GENERALIZED POISSON DISTRIBUTION

By F. E. SATTERTHWAITE
Aetna Life Insurance Company

1. Introduction. The Poisson distribution is one of the most fundamental
of statistical distributions. It is the distribution law for the number of events
if the probability of an event happening in any infinitesimal unit of time is inde-
pendent of the probability of its happening in any other unit of time. Fre-
quently when we analyze statistics which obey the Poisson law it is desirable to
give varying weights to the different events instead of considering them all of
equal value. Such is the case in analyzing insurance statistics where the events
are the claims received by the office and the weights are the cost of the claim
to the company. We shall now show how the Poisson distribution can be
generalized so as to be adequate for such an analysis.

2. First development. Let f(z, a) be the distribution function of the weights
assigned to the events where the variable, z, refers to the weight and the vari-
able, a, refers to time. The characteristic function of f(z, @) is

a(t, @) = [ &1z, o0 da.

Also let p(a) da be the probability that an event will occur in the infinitesimal
unit of time, @ to @ + da. If y represents the sum of the weights, the distri-
bution function of y for this unit of time is

Faia(y, @) = 1 — p(a) da, y=0
= f(y, a)p(a) da, y > 0.
The characteristic function of this distribution is

¢“(1 — p(a) da) + pla) da f ef(y, ) dy

(2) =1 — pla) da(l — (¢, a))

= e—p(a)da(l—é(l.a))

1)

q’da(t) a)

In forming equations (1) and (2) we ignore infinitesimals of orders higher than
the first in the da.
The expected number of events in the period of time from a; to a is

asz
P =" p)da,
ay
and the mean distribution of weights during the same period of time is

1@ = [ o(a)/Pif(z, @) d.
410
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The characteristic function of this mean distribution of weights is

o) = [ @) i

= [ tp(e)/Plo(t, @) da.

These equations are based on the assumption that the probability of an event
occurring in any unit of time is independent of the probability of its occurrence
in any other unit of time and also the assumption that the weights assigned to
each event are independent. These assumptions are implied in all that follows.

Since the characteristic function of the sum of independent variables is equal
to the product of the respective characteristic functions, the characteristic func-
tion of the sum of the weights during the period of time, a; to az, is

&(t) = NPult, @)
(3) = e_Ip(a)d“'*‘Ip(a)d’(t.a)da

= Pa—e)

Applying the Fourier transformation, the distribution function of the sum of
the weights is

_ 1 / —ity=P(—5(D)
Fly) = 5=/ ¢ dt.

Equation (3) gives a convenient method for defining a generalized Poisson
distribution. Any distribution which has a characteristic function in the form
of ®(t) where ¢(?) is the characteristic function of an arbitrary distribution will
have all the properties of a generalized Poisson distribution.

3. Second development. If we let ¢(¢) represent the characteristic function
of an arbitrary distribution, the characteristic function of the sum of # inde-
pendent items obeying such a distribution law is ®,(t) = [¢(¢)]". If instead of
considering n to be a fixed quantity we assume that it is an independent sta-
tistical variable obeying the Poisson distribution law with mean P, the charac-
teristic function of the sum, y, of the items of the sample becomes

®(¢)

1 . n —
Zo — Plo@"e™”
n:
= g PU—s()

Therefore y is seen to obey the generalized Poisson distribution law.

4. Properties. The generalized Poisson distribution preserves the unique and
very important property of the Poisson distribution that nowhere in its develop-
ment is it necessary to make any assumptions regarding homogeneity. The
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only requirement is that the occurrence of and weight assigned to any event
shall be independent of the occurrence of or weight assigned to any other event.

The distribution of the sum of the weights is a function of the expected number
of events, P, and of the mean distribution of weights, f(z), alone. It is inde-
pendent of the way in which P and f(z) are made up. Thus, if we are studying
the distribution of the sum of the weights over a period of a year and if P and
S(z) vary with the seasons, the distribution of y is no different than it would be
if P and f(x) were constant. It is only necessary that the f(z)’s for the different
seasons be weighted in proportion to the expected number of events in deter-
mining the mean f(z).

Note also that in the first development it is not necessary that the variable, «,
refer to time. It could just as well refer to different classes of events dis-
tinguished on any other basis. Therefore, heterogeneous material may be com-
bined in an analysis if it is possible to determine the appropriate mean distri-
bution of weights.

For a given weight distribution the generalized Poisson distribution for an
expected number of events, nP, is identical with the distribution of the sum of n
independent items each of which obeys a generalized Poisson distribution with
P expected events.

Because of the property described in the preceding paragraph it is immediately
apparent that a generalized Poisson distribution obeys the law of large numbers.
As the number of expected events increases the distribution approaches the
normal distribution.

6. Moments. The moments of a generalized Poisson distribution are func-
tions of the moments of the underlying weight distribution. By differentiating
the characteristic function we obtain the following formulas in which the pre-
subscript, o , refers to the moments of the weight distribution, f(x):

p1 = Pops = m

pz = Pous = o

ps = Pops

m = Pous + 3(Pouz)”.

The above formulas may be verified through general reasoning by considering
the moments of the distribution, Fa(y, @) (see equation (1)). This distribu-
tion refers to an infinitesimal unit of time and all the moments about zero are
infinitesimals of the first order. In passing from the moments about zero to
the moments about the mean the corrections are all infinitesimals of at least the
second order. Therefore, the corrections may be ignored and the moments
about the mean may be considered to be equal to those about zero. The above
formulas follow if we take a sample of size P/pda from this population.

In order to obtain Pearson’s moment functions for a generalized Poisson
distribution for any given mean value it is convenient to calculate the following
parameters of the weight distribution:
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om = ol-tx'
002 oﬂé/ om
oB1 = (ous/om)*/oc®
o(Be — 3) = (ous/om)/od".
The Pearson moment functions then take the convenient forms:

4

a/m = o' /m
) B = ofi/m
(B2 — 3) = o(B2 — 3)/m.

6. Further generalizations. Often the expected number of events is not
known but can be estimated to a greater or less degree of accuracy. In such a
case it is convenient to assume that P is a statistical variable distributed about
some expected value, say P’. A Type III distribution,

1 (b ot —serer

g(P) = O (p) Pe )
will generally be as satisfactory as any to assume for P. The parameter, b,
can be chosen to give any desired standard deviation. The characteristic func-
tion of the distribution of the sum of the weights under these conditions becomes

Ql(t) = fe—-P(l—é(t)) g(P) dP

g -
[1+ 20T
b
The second development suggests another generalization. Instead of assum-
ing that the number of events, n, is distributed in accord with the Poisson
distribution, we may assume any discrete, non-negative distribution, h(n).
The distribution function for the sum of the weights is then

F'(y) = Zh(n)f(y, n)
where f(y, n) is the distribution function for the sum of n independent weights.
The variance, ¢°, of this distribution is given by the formula,

o _ o 1 o’

= e o
where m refers to the mean, n refers to the distribution A(n), and o refers to the
weight distribution. Some writers have assumed that statistics of this type are
distributed as a product. Such an assumption is incorrect and causes an over-

statement of the variance to the amount of ,m-om’:,0" - oo".

7. Application. In Table I is shown the distribution of claims under a cer-
tain plan of group sickness and accident insurance. The parameters, (4), for
this distribution are
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(6) om = 3.62, o =81, Bi=14, B —3) = 15.

This distribution is in terms of weeks per claim. The insurance company is
interested in the financial cost per claim. A study shows that the distribution
of the rate of weekly indemnity to which different classes of employees are
entitled has the average parameters,

(7) m = 1525 10" =165 181 =20, 18— 3) = 25.

Since the moment about zero of the product of independent statistics is equal
to the product of the moments, it is permissible to multiply together the corre-

TABLE 1

Nearest Duration of Claim in Weeks N “;k}efo‘,’éoglﬁi,ﬁ‘&g;ﬁ eg ear

197
418
173
109
84
58
45
35
27
24
10 20
11 17
12 14
13 128

©WOIO U WN-=O

sponding parameters of (6) and (7) to obtain the average parameters for the
distribution of the financial cost per claim. These are

am = 55.2, 20" = 134, o8 = 280, (8 — 3) = 375.

In order to study the distribution of cost under a group of policies for each of
which $180 in claims is expected, we apply equations (5) to obtain the pa-
rameters, .

(®) d/m’ =74, Hp =16 p—3=2L
Since the expected number of claims is
P = 180/55.2 = 3.3
the probability that there will not be any claims under a policy is

h(0) = (-)1—,(3.3)"6‘*"3 = .037.
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Adjusting the parameters, (8), to remove the zero claims and choosing the scale
so as to express the results as loss ratios gives the parameters,

m = 61.6%, ¢ = 52.8%, B = 1.57, B2 = 4.90.

A Pearson Type I curve fitted to these parameters intersects the axis well below
the zero point. Therefore 3. was reduced to 4.59 which gives the expected
distribution shown in Table II.

Table II also shows the actual distribution of loss ratios experienced by one
of the larger group insurance carriers under policies in this class. The Chi-

TABLE II
Experience under Group Sickness and Accident Insurance Policies

Number of Policies
Ratio of Losses to Premiums
Expected Actual
0 18 11
.01- .09 47 37
.10- .19 53 45
.20- .29 50 56
.30- .39 45 38
.40~ .49 41 47
.50- .59 36 39
.60- .69 32 41
.70- .79 28 37
.80- .89 24 20
.90- .99 21 29
1.00-1.19 32 30
1.20-1.39 23 22
1.40-1.59 17 22
1.60-1.99 19 14
2.00 and over 11 9

square test for goodness of fit gives,
X' = 23, 14 degrees of freedom,

which corresponds to a probability of 5 per cent. Thus it is apparent that
theory and experience are in fair agreement considering that no allowance was
made for the lack of homogeneity “between policies.” (This should not be
confused with the homogeneity ‘‘within policies” covered in the theory.)

If the expected number of events is small, especially if the weight distribution
is irregular or discrete, it is sometimes advisable to use the following method:

1. Use summation or approximate integration to obtain the distribution,
Sf(y, n), of the sum of n» independent weights for n = 1, 2, 3, and 4. The
formula is
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fly,n+ 1) = L"f(:c)f(y — z, n) dz.

2. Determine the generalized Poisson distribution for P, the expected number
of events, equal to some small number, say {. The formula is

F(y, P) = = ni, P e iy, n).
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PROBABILITY -~ Do
Fic. 1. Surgical Fee Insurance. ----, Distribution, f(y, n), of the sum of n independent
claims. —— Distribution, F(y, P), of the sum of the claims when P claims are expected.

The average claim is $50.

Ezample: If the expected claims under a policy are $100 (P = 2) and if the actual claims
are $490, the probability of an experience as bad as this occurring because of chance factors
is 0.1%.

3. Use summation or approximate integration to obtain F(y, P) for P = 3,
1, 2, 4, - - - by the formula

F(y, 2P) = fo ' ¥z, P)F(y — =, P) da.

4. If the calculations are carried on from both tails and if the results are
plotted on probability graph paper, it is often possible to fill in the central sec-



POISSON DISTRIBUTION 417

tions by interpolation. Such interpolations should be adjusted to reproduce the
correct mean. This method is illustrated in fig. 1 in the case of surgical fee
insurance.

8. Summary. In this paper the Poisson distribution is generalized to allow
for the assignment of varying weights to events when the number of events
follows the Poisson law. The ability of the Poisson distribution to handle
heterogeneous data is preserved in the generalization. An example is given
showing that the distribution of certain insurance statistics agrees with that pre-
dicted by the theory.



