ADDITIVE PARTITION FUNCTIONS AND A CLASS OF STATISTICAL
HYPOTHESES

By J. WorrowiTz
New York City

1. Introduction. The purpose of the first part of this paper is to prove
several theorems about a class of functions of partitions which are additive in
structure and subject to mild restrictions. These theorems may be regarded as
contributions to the theory of numbers, but if one makes certain assignments
of probabilities to the partitions the theorems may be expressed as statements
about asymptotic distributions. It is in this latter, probabilistic language, that
we shall carry out the proofs, for the following reasons. The discussion will be
more concise and certain circumlocutions will be avoided. The theorems have
statistical application and a number of theorems discussed recently in statistical
literature are corollaries of one of our theorems.

In the second part of this paper the theory of testing statistical hypotheses
where the form of the distribution functions is totally unknown and only con-
tinuity is assumed, will be discussed. The exact extension of the likelihood
ratio criterion to this case will be given. Approximations to the application of
this criterion in two problems will be proposed, one of which applies the results
mentioned above. Lastly, in connection with the second problem, a combina-
torial problem will be solved which is new and has interest per se.

2. Partitions of a single integer. Let n be a positive integer and 4 =
(a1, az, ---,as) be any sequence of positive integers a; (¢ = 1, 2, ---,s),
where Z; a; = n, and s may be any integer from 1 to n. Two sequences A
which have different elements or the same elements arranged in different order
are to be considered distinct, so it is easy to see that there are 2" sequences A.
We shall consider the sequence A as a stochastic variable and assign to all
sequences A the same probability, which is therefore 2 **'. Let r; be the
number of elements a in A which equal j (j = 1, 2, ---, n), so that r; is a
stochastic variable. Let k be an integer < n. Then the joint distribution of
the stochastic variables r1, 7o, - - -, rx is given as follows: The probability that
ri=b;(t=12,---,k)is

—n+1 S T!
(2.1) 2 @ 2 ) G a0 :)’

where the inner summation is carried out over all sets of non-negative integers
Tk+1) , *** , Ta Such that

(2.2) bh+be+ -+ b+ 144y + - 1=,
(23) b1+2b2+ +’Cbk+ (’C+l)7‘(k+1) + +nr,,=n.
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(The b;, of course, are non-negative integers.)

Letr = ) r;, and

=1

Ty = Z

n
Tsy
1=k+1

(k <),

so that r and 74, are both stochastic variables. The probability that at the
same time

(2.4) ri = bi, (t=1,---,k),
and

(2.5) e+ = b

is given by (2.1) with the restriction

(2.6) Fasn + o0+ Ta = blesn

added to the restrictions (2.2) and (2.3). With this added restriction the
k

summation in (2.1) may be performed as follows: Let ¢ = > db;. It is easy
=1

to see that the number of sequences A where every a; > k, 7 = r(41) = bt ,

and Za; = n — {, is given by the coefficient of " in the purely formal expan-

sion in z of

bf
k+1 k+2 k+3 b! _ . (e+DBY 1 "kt
(z Fa Tt 42T 4 e = o (k+1)< ) ,

1—=x
<n -t — ’Cb:k+1) - 1>
b£k+1) -1 .

Hence P{(2.4) and (2.5)}, where this symbol will always denote the probability
of the relation in braces, is seen to be

k .
2“‘7l+l (;Z-; b + b£k+1))! n—1t— kbzk.'_n -1

, k bhesr) — 1 '
(baesn)! III (ba)! o

If X is a stochastic variable, let E(X) and ¢°(X) denote, respectively, the
mean and variance of X (if they exist), and if Y is another stochastic variable,
X - EX)

oX)
By the distribution of X we shall mean a function ¢(z) such that P{X < x} =
¢(x). These conventions being established, we seek first to evaluate E(r:).
This may be done by differentiating with respect to y thecoefficient of x™ in the

and is

(2.7)

let ¢(XY) be the covariance between X and Y. Also let X =
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purely formal expansioninzof 2"z + &'+ -+ + a7 + 2t + 2T+ .- ),
setting y = 1 and summing over all values of . We have therefore to evaluate

p— i” n—1—1
r=2 r—2 ’

which is easily seen to give us the result

(2.8) E(r) = (n — 1 + 3)277, (Z < n),
while it is obvious that
(2.9 E(r,) = 27",

By use of similar devices the variances and covariances of the r; may also be
obtained. We omit the details of those calculations and also the presentation
of the covariances, since the latter are not necessary for the proof of Theorem 2.
The results are:

1 -2 -4 P — 120+ 5 .
(2.10) 02(7‘1') =n (2,—_,_1 + 322i+2 i) + (32i+1z + g 22i+: ‘+ )’ (@< %n)

The limitation on the value of ¢ 15 necessary because the processes for summing
binomial coefficients with the aid of the dévice described above are no longer
applicable. The matter is easily settled, however, for if X is a stochastic
variable which can take only the valyes 0 or 1, then

(X)) = E(X) — [EX))".
The r; for + > in are such variables, so that
n—i+3_ (n—i+3)

(2.11) ) = oo e (n> 17> 3§n),
2"t —1
(2.12) (72(1‘,.) = (—2272) .

Also without difficulty we have
n+6. (n+6°, 1

(2.13) " (r4n) = g g T o
when 7 is even and > 2, and

(2.14) E(r) =3i(n + 1),

(2.15) a(r) = {(n — 1).

Finally,

(2.16) E(raesy) = (n — k + 1)27%7

The next results we shall need may be expressed in the following:
THEOREM 1: As n approaches infinity, the joint distribution of the stochastic
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variables F1, -+, 7x, Fuqny (k any fized positive integer), approaches the multi-
variate normal distribution.
This theorem is proved as follows: Make the substitutions

—ie1
Ti=rz—-‘\1;—i’ (7:=1)2y"'7k)7
n

’ —k—1
Tty — N-2

xé"""l) = ‘\/~
n

in the expression

5
- (; ri + Tfk+1))! <n —t = krggy — 1>

k ’
r -1
(rm)! ]:I1 (r)! (4D
e

k
which comes from (2.7), and regard ¢ as equal to Z ir; . Replace the various

=1

factorials by their asymptotic approximations as given by Stirling’s formula and
simplify the resulting expression. The subsequent procedure is simple but
laborious and we omit the details, which are like those of the classical proof of
De Moivre’s theorem as given, for example, in Frechet [1], p. 89.

We now prove the following theorem on additive partition fumnctions:

THEOREM 2: Let f(x) be a function defined for all positive integral values of x
which fulfills the following conditions:

(a). There exists a pair of positive integers, a and b, such that

fla) _a

(b). the series
(2.18) 2127,
converges. Let F(A), a function of the stochastic sequence A, be defined as follows:
(2.19) F(4) = Z: §(ay).
Then for any real y the probability of the inequality F(A) < vy, approaches
L f ’ et g
_\/2; Lo Y,
asn — o,
We restate this theorem without use of probabilistic terms:

Let A be any sequence of positive integers whose sum is a given integer n.
Consider two sequences A to be different if they contain different elements or
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the same elements arranged in a different order. Let f(z) and F(4) be defined
as above, with the aforementioned restrictions. Then there exist, for every
positive integer 7, two numbers E, and o, , such that 27**' multiplied by the
number of sequences A for which the inequality

F(A) — E. < you,
holds, approaches

1 Y .
va L
asn — .

For convenience, the proof will be divided into a number of lemmas.

If ¢(y) is any continuous distribution function, then it is well known that ¢(y)
is uniformly continuous and that consequently, for any arbitrarily small, posi-
tive ¢, there exist two positive numbers, & and D, with the following properties:

(a). If y; and y. are any real numbers such that |y — y2| < h, then
[e(y) — e(y2) | < ¢

(b). If y is such that |y | > D, then¢(|y|) > 1 — ¢, and o(—|y|) < e

We now first prove

LEmMMA 1: Let X and Y be two stochastic variables, both of which possess finite
means and variances. Suppose that there exists a continuous distribution function
o(y) and two small positive numbers e and & (say ¢ < 1/10, 6 < 1/10), such that

(2.20) IPIX <y} —e) | <e
for all y, and

a(Y) _
(2.21) a_(Y) = 8.

Let h and D be chosen as above for ¢(y), with the additional proviso that h < %
and D > 1  Suppose further that

. . h e
(2.22) 6 < min (ZI—) , §>.
Then
(2.23) IP{(X+7) <y} — o] <3¢
for all y.

Proor: We have
FX +Y) = (X) + 20(XY) + o(Y).
Since, as is well known,

| o(XY) | < o(X)a(Y),



252 J. WOLFOWITZ

it follows from (2.21) that

(2.24) adX +Y) =1+ §eX),
where | 8’| < & Hence
Y — E(Y)
From Tchebycheff’s inequality and (2.21) it then follows that, if d = h/4,
Y—EW)|_ )\ _,°&
(2.26) P{{ml>dj<4d_2’
and
2
(2.27) % <€<e
Now
X — E(X) ol )X - EX) _ . | Y — E(Y)
P <v- g - raE s <o s bl
X — E(X) | Y= EY)|
+P{a(x VR ol >d}
<P{(X+7Y) <y} te
(2.28) _ {——< | Y — E®Y) }
PUXF T <y | L | <a
— Y — E(Y)|
+e{orE D <l T[> of
X — EX)

Hence, from (2.24)
PIX<@y—adA+)} — ¢
<P(X+Y) <y} <PX<@+A+)} +e
and consequently, from (2.20)
oly — d + yd' — dd’) — 2¢
<P{X+7Y) <y} <eoly+d+yd+dd) + 2
Now if | y | < 2D, then from (2.22)

(2.29)

(2.30)

: el R
d+ys|+d|d|<7+5+7=h
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and if | y | > 2D, then also from (2.22)
, h_ 3
lyl—d— | —d|&1>]y|0=8—5>31y|>5D.

Recalling the definitions of & and D, it follows from (2.30) that, for all y,
(2.31) o(y) —3e < P{(X +7Y) <y} <oy + 3e

This proves Lemma 1.
LEMMA 2: For any fixed pair a, b, of positive integers such that a < b,
EOP B _

(232) lim =B

Proor: From (2.8), for fixed ¢

Ly -2,
n

and from (2.14) —11; E(r) — % as n — «. The required result follows easily.

For any n we now define
k

B(k;n)= Z} r:[f()],
and

n

Clk;n)= ~21 r:[f(D)].

1=k+

Then
F(A) = B(k;n) + C(k;n).

LeEmMA 3: For any real y and any fired positive integral k the probability that
the stochastic variable B(k;n) shall fulfill the inequality B(k;n) < y approaches

y
\—/IQ; [_w e dy,as n — .

Proor: By Theorem 1, the stochastic variables 71, 7, -~ , 7, Flesny are
asymptotically jointly normally distributed. As an immediate consequence so
are the variables 7, 72, - - - , 7+ , and hence B(k;n), which is a linear function
with constant coefficients f(1), f(2), - - - f(k), of r1, 72, - - - , 7%, is asymptotically
normally distributed.

LemMA 4. There exists a constant ¢ > 0, such that, for all n sufficiently large,

(2.33) A (F(A)) > cn.

Proor: For any sufficiently large, arbitrary, but fixed n, we will construct
two sets, S; and Sz, of sequences A, with the following properties: S; and S.
have the same probability p, with p always greater than 8, a fixed positive
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constant which does not depend on n. Since the probabilities of S; and S; are
equal, each possesses the same number of sequences A. Between the member
sequences of the sets S; and S, we will establish a one-to-one correspondence
such that, if A, is a member of S; and A is its corresponding sequence in S. ,
then

(2.34) | F(AY) — F(42) | > 2dV/n,

where d is a fixed positive constant which does not depend on n.

It is easy to see that such a construction would prove the lemma. The
probability of any sequence A is 27"*'. Hence the contribution of a corre-
sponding pair A; and A; to the variance of F(A) is by (2.34) not less than
27" ¢’ and the contribution of the sets S; and S is not less than 28d™n.

It remains then to carry out the construction of S;and S,. For the sake of
simplicity in notation, we shall carry out the construction with the assumption
that the integers a and b of (2.17) are 1 and 2. It will be readily apparent,
however, that the proof is perfectly general and with trivial changes holds for
any pair @, b. This lemma is the only place where the hypothesis (2.17) is used.
The latter condition is necessary because, if for every pair of positive integers
¢ and j,

j6) _ i
O
then F(A) is a constant multiple of n, for n = Y ir; and then

F(4) = 22 f(a) = 2 nif@) = f1) 2 drs = nf(1).

Each sequence A uniquely determines the “coordinate’” complex
{re, e, ~+o ) 7n)
which we prefer to write as the pair L = (I, I'):
I = {r,r},
U= {rs,ra, - ,Ta}.

To each pair (I, I') there correspond in general many sequences 4 whose exact
number may be explicitly given in terms of factorials. The totality of all A
whose L have the same second member I’ will be called the group determined
by U, or just the group I’. The subset of a group !’ all of whose A have the
same r, will be called the family (I, r;). All the A in the same family have the
same L. For I’ and r, determine r, through the equation Y ir; = n.

According to Theorem 1 for k = 2, v, 7, r3 are asymptotically jointly
normally distributed. Let
ag (7’1)

o = lim —=
n—+0 n
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The limiting variances of 7, and 73 are constant multiples of ns . Therefore
the set H of all A whose L satisfy the constraints

<7‘1<g+ '\/;161

(2.35) <mn< g—i— N

WIS W3 I

<T;<g+\/7_ba'1

has, by virtue of the fact that the limiting correlation coefficients of the variables
r1, r2, 73 are all less than 1 in absolute value, a positive probability, which
exceeds a fixed positive constant vy for sufficiently large n. If any member
sequence A of a family is in H, the entire family is obviously in H. Any se-
quence A belongs to one and only one family. Hence the set H may be decom-

posed in a disjunct way into entire families. Let (l', Z + h1> be any family
in H, where of course 0 < h; < V/no,. Consider the (second) family
(l', g + 2o + hl). This family is not in H. We now wish to show that

the probability of the second family exceeds ¢’ times the probability of the first
family, where ¢’ is a fixed positive constant which does not depend on either n
or the particular families in question.

For the first family, let

n

7‘1=Z+h1, 7';=-8'+h3,
T2=71'+h2, T=7—L+hl+h2+hs-
8 2
Hence
(2.36) 0 < hi < Vo (¢ =1203).

For the second family we therefore have, since both families are in the same
group,

n =Z+2\/ﬁdl+h1,
7‘2=g—\/ﬁ¢n+h2,
T;=g+h3y

r=5+ Vaot+htht b
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The ratio of the probability of the second family to that of the first family
equals the ratio of the number of sequences A in the second family to the

number of sequences A in the first family. By elementary combinatorics, since
both families are in the same group, the latter ratio is

<g + Vo + b4 b+ h3>! (g + h1>! (g + hz)!
<f—f + 2v/nor + h1>1(g — V/no + 112)!@ + b+ b+ h3>!
and hence exceeds
<g + b+ b+ ‘ha)‘/;' "

_ —-2\/;;01 _ \/1701
X<ZL+2\/n01+hl> <g—\/’n01+h2> .

(2.37)

(2.38)

4

At this point, if we had been using the numbers @ and b of (2.17), we would
make use of Lemma 2. In the present case the result of that lemma is trivial.
It is easy to see, therefore, that (2.38) equals
(1 Pt 2 2h3>v7n
(2.39) . _ _
% (1 " 8‘\/na"1z+ 4hl>—2\/wx (1 _8Vna — 8h2>\/”

n

which, in view of (2.36), exceeds

—24/7 0y Vo
which, in turn, for sufficiently large n, exceeds
(2.41) e = 37 = ¢
We are now ready to construct S; and S,. Let
h=,m)

be any family in H and consider the family
fz = (l,, r1 + 2\/ﬁ 0"1).

Select in any manner whatsoever ¢’v of the sequences A in fi, where » is the
total number of sequences in f; . Call this set of sequences f*. Select in any
manner whatsoever ¢’» sequences from f, and call this set f**. That there exist
at least ¢’v sequences in f; is assured by equation (2.41). In any manner what-
soever establish a one-to-one correspondence between the sequences of f* and
f**. Suppose A; and A. are corresponding sequences. Since f* and f** belong
to the same group, and since f(2) = 2f(1), we have
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4z |FAD = Fla) | = [f@VE e = 5Dv/m |
' = £ — 200) V7 e,

so that (2.34) holds with

(2.43) d=1[f(2) = 2f(1) | o:.

Now proceed in this manner for all the families f; in H. The union of all the
sets f* is the set S; and the union of all the sets f** is the set S,. It is clear
that, since the probability of H exceeds v, the probability p of S; exceeds
B = c"y. This proves Lemma 4.

LemMma 5. For any arbitrarily small positive number § there exists a positive
tnteger u(§), such that for any k > u(£) and all n greater than a fixed lower bound,

(2.44) ’[C(k;n)] < #n.

Proor: Since

n

Clk;n) = ‘_El r:f (4),

and, as is well known,

[o(XY) | < o(X)a(Y)

we have
(2.45) etk <[ 3 161600
From (2.10) it follows readily that

5 o 3 2
(2-46) 0'2(7'1') < gi + 9 +< Qt_-:l + 2-2}7_2) ’

and the quantity in parentheses in the right member of (2.46) is easily seen to
be negative, so that, for ¢ < 4n andn > 3,

(2.47) o(r) < V/om 2t

From (2.11) and the definition of r;, it follows easily that (2.47) holds also
when ¢ > 3n and n > 3.

Hence, in view of (2.12), (2.13), and the convergenece of the series in (2.18),
the desired result follows from (2.45).

LemMA 6. Let the £ of Lemma 5 be < 1c, where ¢ is as in Lemma 4. Then
for k > u(¢) and n larger than a fixed lower bound

(2.48) o*(B(k;n)) > Len.
Proor: Since
F(A) = B(k;n) + C(k;n),
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we have
@ (F(4)) = o*(B(k;n)) + o (C(k;n)) + 20(BC)
< &(B) + (C) + 20(B)s(C) = (o(B) + o(C))".

Hence from (2.33) and (2.44) Ven < o(B) + 3+/cn and the required result
follows.

Proor or THE THEOREM: Let e be an arbitrarily small positive number. For
all n sufficiently large we have, by Lemma 3,

y : |
%P{B(k;n) <y} — e dyi < ¢

vl
V21 J-x
for all y. For a small ¢ to be chosen later and large enough k and »n we have,

by Lemmas 5 and 6,

a(Clkin) _ 5 o 4

(2.49) o(B(k;n)) c

Now let the ¢(y) of Lemma 1 be defined as

1 v
W) = [y,

and choose h and D as in Lemma 1 for our present e. Since ¢ is fixed and &
still at our disposal, choose ¢ sufficiently small so that the & of (2.49) satisfies
(2.22). Since the hypothesis of Lemma 1 is satisfied, we have, from (2.23) and
Lemma 3, for all n sufficiently large,

| P{F(4) <y} — o) | < 3e

for all y. This is the required result.

3. Partitions of two integers. Let n; and n, be positive integers, n; + n. = n.

ny No

= es,and e = max (e;, e;). Let V = (v1,1e, - -+, vs) be any sequence
n

of positive integers v; (¢ = 1,2, - - - , s) where a; + a3 + a5 + - - - equals either one

of n; and n, , whileas + a4 + as + - - - equals the other. Such sequences are of
statistical importance (cf. Wald and Wolfowitz [2]). As before, sequences V
with different elements or with the same elements in different order will be con-
sidered different and to each sequence V will be assigned the same probability,
n ' No '

nl

Let r1; be the number of elements equal to ¢ in that one of the two sequences
(@1, a3, a5, --+) and (@s, as, as, ---) the sum of whose elements is n; and let
r2; be the corresponding number for the other sequence. Let

which is therefore easily seen to be
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8 = ru + 1,
rn = qu, T2 = Zm,
1 2

n1

’ L ]
s =71+ 1o, Moy = 2 Tu
it

72
Té(k+l) = 2 T2 .
1=k+1
The necessary computations such as are given in the beginning of the previous
section have been performed by Mood [3] and we summarize them as follows:
TaeoreM 3 (Mood): As n approaches infinity while e, and e; remain constant,
the joint distribution of the stochastic variables

- _ _ ! L -
Tin, Tz, * 3y Tk T1(h+1) 5 T21, T2z, = ¢ * T2k

(where k is any fized positive integer), approaches the multivariate normal distribu-
tion.
Mood (loc. cit.) gives the following parameters, with the convention that

3.1) P =z -Dx—-2) - (=14 1):

D
(n2 + 1)®n?
n(i"H) ’

(3.2) E(ry) =

(3.3) lim E(rl‘) =éie},

n-—+c0

(3.4) lim Eﬁl;;"ii) = e/ e,

n -0

(2 @, @0 @, @ @, (9
2 _ng (e 4+ D%y (ne + 1)%ny (ne + 1)"'my
(3.5) (2 (rli) - n(2i+2) + n(i+1) 1- n(i+l) ’

(3.6) lim c-r:%i—) (G4 1) eren — iter — 2e1] + €f €5 .

The corresponding parameters for r.; may be obtained from the above by inter-
change of n; and n,. Also

lim ELH) = lim E(r)

n—wo N n—o N

= €162.

(3.7

For additive partition functions we have the following theorem:

THEOREM 4. Let f(x) be a function defined for all positive integral values of x
whach fulfills the following conditions:
a) There exists a pair of positive integers, a and b, such that

f(a)

5

(3.8
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b) the series
(3.9) 2 | fG) | €

converges. Let F(V), a function of the stochastic sequence V, be defined as follows:
(3.10) F(V) = X f(v)

Then for any real y the probability of the inequality F(V) <.y approaches

1 v
,\/51_‘_ [” e_*yz dy’

as n — o, while e; and e; remain constant.

The basic idea of the proof of this theorem is the same as that of the proof
of Theorem 2. We omit all the steps which can be written without difficulty
by analogy to those in Theorem 2 and present only those where some major
change is necessary. The numbering of the lemmas will correspond to that of

Theorem 2.
LemMma 2. For any fived pair, a and b, of positive integers such that a < b,

@311) (B B B B B B — 1,

asn — ©.
The proof is the same as before.
The following are the definitions corresponding to those of Theorem 2:
k
Blk;n) = 2 :f(3),

n

Clksn) = 2 s:f(D).
k41
Then as before
F(V) = B(k;n) + C(k;n).

LemMmA“4d. Statement is the same as that for Theorem 2. The following im-

portant changes must be made in the proof:
Each sequence V determines the coordinate complex

Ty T12y **° 5y Tin
ToryTo2,y *°° 5 Ton

T, T2
l = ,
To1, T22

also
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I = {7‘13, ,rln}.
Tog,y *°* y Ton
The set H is the set of all V whose L satisfy the constraints
neesy < ru < nees + \Vnou,
nele; < re < neie; + \V/'nou,
nefez <ra < neiez + \/ﬁ o,

2 2 2 2

neies < 1 < netes + \/nou,
3 ’ 3

nejes < riz < nejés + '\/% a1,

and

where

. T
o = lim 6( 11)

no A/
The representative family for H is characterized by
(', neses + hu),
and this family is compared with the family
U, neres + 24/n o + hu).

For the members of the family in H

rn = ’neleg + hy = nmu + hu,
12 = neie; + hip = nmy + i,
Ta1 = n€§€2 + hay = nma + ha,
7o = netes + hyp = nma + ha,
r1s = neler + hig = nmiz + his,

r. = nee, + h'=nm + h,

[re = | <1,
where
(3.12) hij < Vnou,
(3.13) h = hy+ hie + his.

And for the members of the second family
ru = nmy + 2\/;1: ou + hu,
rig = nNMyz — \/7-?:011 + hie,
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a1 = nma + 20/ nou + ha + 6u,
s = nma — \/nou + ke + 6n,
ris = nms + hag,
rno=mnm+ Vnou+h
'7‘2 —_-n l S 1,
with
| 6a| < 1, 62| < 1.
To the expression (2.37) corresponds the expression (3.14), with | 8| < 1:
(nmu + hu)! (nmaz + hig)! x (nmng + ha)! (nmas + ho)!
(nm + h)! (nm + h)!
% _(nm+h+ V1 on)! _
(nmy + 24/n on + hu) ! (mmie — V/nou + hi)!
(nm + h + V0o + 60)!
(nmzl + 2\/n ou + ha + 021)! (nmo2 — \/'n cu+ he + 022)'

(3.14)

which exceeds
(mm + RV X (nmu + 2v/n outhy) 2V

X (nmiz — A/ on + he)¥" M

X (nma 4 24/n o 4 ha) VM
X (nmy — /' ou + ha)V" 1
Employing Lemma 2, we find that (3.15) equals

2\/;0“ - —2\/; o1
<1+i> x(1+2\/n011+h11>
nm

nmiu

\/ nou + hu)‘/" o

nmie

(3.15)

(3.16) g <1 "

X 2\/5 oun + h21>_2\/" i

nmay

(1 nou + hzz)‘/”“

nMze

In view (3.12) and (3.13), (3.16) exceeds
<1 + 3vn "ll>_2ﬁm X <1 V'n 011) ron

nmn nmis
(1

+M)—2V;7u % (1 _ ‘\/’7}0’11)\/;;’”’

nmss

(3.17)
X

nmey
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which, for sufficiently large n, in turn exceeds

(3.18) 1.¢™h (_6_ + L6 L) —
mun mia ma1 Moo
LeEmMaA 5. Statement is the same as for Theorem 2. The proof then pro-

ceeds as follows:
We. have

2 n 2
(3.19) et < (3 3 156) ot

=1 j=k+1
From an examination of (3.5) and (3.6) we may see without any difficulty that
the second of the three terms of the right member of (3.5) (after removal of
parentheses) is asymptotically equal to n times the last term of the right member
of (3.6) and hence that the other two terms of the right member of (3.5) are
asymptotically equal to n times the right member of (3.6) without its last term.
Now when

which will always occur when 7 is equal to or greater than a sufficiently large
fixed integer u, that part of the right member of (3.6) which is in square brackets
is easily seen to be negative. Hence from the definition of asymptotic equiva-
lence it follows that, for all n sufficiently large,

2 2) 2u) ?2) (2) ) (W)
ns(mp + 1)@ nf™ <+ D%+ 1) n{* ni*
n(?#“f-?) n(l‘-‘H) n(ll'H)

(3.20)

’

and

(nz + 1)®nf®

(3.21) . < 2ne**? < 2ne.

Hence, for all n sufficiently large,
(3.22) o’(ry) < 2ne.

Now consider the expression (3.5) for 2 = pand 7 = u + 1. Passage from u to
¢ + 1 multiplies the first term of the right member of (3.5) by

(m — 2p)(m — 2p — 1)

(328) n— 2% — 2)(n — 2% = 3)
and the third term of the right member by

) (m — #)2
(3-24}) m2 .

It is easy to see that for large but fixed u and all n greater than a lower bound
which is a function of u only, the expression (3.23) is less than the expression
(3.24). Hence, in view of (3.20), the sum of the first and third terms of the
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right member of (3.5) for ¢ = p + 1 is negative. Now consider what happens
to the second term of the right member of (3.5) when 7 goes from p to u + 1.
It is multiplied by

(nl - M)
n—p—-1’°
which, also for large but fixed u and all n larger than a lower bound which is a
function of u only, is easily seen to be less than e. Consequently

(3.26) o (r1an) < 2ne* ™,

It can be seen without difficulty that such a passage of (3.5) to the next higher
index is always accompanied by multiplication by expressions similar to (3.23),
(3.24), and (3.25), for which similar inequalities hold and that consequently

(3.27) 0 < ¢’(ru) < 2ne’,

(3.25)

and for similar reasons
0 < ¢’(rn) < 2ne’,

for all 7 not less than u and for all n greater than a lower bound which is a func-
tion of u only (although it may be necessary to increase the original u so that
both the last two equations hold). The required result follows from (3.19)
and the convergence of the series (3.9).

The proof of Theorem 4 follows along the same lines as that of Theorem 2.

When f(z) = 1, F(V) = U(V), the statistic discussed in [2]. Other such
results follow from specialization of f(x). Theorem 4 may also be generalized
so that the elements »; which add up to n; are operated on by a function f;,
while the elements »; which add up to n, are operated on by another function
f2, but this is easy to see and we do not go into the details.

4. Tests of hypotheses in the non-parametric case. The great advances
that have been made in mathematical statistics in recent years have been in
two directions. On the one hand, the foundations of statistics, the theory of
estimation and of testing hypotheses have been put on a rigorous basis of
probability theory, and on the other, powerful methods for obtaining critical
regions and confidence intervals and criteria for appraising their efficacy have
been developed. Most of these developments have this feature in common,
that the distribution functions of the various stochastic variables which enter
into their problems are assumed to be of known functional form, and the theories
of estimation and of testing hypotheses are theories of estimation of and of
testing hypotheses about, one or more parameters, finite in number, the knowl-
edge of which would completely determine the various distribution functions
involved. We shall refer to this situation for brevity as the parametric case,
and denote the opposite situation, where the functional forms of the distributions
are unknown, as the non-parametric case.
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The literature of theoretical statistics, therefore, deals principally with the
parametric case. The reasons for this are perhaps partly historic, and partly
the fact that interesting results could more readily be expected to follow from
the assumption of normality. Another reason is that, while the parametric
case was for long developed on an intuitive basis, progress in the non-parametric
case requires the use of modern notions. However, the needs of theoretical
completeness and of practical research require the development of the theory
of the non-parametric case. The purpose of the following section is to con-
tribute to this theory.

Brief mention of some of the literature may be made here. The problem of
parametric estimation by confidence intervals, was put on a rigorous foundation
by Neyman [4] and extended to the estimation of distribution functions in the
non-parametric case by means of confidence belts by Wald and Wolfowitz
[5]. Problems of testing non-parametric hypotheses have been treated in
various places. The rank correlation coefficient has been used for a long time
to test the independence of two variates. Its distribution was shown to be
asymptotically normal by Hotelling and Pabst [6] and its small sample distribu-
tion was discussed by Olds [7]. The problem of two samples has been dis-
cussed, among others, by Thompson [8], Dixon [9] and Wald and Wolfowitz
[2]. In 1937, Friedman [10] posed the non-parametric analogue of the problem
in the analysis of variance and proposed a very ingenious solution.

All these proposed solutions have this in common, that there exists no general
principle which can be applied in each particular case to obtain a critical region,
a role which is performed in the parametric case by Fisher’s principle of maxi-
mum likelihood and the likelihood ratio criterion (Neyman and Pearson, [11]),
whose validity, at least for large samples, has been established by Wald ([12],
[13]). In each problem the solutions proposed have been intuitive and usually
based on an analogy to the corresponding problem in the parametric case. Thus
the principal justification for the use of the rank correlation coefficient is that
its distribution is independent of the unknown distribution function (under
the null hypothesis) and that its structure resembles that of the ordinary cor-
relation coefficient. But any function of the order relations among the variates
(cf. [2], p. 148) has a distribution which is independent of the unknown popula-
tion distribution under the null hypothesis The same objection may be made
to papers [8], [9], [10], [2], except that in [2], although the solution there proposed
is an intuitive one, the criterion of consistency is extended from the parametric
case to the non-parametric one. The fulfilment of this condition is a minimal
requirement of a good test and on this basis the solution proposed in one of the
previous papers cannot be considered a good one.

In the following section we shall show that the likelihood ratio criterion may
be extended to the non-parametric case where the test must be made on the
order relations among the observations and that for a certain class of these
problems which fulfill the same requirement as that for the application of the
likelihood ratio criterion in the parametric case it would thus appear to furnish
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a general method by which statistics may be obtained for a specific problem.
We shall show this by applying it to the problem of two samples. This will
serve to explain the method. Another problem will be discussed later. The
ultimate justification of any statistic must be its power function, which ought
therefore to constitute the next subject of investigation for these problems.
Since for problems in the non-parametric case it is almost certain that uniformly
most powerful tests do not exist, the question of determining the alternatives
with respect to which proposed tests are powerful is particularly important.

6. The problem of two samples. Let X and Y be two stochastic variables
with the distribution functions f(x) and g(x), respectively. (The term distribu-
tion function will always denote the cumulative distribution function. The
letter P followed by an expression in braces will stand for the probability of the
relation in braces. Hence P{X < z} = f(z) for all z.) f(x) and g(x) are
assumed continuous. The n, observations 1, s - - - , ,, and n. observations
Y1, Y2, ", Yn, are made on X and Y respectively. The (null) hypothesis
to be tested is that f(x) = g(x). The admissible alternatives are all continuous
distribution functions f(x) and g(x) such that f(z) # g(x). The n, + n, = n

observations are arranged in ascending order of size, thus: Z = 21, ---, 2,
where 2, < 2, < -+ < 2, (the probability that z; = 2,418 0). Let V = v,
ve, *++, U, be a sequence defined as follows: »; = 0 if z; is a member of the

set 1, X2, + -+, o, and v; = 1 if 2; is a member of the set y1, ¥2, -+, Yn, -
Then any statistic used to test the null hypothesis must be a function only of V
(12], p. 148).

We now apply the method of Neyman and Pearson [11] as follows: @ is the
totality of all couples (di(x), dz2(x)) of continuous distribution functions. The
set w, a subset of Q, is the totality of all couples of distribution functions for which
dy = d». The sample space is the totality of all sequences V. The null hy-
pothesis states that (f, g) is a member of w. The admissible alternatives are
that (f, g) is a member of Q not in w. The distribution of any function of V
is the same for all members of w. Hence this essential requirement on the
statistic to be selected for the application of the likelihood ratio eriterion (cf.
[11]) is satisfied by any statistic which is a function of V alone. Furthermore,
all sequences V have the same probability if the null hypothesis is true ([2],
p. 149). The numerator of the likelihood ratio is therefore a function only of n,
and n, , is the same for all V, and is therefore of no further interest. Hence
T'(V), a function of V which is a monotonic function of the likelihood ratio
for this problem, may be defined as the denominator of the likelihood ratio,
as follows: Let P{V; (d1, ds)} be the probability of V whenf = d;,andg = ds .
Then

W) = mgx P{V; (di, dy)}.

The critical values of 77(V) are the large values. However, we may use instead
of T'(V) a convenient monotonic function of 7'(V).
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As an approximation to T'(V) we propose T(V), a statistic which is obtained
on the assumption that for a given V a couple (dy , d5) which is essentially the
same as that of the two sample distribution functions corresponding to the
particular V approximates a couple which maximizes the right member of (5.1).
(We say “a” couple because it cannot be unique.) This assumption seems a
reasonable one, particularly for large samples. Only the form of (df, ds) is
assumed and the missing parameters are obtained in accordance with (5.1).
Before describing the matter precisely, it must be stressed that this is offered
only as a plausible approximation. For certain extreme V, for example, like
those where zeros and ones nearly alternate, this is definitely not the maximizing
couple. In spite of this the statistic T'(V) assigns to these V values which are
furthest removed from the critical region for any level of significance, as indeed
any good statistic should.

We first define a “run” as in [2], p. 149. A subsequence v(;41) , Vci42), = *
v(e4ry Of V (where r may also be 1) is called a “run” if v(41) = vty = * ¢ = V(4
and if v, 5 vy when ¢ > 0 and if vy 5 Ve4rey When t + 7 < n. Let L
be the number of elements in the j** run of elements 0, and l;; the number of
elements in the jt** run of elements 1. Suppose for a moment that the first
element in V is a 0. Consider the following situation: There is an interval
[a1, @2], a1 < a2, on the line — «» < 2 < 4+ « such that

P{(11SXS02}>O, P{a1§Y§a2}=O,
P{X < al} = P{Y < (11} = 0

This is followed by an interval [b; , bs], b1 = a, , such that P{b; < X < by} = 0,
P{b; <Y < b} > 0. This is in turn followed by an interval [as , a], as = bs,
such that P{a; < X < a4} > 0,Pla; <Y < a} = 0, ete. It is clear that the
lengths and location of the intervals described are immaterial, provided only
that they do not overlap. Also the distributions of X and Y within each
interval are immaterial, provided only that they are continuous. All that
matters for finding P{V; (df , d3)} is that the number and the order of the dis-
junct intervals shall be the same as those of the runs in V, (i.e., intervals of
positive probability for X must alternate with intervals of positive probability
for Y, the number of intervals of positive probability for X and for ¥ must
equal respectively the number of runs of the element 0 and the number of runs
of the element 1, and the probability of the first interval on the left shall be
positive for X or for Y according as the first run in V is of elements 0 or of ele-
ments 1, with the same relation obtaining between the last interval on the right
and the last run in V) and the probability of these intervals. Let Pi; be the
sought for probability of the interval which corresponds to the jth run of ele-
ments 0 and P; the probability of the interval which corresponds to the jth
run of elements 1. In order to obtain V, it is necessary that the elements con-
stituting each run shall fall into its corresponding interval. Then clearly by the
multinomial theorem

(5.2) P{V; i, &)} = [T nt(] @D PH)
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where ¢ = 1, 2 and where, when ¢ is fixed, the product with respect to j is taken
over all runs of the corresponding element. The right member of (5.2) is to be
maximized with respect to the P;;, subject of course to the constraints

(5.3) D Pi=1 (i=1,2).
7

Then it may easily be verified that the maximum occurs when

(5.4) P; = fT (t=1,2)

For, after multiplying by a constant and taking the logarithm we introduce two
Lagrange multipliers u; and u; so that the maximizing P;; are given by the
equations (5.3) and those obtained by equating to zero all the partial deriva-
tives of

Z Z (l;; log Pyj — pi Pyj).
i
The latter are therefore
i = l_* (z=1,2)
P{’ b b

for all j, whence (5.4) follows. It is easy to see that the extremum thus ob-
tained is a maximum and also an absolute maximum. The sought-for statistic
T(V) is then the right member of (5.2) after the results (5.4) have been inserted.
It may be simplified by removing all factors which are functions only of n;
and n. (since these will then be the same for all V) and recalling that

(5.5) 2bi=m (t=1,2)

It will be convenient to take the logarithm of the resulting expression, so that
with a slight change of notation we finally have

(5.6) (V) = 20 2. 1y
2 )
where
- 1L
;!

This result is immediately extensible to the problem of & samples and by way
of summary we recapitulate it as follows:

Let there be given k stochastic variables X, --:, X; with the respective
distribution functions fi(x), - - -, fu(x), about which nothing is known except
that they are continuous. Random independent observations, »; in number,
are made on X; (¢ = 1, ---, k). It is desired to test the hypothesis that
fi=f. = --. = fi, the admissible alternatives being all k-tuples of continuous
distribution functions. The sequence V is obtained from the sequence Z by
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replacing an observation on X; by the element 7. Let I;; be the number of
elements in the jth run of elements 7. Then the corresponding statistic for
testing the null hypothesis is Tx(V) or any monotonic function of it, where

TW(V) = :Lk:l 2l

and [;; is given by (5.7). The large values of Tw(V) are the critical values.
Let r;; denote the number of runs of length j in the elements 7. Let

Z ri; =ri. Of course 2 jr:;; = ni. Alsolets; = 2 r;;. Then

i i i

(5.8) TW(V) = 20 2y
and
(5.9) T(V) = 2 7s;.

If a table were constructed of the numbers (5.7) from 1 to 50, say, or from 1
to 100, this would cover most of the cases arising in practice. The calculation
of T:(V) by means of (5.9) would then be so simple that it could be performed
very expeditiously by an ordinary clerk and with very much less labor than is
required for most statistics in. common use, like the correlation coefficient, for
example. As a matter of interest we note that

i=0
2 = .693
3 =1.50
1 =237
5 =326
and that
(5.10) p<p

where p is any integer > 1. (5.10) follows from the fact that
p! > (V2rp — 1)p%e .

The distribution of T(V) may be found for small samples by enumerating
the sequences V, all of which have the same probability under the null hypothesis,
and assigning to each V its 7'(V). The critical region consists of the V’s for
which T(V) takes the largest values, taken in sufficient number to make the
critical region of proper size. It will not be necessary to enumerate all the
V’s, since it is readily apparent that certain V’s can never belong to a critical
region of any reasonable size. (Roughly speaking, a ¥V with a large number of
runs of short length will yield a small 7(V) and vice versa.) For large samples,
the result of Section 3 is available, with f(z) = #. From (5.10) it follows
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easily that the corresponding series (3.9) is convergent, so that T(V) is asymptot-
ically normally distributed. It must be remembered when using tables of the
normal distribution that the critical region of T(V) lies in only one “tail’” of
the normal curve. The greatest difficulty will occur for samples of moderate
size. Methods like those of Olds [7] will probably help there. It is highly
unlikely that any practicable formula which would give the exact distribution
of T(V) exists.

A few brief remarks may be made here on a related problem. Suppose we
have observations from two bivariate populations about the distributions of
both of which nothing is known except that they are continuous and it is sought
to test whether the two populations have the same distribution functions.
Suppose further that it were required that the statistic used for this purpose be
invariant under any topologic transformation of the whole plane into itself.
At this point we quote the following topologic theorem, the proof of which was
communicated to the author by Dr. Herbert Robbins: Let x;, 41, *2, %2, * - - ,
T, , Yp be any 2p distinct points in the plane. There exists a topologic transforma-
tion of the whole plane into itself which takes x; into y; (1 = 1,2, --- ,p). Asa
consequence of this theorem we get the absurd result that the required statistic
must be a constant. Hence this statistical problem can have no solution.

As a matter of interest this statistical problem would have no solution even
if it were not for the topologic theorem. The fact is that a continuous distribu-
tion on a line remains continuous under a topologic transformation of the whole
line into itself, but a continuous distribution in a k-dimensional (Euclidean)
space (k > 1) may become discontinuous under a topologic transformation of
the whole space into itself. (The probability distribution in the first space
always determines a probability distribution in the transformed space, for
probability functions are defined over all Borel sets of the space (cf. [15], p. 7)
and a topologic transformation carries Borel sets into Borel sets (cf. [16], p. 195,
Theorem II)). Consider the following example in the plane: A bivariate
distribution function assigns probability 1 to a line L oblique to the coordinate
axes, while any interval which contains no segment of the line L has probability
0. On the line L the (one-dimensional) probability distribution may be ar-
bitrary, provided it is continuous. The bivariate distribution function is
without difficulty seen to be continuous. Now rotate the coordinate axes until
one of them is parallel to L. It is easy to see that after the rotation the bivariate
distribution function is discontinuous.

The question of whether a useful statistical problem could be obtained by
properly delimiting the class of transformations which are to leave the statistic
invariant and the solution of such a problem remain to be investigated.

6. The problem of the independence of several variates. This is an important
practical problem and one of the earliest discussed in the literature (cf., for
example, [6]). Let X;and X, be stochastic variables with the joint (cumulative)
distribution function F(x, , x;) which is known to be continuous in both variables
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jointly (i.e., F(z1, x2) = P{X: < z1; X2 < x2}, where the right member is the

probability of the occurrence of both the relations in braces). The marginal

distributions fi(z:) and f2(x:) of X; and X, respectively are defined as follows:
fillx) = P{X1 < @} = lim F(z, 2),

T9—+00

fz(ivz) = P{Xz < 11,‘2} = lim F(xl, xz).

z1 -+
(It is easy to see that the continuity of F(x;, x2) implies the continuity of fi(x:)
and fa(x2).)

The »n random, independent pairs of observations Zi, %o, * - Zin, Zen are
made on X; and X,. The null hypothesis states that
(6.1) F(xy, 7) = fi(21) -fa(xa)

i.e., that X; and X, are independent. The alternative hypotheses are that
F(z: , xz) does not satisfy (6.1)."

Let the set 11, 12, %13, * -+ , T1 be arranged in order of ascending size, thus:
Z = 2,2 ,2, - ,2, where 2; < z3 < --- < z,. The jth member of this
sequence will be said to have the rank j. Inthe same manner ranks are assigned
to the z2; (j = 1, ---,n). (It is easy to see that, since fi(z:) and fu(x,) are
continuous, the probability that z; = z;41 is 0 etc.) In the sequence Z the
element z; (j = 1, --- , n) is replaced by the rank of its associated observation
on X, . We obtain a permutation of the integers 1, 2, - - - , n which we denote
by R. If in the procedure for obtaining R, we had reversed the roles of the z;;
and z,;, we would have obtained the permutation R’. It is easy to sce that
any statistic, say M, used to test the null hypothesis, must be a function only
of R, with the added proviso that M''(R) = M''(R’). (The rank correlation
coefficient is such a statistic.) Under the null hypothesis all the R have the
same probability <= 7—5—')

The procedure of applying the likelihood ratio principle to this problem would
then be as follows: @ is the totality of all bivariate distribution functions
H(z, , x;) which are continuous in both variables jointly. The respective mar-
ginal distributions corresponding to H(x:, z2) will be denotedby hy (x1) and hs(z).
w is a subset of @ which consists of all H(x;, ;) for which H (21, 22) = h(21) - ha(s).
The sample space is the totality of all sequences R. The null hypothesis states
that F(z,, 12) is a member of w. The admissible alternatives are that F(z,, 2)
is a member of Q@ not in w. The distribution of any function of R is the same
for all members of w. Thus the essential requirement for the applicability of
the likelihood ratio criterion is fulfilled. All sequences R have the same proba-
bility for all members of w; hence the numerator of the likelihood ratio is a func-

1 It is easy to see that the independence or dependence of two stochastic variables is not
a property which will remain invariant under a topologic transformation of the plane into
itself. We therefore require of the statistic only that it be invariant under topologic trans-
formation of each variable into itself, separately.
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tion only of n which may therefore be ignored. We may then define M’(R),
a monotonic function of the likelihood ratio as the denominator of the likeli-
hood ratio, thus:

(6.2) M'(R) = m:x P{R;H(x:, x2)}

where P{R;H (x:, z2)} is the probability of B when H(x, , x;) is the joint distri-
bution function of X; and X, . The critical values of M’(R) are the large values.
We now propose an approximation to M’(R) which we shall call M(R). We
do this by describing a distribution function H*(x; , x2) for each R which seems
a plausible approximation to a maximizing distribution function. It may be
derived from certain assumptions about the nature of the maximizing distribu-
tion function which we omit. The remarks made in the preceding section about
the character of the approximation apply here as well. As before we specify
only the form of the function and leave certain parameters, finite in number,
to be determined in accordance with (6.2). (If the construction of H*(xz;, x)
should appear somewhat involved, this is due only to the analytic description.
A sketch will show the essential simplicity of the situation.) We then have

M(R) = P{R;H*(z1, x5)}.

Let R = a3, a2, -+ , @, be a given permutation of the integers 1 to n. A
sub-sequence ;1) , a(,~+2)' , o, @ Will be called a run of length [ if the
following conditions are fulfilled:

(6.3) The indices of the a’s are consecutive,
(6.4) If U is any integer such that 1 < I’ < [, then

| @ity — @apvan | = 1,

(65) if 7> O, la,‘ — A41) [ > 1,

(6.6) ifi+ 1<, a6 — Gurn | > L

The run will be called an ascending run or a descending run according as
iy — Guszy = —1 or +1. A run of length 1 is of either type, at pleasure.
For example, let

R=56,1,43 2

The first run is 5, 6, the second 1, the last 4, 3, 2. 5, 6 is an ascending run of
length two, 4, 3, 2 a descending run of length three, and 1 a run of length one.

H*(x, , x0) is a degenerate distribution function such that the relation between
X, and X is functional (this is a special case of stochastic relationship). That
is to say, X, = o(X1), where (X)) is a single-valued function desined for all the
possible values of X; , with a single-valued inverse ¢ *(X;) defined for all possible
values of X,. Hence H*(x;, 2.) is completely specified when the function
X, = (X)) and ki (z1) the marginal distribution function of X; , are given
(hy' (z;) must of course be continuous).

Consider a system of intervals on the line — « < x; < + « of which (1 — 1, 7)
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is the ith, 7 = 1, 2, - - - , » and a similar system on the line — o < 2, < 4+ .
(Actually, as in the previous section, neither the length of the intervals nor
their location is material. The intervals need merely be disjunct and in a certain
order. We are using these particular intervals to simplify the notation.) Let
l, be the length of the first run. @ is its first element. Then let

be one of the as yet undetermined parameters. We now partly define Ry (1)
as follows:

hi () = 0, 7 <0
(6.7) i (z1) = 1, T >n
ML) = pr

Within the interval (0,l;), ki (z;) may be any continuous monotonic increasing
function which satisfies (6.7). We partly define o(X;) as follows:
If the first run is ascending, let

(6.8) 0(0) =a — 1

(6.9) el@) =a -1+ 2, 0<z <.
If the first run is descending, let

(6.10) 0(0) =a

(6.11) o(x) = a1 — x1, 0<z <.

We proceed in this manner through all the runs of R. Let I; be the length of
the sth run. Let A\; = 3. 1;. The first element of the jth run is ap,+n . Let

1<
p; = P{\; < Xy < N\ + 155 b (2)},

be another of the as yet undetermined parameters. We then define ki (z1) as
follows:

(6.12) RO = ;] Pi
(6.13) O+ 1) = 4:3 i

Within the interval (A\;, A; 4 1,), hi (z) may be any continuous monotonic in-
creasing function which satisfies (6.12) and (6.13). We define ¢(X,) as follows:
If the jth run is ascending, let

(6.14) (@) = ap;4n — 1 + o A <a <N+ ).
If the jth run is descending, let
(6.15) e(x1) = ap;4n — T Aj<am SN+ 1.

If I; = 1, the run may be considered ascending or descending at pleasure.
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In order to obtain R, it is necessary that all the elements of a run shall fall
into its corresponding interval. Then it is easy to see that by the multinomial
theorem

(6.16) P{R;H*(z1, 2)} = nt IT ()7 piv.

The right member of (6.16) is to be maximized with respect to the p; subject to
the constraint

It is easy to verify that the maximum occurs when
n

M (R) is the right member of (6.16) after the results (6.18) have been inserted.
It is convenient to remove all factors which are functions only of # and to take
the logarithm of the resulting expression. Then with a slight change of nota-
tion we may say that

(6.19) M(R) = X
where

R 1k
(6.20) l; = log <l—'T>

The critical values of M (R) are the large values. One may verify without much
difficulty that M(R) = M(R'), i.e., that the statistic is symmetric with respect
to X and X, as indeed it should be.

This result is immediately extensible to the problem of testing whether %
stochastic variables X;, ---, X\ are independent. We shall not go into the
details, which are similar to those described above, and content ourselves with
giving the definition of a run for the case ¥ = 3. After the observations on X,
have been arranged in ascending order, we obtain two sequences R, and R;,
the associated ranks of the observationson X;and X;. Let Ro = by, by, -+, b,
and Ry = by, by, ---,b,. The ascending sequence of consecutive integers
¢+ 1), &+ 2),--+,E + 1) determines a run of length [ if the sequences
btn 5 beisny <o+, Dein and by , basny , «+* , Diesn) both satisfy (6.4), and if at
least one of the sequences satisfies (6.5), and at least one, but not necessarily
the same one, satisfies (6.6). The adjectives ascending and descending apply
to each sequence separately.

Let r; be the number of runs of length j in R. Then

(6.21) M(R) = 2 7r;.

1

Most of the remarks made in Section 5 about the small sample distribution of
T(V) are also applicable to the distribution of M(R). More will be said in the
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next section about the distribution of M(R) which involves the solution of a
combinatorial problem not discussed in the literature.

7. On the distribution of W (R). While most of the remarks made about the
small sample distribution of 7'(V) apply to the question of the distribution of-
M(R) in small samples, the situation with respect to the distribution of M (R)
in samples of medium size and large size is very different and, in certain respects,
is more favorable for practical application than is the case with T'(V). It would
be reasonable to expect, for example, in view of Section 3 and of the structure
of the statistic M (R) that the asymptotic distribution of M (R) should be normal.
Surprisingly enough, this is not the case. It is not even continuous. In order
to clarify the situation, we begin with a few necessary ideas and definitions.

Let the stochastic variable W(R) be defined as the total number, in R, of
runs of the sense of Section 6. We shall be interested in the distribution of W(R).
The number 7 of the pairs of observations on X; and X, (we consider the case of
two variates) will be assumed arbitrary but fixed throughout the discussion and
will not be exhibited. Let N (k) be the number of sequences R (of the integers
1 to n) which contain exactly k runs.

Consider, for example, for the case n = 6, the sequence 23 46 5 1. We
shall say that this sequence contains the “contacts” (2, 3), (3, 4), (6, 5). In
general, a contact is defined as the juxtaposition, in the sequence R, of consecu-
tive numbers, whether in ascending or descending order. If k is the number of
runs and ! the number of contacts in a sequence R, then obviously

(7.1) k+1=mn

Let R, be the juence 1, 2, --- , n of the first n integers in ascending order.
The n — 1 contacts of this sequence may themselves be arranged in a sequence
R* of contacts, thus: '

(1; 2); (27 3)) Tt (n - 1; n)

Suppose ! of the contacts which constitute the sequence R* are selected in some
manner to form the set 0. The remaining n — 1 — [ contacts form the comple-
mentary set O’. After this selection the sequence R* may be considered a
sequence of the type of the sequences V of Section 5 with the members of O
playing the role of the elements 0 and the members of O’ playing the role of the
elements 1. When R* is considered in this manner we will write it as R*(0).
The definition of a run of Section 5 as applied to sequences V is now applicable
to R*(0). We will call any such run of the members of O or of O’ a group.
We wish first to answer the following question: In how many ways can the
set O be selected from among the elements of R* so that it will contain [ mem-
bers arranged in R*(0) in ¢ groups? If, for a given O, 7' be the number of
groups into which O’ is divided in R*(0), it is clear that ¢ — 7’ can equal only
—1, 0, or +1. Hence only four situations can arise, as follows:
a) ¥ = ¢ + 1. The first group in R*(0) is therefore composed of elements of
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O’. The number of ways in which [ elements can be divided into ¢ runs of the
type of Section 2 is the coefficient of z' in the purely formal expansion of

(x+x2+x3+'°')i=( z )t

11—z
and is therefore (ﬁ : }) Similarly n — 1 — [ elements can be divided into

¢ =i+ lrunsin ("~ f - 2) ways. Hence this situation will arise in

;. — 1. By a similar argument as above, this can occur in

) 7
l—1\/n—1-—-2 avs
i—1 i—2 )WAs

¢) ¢/ = 7 and the first group is made up of elements from 0. This will occur in

l—1\(n—-—1-2 o
i—1)\ i—-1 )V

d) 7" = 7 and the first group is made up of elements from O’. This will also

occur in =1y (n—1—2 ways
i—1 i—1 ¥

The set O which contains ! elements arranged in ¢ groups can therefore be
selected in

(72) C _ })((n T 2) + (n Z_’Ez) + 2(n . 2))

ways, and the quantity (7.2) is, by elementary combinatorics, equal to

(73) (i - }) (" ;l).

Let any set O of [ contacts divided into z groups be selected from R*. Imagine
that each contact in O sets up, in R, , an unbreakable bond which links the two
elements involved in the contact, but no contact in O’ creates such a bond.
Given these bonds set up by O, we seek the number of different sequences into
which the n elements of R, can be permuted while respecting these bonds.
Since there are I bonds, we can actually manipulate only » — [ entities, except
that two elements linked by a bond may have their order reversed; for example,
if O contains (1, 2), 1 may either precede or follow 2 and the bond would still
be respected. However, if one contact in a group is reversed, the group asa
whole must be reversed, else a bond would be broken. Hence the number of
distinet sequences into which R, may be permuted while all the bonds set up
by O are respected is 2'(n — ).

Let us refer to the sequences thus obtained as the family generated by O.
All the sequences in a family are distinct. Now let O range over all sets of 1



ADDITIVE PARTITION FUNCTIONS 277

contacts selected from R*. The various families obtained will not be disjunct,
but some will have sequences in common. In spite of this, we seek the total
of the number of sequences in all the families. The total of the number of
sequences in all the families generated by sets of ! contacts divided into ¢ groups
is, by (7.3) and the result of the preceding paragraph,

(7.4) 2‘-(2. - i) (" s l) (n — DL.

Sets of I contacts may consist of 1, 2, - - - I groups, so that the total number of
sequences in all the families generated by sets of I contacts is

(7.5) 4 =2 T ) -1
' TETG- N e :
where I may take the values 1,2, ---, (n — 1). The conventions on the combi-
natorial symbols will be:
a
(0) =1, a>0,

a
(b) =0, a<b.

Define A4, as

(76) Ao = nl
The following equation is trivial:

(7.7) Ay = 2 N().

y==1

We now consider all the families generated by sets O which contain exactly !
contacts. As was said before, the total of the number of sequences in eachis 4, .
Let H(1) be the set of all the sequences in all these families, with each sequence
in H(l) counted as many times as the number of families in which it occurs.
Every sequence in H(l) has the ! contacts of the set O which generated it, but
after permuting R, other contacts may still exist. Hence every sequence in
H(l) has at least I contacts and therefore by (7.1), at most n — lruns. Clearly,
a sequence which has exactly ! contacts occurs exactly once in H(I), since it
can appear only in the family generated by the set O of its I contacts and in no
other family. A sequence which has exactly (! + 1) contacts will appear
exactly <l —'l- 1) times in H(l), for it will appear once in each family generated by

l+1

a set O which consists of one of the < ] ) selections of [ contacts from among
its (I + 1) contacts, and in no other family. Similarly each sequence which has
exactly (I + 2) contacts will appear in H(l) (l -Il- 2) times, and so forth. We

therefore obtain, in view of (7.1),
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n—1 o
(7.8) A= Z:z (;) N(n — 1) t=12---,(n—1).

The system of n linear equations (7.7) and (7.8) completely determines the
quantities N(1), N(2), - -+, N(n). The matrix of these equations has a deter-
minant whose absolute value is 1, so that the quantities N(1), N(2), -+, N(n)
may readily be expressed in determinantal form. Furthermore the moments
of W(R) are readily found from these equations. Thus from (7.8) for [ = 1
we find

nt—2n+2
P on -2
n

(7.9) E(W(R)) = -

and from (7.8) for I = 2 and I = 1 we find, after a little obvious manipulation,

n3—8n2+6n+4~

(7.10) AOWR) = 2= T 2.

Higher moments of W(R) may be found in similar manner.

Since the limiting variance of W(R) is 2 it follows that the asymptotic distri-
bution is not continuous. For n of any size the bulk of the values are concen-
trated in a short interval ending at n. When W(R) = n, M(R) = 0, when
W(R) = n — 1, M(R) = log 2, and when W(R) = n — 2, M(R) = log 43 or
log 4. It is easy to see that for the values of W(R) which differ very little
from n there are only a small number of values of M(R), whose asymptotic
distribution is also discontinuous. The statistic W(R) is therefore a good
approximation to the statistic M(R) for the purposes of tests of significance
(for M(R) the large values are the critical values and for W(R) the small values
are critical), and has a few additional practical advantages. It is even easier
to compute than M(R); the computation is best performed by counting con-
tacts. Since the limiting variance is a small constant, it follows that many
tests of significance can be performed simply by use of Tchebycheff’s inequality.
For example, suppose a given large sample contains 9 contacts, i.e.,, n — 9
runs (we say a “large” sample in order to use the simple limiting mean and
variance; if desired or for a small sample these latter may be computed exactly
by (7.9) and (7.10)). Then by Tchebycheff’s inequality it follows that the
probability of obtaining n — 9 or fewer runs is less than .041. Thus the presence
of 9 contacts would be sufficient to render a sample of great size significant on a
5% level. For the few numbers of contacts about which doubt will exist as to
whether or not they are critical values two procedures are possible. Either the
equations (7.7) and (7.8) may be solved exactly for the doubtful values, or
several higher moments may be found from (7.8) and the methods of Wald [14]
can be applied to delimit the missing probabilities to any accuracy desired. By
enumerating the few values of M(R) which correspond to several of the largest
values of W(R) the distribution of M (R) may be computed sufficiently to serve
the purposes of tests of significance.
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