NOTES

This section s devoted to brief research and expository articles, notes on methodology

and other short items.
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A NOTE ON THE THEORY OF MOMENT GENERATING FUNCTIONS
By J. H. Curriss

Cornell University

Let X be a one-dimensional variate and let F(x) be its distribution function.!
The function

. +o0
G(a) = E(e**) = [ e** dF (z), a real,

in which the integral is assumed to converge for a in some neighborhood of the
origin, is called the moment generating function of X. In dealing with certain
distribution problems, this function has been widely used by statisticians, and
especially by the English writers, in place of the closely-related characteristic
function f(t) = E(e"*). It is known that a characteristic function uniquely
determines the corresponding distribution, and that if a sequence of character-
istic functions approaches a limit, the corresponding sequence of distribution
functions does likewise. (These results are more accurately stated below.) The
appropriate analogues for the moment generating function of these theorems are
apparently not too readily accessible in the literature, if they have been treated
at all, and it seems worthwhile to record them in this note.

Henceforth we abbreviate distribution function to d.f., moment generating
function to m.g.f., and characteristic function to c¢.f. The variables a and ¢ will
always be real, in contradistinction to the complex variable s, to be introduced
in the next paragraph.

The uniqueness property of the c.f. may be stated as follows: If Fi(z) and
f1(t) are the d.f. and c.f. of one variate, and Fy(z) and f,(f) are those of another,
and if f1(f) = f2(t) for all’ ¢, then Fi(z) = Fa(x) for all z [1, p. 28]. To study the
corresponding situation for the m.g.f., we first observe that

“+o0
o(s) = E(e'*) = [ e’ dF (x), s complex,

1Or cumulative frequency function; our notation and terminology are uniform with
that of [1] except for the use of the term ‘‘variate’’ instead of “random variable.”

2 It is possible for two non-identical distributions to have c.f.’s which are identical
throughout an interval of values of ¢ containing the origin; an example is given in [4], p. 190.
The author is obliged to Professor Wintner and Professor Feller for pointing out the exist-
ence of this particular example.
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is a bilateral Laplace-Stieltjes transform. If such a transform exists for real
values of s in an interval —a; < 8 < a1, a1 > 0, it must exist for all complex
values of s in the strip —a; < Rs < a1, and represent there an analytic func-
tion of s [5, p. 238]. Evidently o(a) = G(a), ¢(it) = f(f).. Suppose now that
Fi(z), Gi(), f1(t), are the d.f., m.g.f., and c.f. of a variate X1, and F(z), Gz(a),
f2(t), are those of X;. Let oi(s) = E(e™), v(s) = E(e"™?), s complex. If
Gi(a) = Gy(a) for all @ in some interval, however small, containing the origin,
then by a familiar property of analytic functions [2, p. 116], ¢i1(s) = ¢:(s)
throughout the corresponding strip of analyticity, and so on the axis of imagi-
naries. This means that fi(f) = f(), all ¢, and therefore Fi(zx) = Fa.(x). We
have:

TueoREM 1. A m.g.f. existing in some neighborhood of a = 0 uniquely deter-
mines the corresponding distribution.

We turn now to distributions of variable form. Because certain of the ver-
sions to be found in the literature are incomplete, it seems worth while to give
here a full statement of the basic limit theorem for sequences of c.f.’s, due to
P. Lévy and sometimes called Lévy’s Continuity Theorem [4, pp. 48-50].

TurEorREM 2. Let the distribution of a variate X, depend on a parameter n, and
let F.(x) and f.(t) be the d.f. and c.f. of X, .

(a) If there exists a variate X with d.f. F(zx) such that lim,_,, F.(x) = F(z) at
every continuity point of F(x), then lim,.,  f.(t) = f() uniformly in each finite
interval on the t-axis, where f(t) is the c.f. of X.

(b) If there emists a function f(t) such that lim,_.. f.(t) = f(t), all t,* and uni-
formly' in some open interval containing the origin, then there exists a variate X
with d.f. F (x) such that lim,_.., F.(x) = F(z) at each continuity point and uniformly
in any finite or infinite interval of continuity of F(x). The c.f. of X is f(t), and
lim,w f2(£) = f(t) uniformly in each finite interval.

We now develop the corresponding theorem for the m.g.f. In the first place,
it is not difficult to see that part (a) will have no direct analogue, even if we add
to the hypothesis the conditions that the m.g.f. of X, exists in some fixed interval
for all n and that the m.g.f. of X also exists in some interval. For example,

the d.f.
0,z < —n
F.(z) = ¢ 3 + k, arc tan nz, —nsz<n

|Lz=2n

3 The condition that lim,_, . f.(¢) exist on at least an everywhere dense set of points on the
t-axis is essential to the proof as given in Cramer’s book [1, pp. 29-30], but is omitted in his
statement of the theorem, and is not stated clearly in certain other treatments by other
authors.

4 For a discussion of this uniformity condition, and possible alternatives, see [1, p. 29
(footnote)]. The condition may, for instance, be replaced by the assumption that f(t)
is continuous at ¢t = 0.
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where k, = 1/(2 arc tan n’), clearly tends as n — o to the d.f.
0,z2<0

F(x)={
L,z=0

at all points of continuity of the latter d.f. The m.g.f. corresponding to
F,.(zx) is

. )
Gu(e) = [ ke T i

which for each n exists for all a, and the m.g.f. corresponding to F(z) is simply
the constant 1. Clearly
n lals xs ) n
Gale) > -L‘ ke 3! 1 4 nx? dz,
and from this it can easily be verified that lim,_, G.(a) = « if @ % 0. In
short, mere convergence of a sequence of d.f.’s tells little about the behavior of
the corresponding sequence of m.g.f.’s.

Part (b) assumes the following form:

THEOREM 3. Let F.(x) and Gn(a) be respectively the d.f. and m.g.f. of a vari-
ate X, . If Gu(a) exists for | a| < a; and for all n = n,, and if there exists a
finite-valued function G(e) defined for |o| < a» < a1, @y > 0, such that lim,.,,
Gu(a) = G(a), |a| = as, then there exists a variate X with d.f. F(z) such that
lim,.., Fa(z) = F(z) at each continuity point and uniformly in each finite or
infinite interval of continuity of F(x). The m.g.f. of X exists for |a| < a» and
18 equal to G(a) in that interval.

To prove the theorem, we introduce the Laplace transform ¢.(s) = E(e*™)
and observe that | pa(s) | < on(a) = Gu(@), s = @ + 4t, n = n,, for any s in
the strip —a1 < Rs < a1 By applying Leibniz’s rule for differentiation under
an integral sign (extended to Stieltjes integrals), we find [5, p. 240] that

+0o0
G’:.’(a) = [ e dF.(z), Ial < ay,

from which it appears that G, (a) > 0, | @| < a1. Thismeans that the function
G.(a) assumes its maximum value in the interval || £ a; at either or both
endpoints of the interval. But of course G,.(az) and G,.(—az) both approach
finite limits as n becomes infinite, so it follows that the sequence {G.(a)},
n Z Mo, is uniformly bounded in the interval |a| < a;. Thus the sequence
{l ea(s) [}, n = no, is uniformly bounded in the strip —a» < Rs < az, and
moreover has a limit at each point of an infinite set possessing a limit point in
the strip (i.e., at each point of the interval —a; < s < ay). So by Vitali’s
Theorem (3, pp. 156-160, 240], there exists an analytic function ¢*(s) such that
lim,,,, ¢x(s) = ¢*(s) uniformly in each bounded closed subregion of the strip
—ay < Rs < aa. Since ¢,(it) is the cf. of X, , the existence of the limiting
distribution follows from Theorem 2(b).
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Of course, ¢*(a) = G(a), —az < @ < az. It remains to show that ¢*(a)
is the m.g.f. of X. Theorem 2(b) states that ¢*(it) is the c.f. of X. If we can
show that the function ¢(s) = E(e") exists at least in the strip —az < Rs < a2,
then since ¢(s) = ¢*(s) on the axis of imaginaries, the equality must be valid
in the entire strip, and so in particular on the interval of the real axis inside
the strip.

It will suffice for this purpose to show that ¢(a) exists for —as = a = ;.
Suppose indeed that ¢(a) does not exist at some point & = a3 in this interval.
That means that if

M = [l.u.b. G,.(aa), n = no],

we can find a real number A such that
A
) f e dF(x) > M .
Ay
But
A A A A
_[ " dF(z) = .[ e dFa(z) + [ [ e dF(z) — ‘[ e dF,.(:c):l.
A A A A

Since lim,.,, Fa(z) = F(z) at all continuity points of F(z), and 50 on an every-
where dense set of points, the Helly-Bray Theorem [5, p. 31] states that the
expression in brackets in (2) approaches zero as n becomes infinite. Meanwhile

A +o0
[ €™ dFa(x) = [ ¢ dFa(x) = M, n = .
A 0

Thus we arrive at the conclusion that the left member of (2) must be less than
or equal to M, which contradicts (1).

To be sure, we have only proved that the m.g.f. of X is equal to ¢*(a) or G(a)
in the open interval —as < a < az, and not in the corresponding closed interval,
as promised. But because of the absolute (and therefore uniform) convergence
of the integrals defining G.(a) and ¢(a), these functions must be continuous in
the closed interval —a: < a < a:. Since lim,., Ga(a) = G(a) uniformly in
this interval, G(«) must also be continuous there. This implies that ¢(a), the
m.g.f. of X, is identically equal to G() in the closed interval, and the proof is
complete.

It is perhaps worth while to point out explicitly that in the course of the
foregoing argument we have proved this proposition:

TueorEM 4. If a sequence of m.g.f.’s converges in an open interval containing
a = 0, then it must converge uniformly in every closed subinterval of the open
interval, and the limit function is itself a m.g.f.

REFERENCES

(1] H. CraMER, Random Variables and Probability Distributions, Cambridge, 1937.
[2] D. R. Curtiss, Analytic Functions of a Complez Variable, Chicago, 1926.

(3] P. Diengs, The Taylor Series, Oxford, 1931.

[4] P. Levy, Théorie de I’ Addition des Variables Aléatoires, Paris, 1937.

[5] D. V. WipDER, The Laplace Transform, Princeton, 1941.



