectation of a sample variance
in the case of dependent populations. Let P(y1, - - - yr) be the distribution of r
chance variables i , - - - y» which have the average b. Denoting by 8, the ex-
pectation of y, with respect to P, by g the average of the 8, , by 1',, the expecta~
tion of (y, — B,)° by R:; that of (y; — B:)(y; — B;) we find, without difficulty,
for the expectation of the sample variance

1 r
Exp. [— > (o~ b)2:|
T o=
1
(18) =2 [l =+ e+ = D dP, v
— 1< 1 2
= YA B -8 - 52 By
r p=1 r » i<
Let us apply this result in the computation of the expectations of our test func-
tions. It is not difficult to compute them in the general case of different mean

values and variances. But we restrict ourselves to the consideration of certain
particular cases. Take first the case where all the m -n mean values a,, are equal
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to each other and likewise the m -n variances and the imn(mn — 1) covariances.
Denote these magnitudes by a, ¢* and R, respectively, we see from (18) that:

s _ s\ _ 5 )
6(mn—1)_6<m—1)_6(n—1

(19) = g(m(nL"’_l)) =-& (n(—ms’z"fﬁ) = 5((7,1__%*—:”_1))
=4 —R.

We have thus obtained the result that in the case of dependent populations, just
described, the expectations of the six different test functions are still the same.

Of course we may assume many other particular kinds of mutual dependence
of the populations. The following assumption seems to be appropriate for
problems where rows and columns play a different role: We consider dependence
only within each row, that means we assume only the variables &, , Zu2, * * * Tun
as mutually dependent. The distribution (16) has then the following form:

(20) V(xll y " xmn) = Vl(xll y ° " xln) V2(x21 y " x2n) te Vm(xml y 0" xmn)-

In the usual way we derive the m-n one dimensional distributions V,,(z) and
the 3mn(mn — 1) two-dimensional distributions V.., (x, ¥). If m = u,
such a two-dimensional distribution reduces to the product of the respective one-
dimensional distributions. Only the imn(n — 1) bivariate distributions derived
from one and the same V(2,1 , - - - Z4) will not reduce in this way.

Denoting again by & the expectation with respect to V(21 , * - - Zma) we find:

g[(xﬂl‘ - o‘mt’)(xnzf — o)) =0 M1 FE e

(21)
=R¥ = pand i = j.

Applying now formula (18) in the computation of the expectations of s, s2 and
2
s; we find:

LT -] ="l 50
+Z T o — o = 2 33 T RY,
o2 IZZ @ -af] =" D55
+ T X e —a) - 235 T RY,
6T (@ — o] = 22!
+n X (= af + 22D 5 SR,

=1l i<j
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Let us now suppose that all the m-n distributions are equal to each other, or, at
least, that:
(23) QG = a.

This assumption, which is characterized by (21), is, of course, different from
the one which leads us to (19). We find now by means of (22), if we set

m 2 _
- _“ B =
; ,; Bij =R and mn(mn — I)R R,
2 2
- S 8§ _ 2 5 _ mn(n — 1)
(24) G[m—l mn—l:l_mn—lR_ mn—1R°

Assuming B > 0 (positive average correlation) we may compare this result

with (11) Section 1. The term on the right side of (24) is also of the same order

of magnitude as that in (11).—For negative R the term on the right side of (24)

is negative and the equation may be compared with (13) Section 1. We see

that for the test functions s*/r and s./r, “positive, (negative) average correlation

within rows” has the same effect as ‘Lexis (Poisson) Series”’ of populations.
Consider now the test functions 52 and S°. We find

(25) 6[sa’] = &[z2(a, — o)) = © _nlzza,’., + m2(@ — o)’ — ,3’7, R,
and
6[82] = 5[22(@, - Gy — a-'v + a)2] — (Ln:——%%:__]z 220_'2"
(25") 2
320y o= a o — 2D

Assuming (23) we get:
2 =2
(26) 5[ s ] = nR,

andif R > 0:

IS N R R

The first equality is analogous to (11) and (14) of Section 2 for positive or nega-
tive R respectively.®® We also get under the assumption (23)

(27) é[n‘i 1]= 5[@71%@]: S[mTrTs:T)]

10 T have studied in another paper the combination of Lexis series and ‘‘positive correla-
tion within rows.”” It turns out that the two kinds of positive effects reinforce each other.
The same is true for “negative correlation’ and Poisson series. See [3].
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These are the same equations as (12) Section 2, and they are true for either sign
of B. Hence they provide no way to decide between Lexis series and correlated
populations. But computing the expectations of the magnitudes which occur
in (15) Section 2 we find from (22), (25) and (25’)

6[miq] =+ - r .

S| =)=~ B

And hence we may say:

If the observed value of s3/(m — 1) is greater than that of 55 /n(m — 1) this can be
explained either by the assumption of a Lexus series or a posttive correlation within
rows; but their equality indicate, a Porsson series; and if the first is smaller than
the second we may assume negative correlation.

In the same way we may explain

(28)

[n(Tgfo——_l—)]obsmed > I:m_—“g—:ﬁ"—_l) ]Obaerved ’

either by positive correlation or by Lexis series; whereas the equality indicates
a Poisson series and the sign < indicates negative correlation.

(d). The variances of the test functions. We have still to find the variance of
our test functions. Let us compute the variance of

22(%y — @, — d, + a)’

with respect to the m-n dimensional distribution V(zu)V(Zw) -+ V(Zma).
Let us put
(29) Ty — @ — a0+ Q= Y,
then we see that the average of the y,, equals zero
g = m—lnzzy,,, =gq — ﬁl-ﬁnza,. —;}dmzd, +a=0.
and

8 = 22@n — a, — 4, + @)’ = 22y — O
Each y,, is a linear function of the z,, e.g.
(m — 1)(n = 1)

mn

m— 1< n— 1< 1 &

Yu = ZTu

Tud: + M;xli + X 22:%1 + )\4; ;xﬁ-
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Using the same notations as in Section 1 (¢) we find, because of the independence
of each chance variable
Var (yu) = A o® + M(n — 1)o* + Ai(m — 1)¢”
(31) - -
N = 1) — 1)g? = T D= 1)
mn
and we find the same result for each y,, :

(m —1)(n — 1) o

1 2 L)) =
(31) I Var (y.) oo

in agreement with the fourth line of (7) of this section. We still need M; the
fourth moment about the mean of y,, which we can compute from the fourth
moment of a sum. We find

(32) M; = AM, + 6Bd",
and we have
A=M+ (-1~ (m— DA+ (m — 1)(n — 1\

33 _ —_
m3n
and
B = MM — 1) + Mm — 1) + N@m — 1)(n — 1)}

+ M — D{INE — 2) + N(m — 1) + Ni(m — 1)(n — 1)}
+ N(m — 1){IN(m — 2) + Ni(m — 1)(n — 1)}
+ im — D(n — D[m — D(n — 1) — 1].
If we introduce the values of A1, A2, Az, )\4.we find

m'n'B = (m — 1)*(n — 1)*(m +n) + (m — 1)*(n — 1)’(m +n — 2)
(34) +3(m — D(n — Dl(m — 1)*(n — 2) + (n — 1)’(m — 2)

+ (mn — m — n)]

(34')

this expression as well as that of A may be easily computed for different values
of m and n.

If m and n are large, B is of order % + 7}1, ; from (31)—(34) we see that in this

case ¢’ is approximately equal to o and M to M, .
Using now (18') we find finrally

mn —
mn

Var (23 (2 — 0, — a, + )t} = L {mn — DM, — (mn — 3)0™Y
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where M; and ¢’ are the expressions just computed. If we compare the variances
of the test functions s./(m — 1) and S*/(m — 1)(n — 1) we see that whereas
the variance of the first expression is of order 1/m that of the second is of order
1/mn. Hence for large values of n the latter expression is more exact than the
former (see the analogous remark Section 1 (¢)). A similar statement can be
made if 5./(n — 1) takes the place of s2/(m — 1).

3. Bivariate distributions. Analysis of covariance.

(a). Problem. Suppose m persons are throwing two dice, n times; we observe
the respective numbers on each die in these m-n trials. Or we observe on m
groups of n persons the color of the hair and of the eyes. Or els¢ we state for
n years the yield of wheat (in bushels) per acre and the production cost (per
bushel) for m farms; etc.

We consider m-n pairs of numbers z,, ¥.. Let V.(z, »)" be the
probability that z,, < z and y., < y; V(z, + ©) = VS'(@), Vul(+ o, y) =
V& (y) and introduce the following mean values and variances

(1) [[eavu@n) = o, [[yavi@y) =,

@ [[e-aravu@my =dd,  [[@-p) V@) =4,

3 [[ @ =y =80 aVuiz, 1) = 1o
ST Ya=s, - TXa=a

1 1 = 1
;LZBuv—ﬁny %;Bw—ﬂv’ %ZZB}W—B

Let us compute the mathematical expectations of certain test functions with
respect to the 2mn-dimensional distributions

(4)

Vu(eu , yu) Vie(iz , ¥12) *+* Vian(@mn 5 Ymn).  Let
E[F(xu yYu, 0 Tma ymn)]

(%)
= [ [ PG, ynn) dVilan, ) - AV nmn o)

.9V,
11 In the particular case where V,,(z, y) has everywhere a derivative Fy a‘;} we can use the
. N . azv;u . . oy
two dimensional density v, (z, y) = 320 and the one-dimensional densities
Yy

vl (z) = fv,..(zy) dy; Py =fv,.y(:c, y) dz
and we have

T v
vre = [ e vee = [ uwe .
o0 o0
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We then have"
() 6, za)] = [

(z11)

In analogy with previous notations we introduce

1 1 1
a,,:;L;xpy, dv=;;t;xﬂ7'} a=%22xlw’

v /: G(xu cee xmn) dV{})(xu) v dV,‘,fZ(xm,.).

(6) 1 o ]
bu=ﬁ;yﬂlv’ bv:%;yuv’ b=%zzym
and
& =33(zw —a)’, sz=n(a,—a)l, &, =232Z(zm —a)
- S* = 22(z — ay — @ + a)’, 5 = m2(a, — a)’, 5 =22(x, — a)°

£ = 22(yw —b)’,  fo=nZ(by—b)’,  fy=ZZ(yw —b,)’
T =22y — by — @, + b,  To=m2(b,—b), 15 =2Z(ym — b),
and
¢ = 23(xy — a)(Yw — b), C=22(2w —a, — @& + a)(yu — b, — b, +b)
(8) ca=nZ(a, — a)(by—b) o = Z2(Tw — @) (Yw — by)
& = mZ(a, — a)(Bv —b) Cw = zz(xuv - dv)(yﬁw - Bv)
we then have
f=8+a+au=s+=58+5,
(9) P=T+to+lo=to+ta=1,+1,
c=C+ci+t =+t o= C+ Cu,
and corresponding relations for the ranks of these quadratic forms. We find

for the expectations of these test functions, in analogy with previously investi-
gated formulae:

2
E[ t ] -1 =21, + 1 =2(Bw — B)’,
mn m

n— 1

E ta :|=-1—EE1'2-|- ! n=(8, — B)
m— 1 mn ' m—1 # ’

and

12 It may be mentioned that the problem considered in this section of mn bivariate
distribution v,,(z, y) tonstitutes, of course, only a particular case of dependence (see
section 2, (c)) for a 2mn dimensional population v(Z11 , Y11, Z12, Y12, *** Tmn » Yma).
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1) If all the a,, equal each other, or all the B,, equal each other, we find:

B [mnc— 1] =P [mci 1] = [nTnc:T)]

=E{%t%%?ﬂ]=“L£ﬁ]=mbﬁﬁﬁﬂ=%F”W

These formulae provide us with unbiased estimates of ZZv,, .
2) The ay, are equal within each row but differ from row to row, (Lexis) a,, = a,
# a; & = a whereas the B, may have arbitrary values, then

el |- sty |- m e e

The same equalities are valid for arbitrary a,, if the 8, = 8,; 8, = 8. Our
new equalities may be of some interest because inequalities analogous to those
of the Lexis case cannot be proved for covariances. If the observed values of
the expressions in (13) are significantly different we may conclude that neither
the a,, nor the B,, form a Lexis series. A judgment of the test (13) might be
based on the investigation of its power function. But besides we have the
equalities (12) and analogous equalities containing -, 77 and &, .

3) If either Oy = &, a, # a, a, = a,
B" ) ﬂl’ # ﬁ) ﬂ[‘ = ﬁ'

I

or Buv

We have the new equalities

(14) EP[m_c:_’l] = EP[Wncw_—l)] = E”[m]

and there are no tnequalities analogous to the inequalities (14) of Section 2, and

(13), (14) of Section 1.
Most of the investigations of Sections 1 and 2 can be generalized for this two

dimensional problem.
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