SETTING OF TOLERANCE LIMITS WHEN THE SAMPLE IS LARGE

By ABraEAM WALD
Columbia University

1. Introduction. Let f(x1, ---, %, 61, ---, 6x) be the joint probability
density function of the variates z,, -, z, involving ¥ unknown parameters
6, -+, 0c. A sample of size n is drawn from this population. Denote by
Tialt =1, -+ ,p;a=1, ---, n) the a-th observation on ;. We will deal here
with the following two problems of setting tolerance limits, which are of im-
portance in the mass production of a product:

Problem 1. For any two positive numbers 8 < 1 and v < 1 we have to con-
struct p pairs of functions of the observations Li(xu, -++,Zym) and
Usi(xyn, -+, Zpn) (€ =1, -+, p) such that

Up Uy
(1) P{fL et L f(xlr"')xpaoh"'10k)dxl"'dxp27|01,"‘,ak}=6;
P 1
where for any relation R, P(R | 61, - - - , 6x) denotes the probability that R holds,
calculated under the assumption that 6, , - - - , 6 are the true values of the parameters.
Problem 2. For any positive numbers 8 < 1, A < 1 and for any positive integer
N we have to construct p pairs of functions of the observations Li(zy , - -+ , Tps) and
Us@u, -+, Tps) with the following property: Let yia(i = 1, .- ,p; a =
1, ---, N) be the a-th observation on the variate x; in a second sample of size N
drawn from the same population as the first sample has been drawn. Denote by M
the number of different values of a for which the p inequalities

Li(xu, -+, Tpn) < Yia K Uilxnr, -+, ) G =1, -+, D),
are fulfilled. Then
(2) P(MZ)\Nlolyiok)=B)

where 6, , + - -, 0x denote the unknown parameter values of the population from
which the observations x;« and y;. have been drawn.

The functions L; and U; are called the tolerance limits for the variate z; .
We will say that L; is the lower, and U; the upper tolerance limit of z;. In
general, there exist infinitely many tolerance limits L; and U; which are solu-
tions of Problem 1 or Problem 2. It is clear that the tolerance limits L; and
U, are the more favorable the smaller the difference U; — L;. Hence if there
exist several solutions for the tolerance limits L; and U; we should select that
one for which the difference U; — L; becomes a minimum in some sense.

S. S. Wilks! gave 2 solution of Problems 1 and 2 in the univariate case, i.e.

18, 8. Wilks, “Determination of sample sizes for setting tolerance limits,” Annals of
Math. Stat., Vol. 12 (1941). See also his paper on the same subject presented at the meeting
of the Institute of Mathematical Statistics in Poughkeepsie, September, 1942.
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390 ABRAHAM WALD

if p = 1. It seems that Wilks’ solution is the best possible one if nothing is
known about the probability density function except that it is continuous.
However, if it is known a priori that the unknown density function is an ele-
ment of a k-parameter family of functions, it will in general be possible to derive
tolerance limits which are considerably better than those proposed by Wilks.

Wilks’ results can easily be extended to the multivariate case provided the
variates z;, - -, z, are known to be independently distributed.? This is a
serious restriction, since in many practical cases the independence of the variates
Z1, **+, Z, cannot be assumed. The case of dependent variates has not been
treated by Wilks.

In this paper we give a solution of problems 1 and 2 when the size n of the
sample is large. In the next section a lemma is proved which will be used in
the derivation of tolerance limits. In section 3 the univariate case is treated
and in section 4 the results are extended to the multivariate case.

2. A lemma. We will prove the following

Lemma: Let {21}, -+, {xm} (n = 1,2, -- -, ad inf.) be r sequences of random
variables and let a,, --- , a, be v constants such that the joint distribution of
V(T — a), - - , V(2 — a,) converges with n — « towards the r-variate
normal distribution with zero means and finite non-singular covariance matriz
[loijll @ j = 1, -+, 7). Furthermore, let g(us, --- , u,) be a function of r
variables uy , - - -, u, which admits continuous first derivatives in the neighborhood
of the point uy = ay, -+ ,u, = a,. Assume that at least one of the first partial
derivatives of g(wy, - - - , u,) is not zero at the point uy = ay, - -+, Uy = a,. Then
the distribution of \/n[g(xin, * -+ , Tm) — glar, -+, a,)] converges with n — «

. . . . . 2
towards the normal distribution with zero mean and variance o, = 7ii0:g;
7 T

where g; denotes the partial derivative of g(u1, - -+ , u,) with respect to u; taken at
U = 1,y ** , U = Q. _

Proof: Since the joint distribution of \/n(r1, — ai), + e, V(@ — a,)
approaches an r-variate normal distribution with zero means and finite non-
singular covariance matrix, the probability that

1 .
3 C— el =1, .7
3) % \/_<xm<a,+\/?_z (E=1,---,7)
holds, converges to 1 with n — «. From (3) and the continuity of the first
derivatives of g(u;, - -- , u,) it follows easily that for any positive e the prob-
ability that

Z.} \/ﬁ (Tin — a;)g;s — €
S VR, -+ @) — glar, -+, 8)] < 20 VN (30 — ai)gs + €

2 This was mentioned by Wilks in his paper presented at the meeting of the Institute of
Mathematical Statistics in Poughkeepsie, N. Y., September, 1942.
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holds, converges to 1 with » — . Since the limit distribution of
Z A/n(Zin — @;)g: is normal with zero mean and variance equal to =Z¢y;g:g; ,

our Lemma follows easily from the fact that the quantity e in (4) can be chosen
arbitrarily small.

3. The univariate case. In this section we assume that p = 1. Hence _the
probability density function f(x1, -+, zp, 01, « -+, 6z) is replaced by the uni-
variate density function f(z, 6,, - -+, 6;). In order to simplify the notations,
the letter § without any subseript will be used to denote the set of parameter

values 6y, -+« , 6.
For any positive ¢ < 1 let ¢(8, £) and ¢¥(8, £) be two functions of 8 such that
¥(0, ©
(5) [ w0 dz =,

(0, %)

If f(z, 6) is a continuous function of z, functions ¢(6, £) and ¢ (6, £) satisfying (5)
exist. It is clear that for any function ¢(6, £) subject to the condition
(0, ¢
[ fmede<1-¢
there exists a function ¢(6, £) such that (5) holds. We will choose ¢(6, £) and
¥(6, £) so that (5) is satisfied and

for any value of 6 and for any functions @(6, £) and ¥(6, £) which satisfy (5).
Let 6; (¢ = 1, --- , k) be the maximum likelihood estimate of 6; calculated

from the observations zy, ---, 2,,. We propose the use of the tolerance
limits
(7) L= ﬂo(é; E) and U = ‘p(é’ 5)

where the value of the constant £ has to be properly determined. Problem 1
is solved if we can determine ¢ as a function of 8 and v such that

v, o
(8) P{f f(x,&)dx27|0}=ﬁ.

¢(0, %)
Problem 2 is solved if we determine £ as a function of 8, A and N such that
9) P(M >\N|6) =8

where M denotes the number of observation in‘the second sample which lie
between the tolerance limits ¢(6, £) and ¢(8, £). The use of tolerance limits
of the form (7) seems to be well justified by the fact that the functions ¢(6, §)
and ¥(6, £) satisfy (5) and (6) and that é; is an optimum estimate of 6; (i =
1, -, k).

Now we will derive the large sample distribution of



392 ABRAHAM WALD

0%
(10) 16,00 = [ s, 0 da

We obviously have
(11) 1(6,6,% =&

We will assume that the limit joint distribution of +/n(d — 6y), ---,
v/n(6x — 64) is normal with mean values 0 and non-singular covariance matrix
8 log f(z, 6)
0, 36;

(4,5 =1, .-+ ,k). Thisis known to be true if f(z, ) satisfies some regularity
conditions.? Furthermore we assume that ¢(6, £) and ¢(6, £) admit continuous
first partial derivatives with respect to 6 , - - - , 6; and that f(z, 9) is a continuous
function of z in the neighborhood of z = ¢(8, £) and x = ¢(6, £). We have

@, 6, £) a.p(a D 11u(6, &), o1 — a¢(0 f)f[¢(o o, 0]

69.' i-o
aé; bt

[| o:508) || = || ¢:1(6) ||™* where ¢;;(6) denotes the expected value of —

(12)

Assuming that at least one of the derivatives is not zero, it fol-

lows from our Lemma that _
V[l 6,8) — 18, 6, £)] = \/n[I(8,6,£) — £ is in the limit normally distrib-
uted with zero mean and variance

0,0 = (flv00, 9, 0 T X XL O NGO 5

a

(13) — 21146, 8), 8fle(t, 0, 01 3 3 00 82600 5
+ Uflol6, &), 01" T z_: 20,8369 o).
For any positive 8 < 1 denote by )\p the value for which
1 —3¢2
14 0 dt =
(14) o h, 8.
Then the probability that
(15) 10,0, > £+ 23728,
) Vn
converges with n — o towards 3.
Let

(16) B v ) = v — "(\”}i’ )

3 See for instance J. L. Doob, “Probability and statistics,’” Trans. Amer. Math. Soc.,
October, 1934.
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If (6, £) is continuous in 6 and £, it follows easily from (15) that the probability
that

a7 I16, 6, (8, v, ) > v

holds, converges to 8 with n — «. Hence we can summarize our results in the
following

THEOREM 1: Let (0, £) and ¥(0, £) be two functions satisfying (5) and (6).
Furthermore, let the functions 1(8, 8, £), o*(8, £) and (8, v, 8) be defined by (10),
(13) and (18) respectively. Denote by 63 , - - - , 6; the true values of the parameters.
It ©s assumed that there exist two positive numbers e and & such that the following
three conditions are fulfilled:

k
(a) For any point 0 for which Y, (6; — 62)* < e the limit joint distribution of
t=1

Vb — 6), -+, Vn(br — 6), calculated under the assumption that 8 is the

true parameter point,is normal with zero means and a finite non-singular covariance

%atrix || 0:5(8) || where ¢:;(8) is a continuous function of 0 in the domain
_ (0; — 09} < e

a1 (4, o, )

Py (=1, ---,k) are continuous func-

=0

(b) The partial derivatives

tions of 0 and & in the domain
k
20— 6 <e and |f—v]|<0.

A af
aI(o(;éB,v) G=1,- - ,k)is not

(c) At least one of the partial derivatives -
b=b

equal to zero.
Then the probability that

116, 6, £, v, D] = 1,

holds, converges to 8 with n — «.
From Theorem 1 we obtain the following A
LARGE SAMPLE SOLUTION OF PROBLEM 1. For large n we can approximale the

lower and upper tolerance limits by

ol0, £, v, 0)) and ¥l0, £(8, v, 8)] respectively, where £(8, v, 0) s given by (16).
Now we will deal with Problem 2. We distinguish two cases

(a) lim — = oo,

1t is easy to see that in this case the solution of Problem 2 is obtained from that
of Problem 1 by substituting A for yv. Hence for large n the tolerance limits
can be approximated by o[f, £(8, N\, 8)] and ¢[6, £(8, \, 8)] respectively.
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For these tolerance limits condition 2 is fulfilled in the limit, i.e.
lim P(MZANIOI’ "',ok) =8

n==00

(b) The integers n and N approach infinity while %z remains bounded.

Denote \/n[I(4, 6, £) — & by w and /N <]%£) - E) by v, where M (£) denotes

the number of observations in the second sample which fall between the limits
¢(0, £) and ¢(6, £). For any fixed value of  the conditional expected value of

M (E) M@ . .
N s given by

is given by £ + \%_ and the conditional variance of
n
(E + \/_)< £ — ;/u—ﬁ> . Hence the conditional expected value of v is

equal to u ,‘/g and the conditional variance of v is equal to (g + —1—‘—_) (1 -
n

- \/L.) Since the limit distribution of % is normal with zero mean and
n

standard deviation o (6, £) given in (13), we find that the limit bivariate distribu-

tion of 4 and v is given by
N 2
;o)
xXp| — - n du dv.

1
2100, VEL — £) 27°6,5) 21 — &)

From (18) it follows that the limit distribution of » is normal with zero mean

and variance
2 N _
= 6,0 ;o0 + e p) £ —

_ nE(l — &) + No'(8, &)

n

(18)

(19)

From (19) it follows easily that the probability that

M(%) As oy
20 — > 2
(20) N _£+\/N
converges to 3 withn — . Let
A — 204
21 *(8, \, 6 =>‘-___ﬂ_1/n7\(1 N + No'6,N) |
(21) £4(B, \, 6) il P

From (20) it follows that the probability that

M
—_ >
N_)"
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converges *o 8 with n — «. The letter M denotes the number of observations
in the second sample which lie between the limits ¢[6, £*(8, \, 6)] and
16, £%(8, 1, 6)).

We can summarize our results in the following

THEOREM 2. Let (8, £) and (0, £) be two functions satisfying (5) and (6).
Two samples of size n and N respectively are drawn and the maximum likelihood
estimate 0 is calculated from the first sample only. Assume that conditions (a),
(b) and (c) of Theorem 1 are satisfied. Let £(8, v, 8) and £*(8, \, ) be defined
by (16) and (21) respectively.

If n and %V both approach infinity, the probability that ZIAT/I > N holds, converges

to B, where M denotes the number of observations in the second sample which lie
between the limits [0, E(8, N, 6)] and ¥[8, E(8, A, 6)].

If n and N approach infinity while % remains bounded, the probability that

?vl > X holds, converges to 8, where M denotes the number of observations in the

second sample which lie between the limits [0, £*(8, \, 6)] and ¥[8, £*(8, X, 8)].
From Theorem 2 we obtain the following

LARGE SAMPLE SOLUTION OF PROBLEM 2. If n and %[ both approach infinity
the lower and upper tolerance limits can be approximated by o[f, (8, \, )] and
Y[, E(B, N, 0)] respectively. If n and N both approach infinity while % remains

bounded, the tolerance limits can be approximated by o[f, £*(8, \, 6)] and
V[0, £5(8, N, )] respectively. The expressions E(8, \, 6) and £*(8, \, ) are given
by (16) and (21) respectively.

4. The multivariate case. For any positive § < 1 let ¢;(0, £) and ¥:(6, £)
(z =1, .-+, p) be p pairs of functions of 4 such that

V(6,0 10,8
(22) [0 [ ey, 0) o e day = &,

ep(0,) 01(8,8)
If f(x1, ---, z,, 6) is a continuous function of =y, -+, z,, functions ¢;(6, )

and ¢:(0, &) ( = 1, - -+, p) satisfying (22) certainly exist. As in the univariate
case, there will be infinitely many sets of p pairs of functions ¢;(6, £) and ¢;(6, £)
which satisfy (22). Since we wish to have tolerance limits as narrow as possible,
we will try to choose the functions ¢;(6, £) and ¥;(6, £) so that (0, £) — ¢.(6, &)
should be as small as possible. Since it is impossible to minimize all p differences
W0, £) — o0, £), -+, ¥u(0, £) — ©,(0, £) simultaneously, we will have to be
satisfied with some compromise solution. For example, we could minimize
the product H W6, £) — @i(6, £)] or some other function of the p differences

vi(0, £) — oi(0, £). Another reasonable procedure would be to minimize
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H [¥i(0, £) — ¢i(6, £)] subject to (22) and the condition that for any ¢ and j,

::((g,’ g——_——%((—g”—g is equal to the ratio of the standard deviation of z, to that of x; .

Here we will deal with the problem of deriving tolerance limits for the variates
T, - -+, 2, after the functions ¢;(8, £) and ¥;:(6, £) have been chosen. Since
the theory of the multivariate case is very similar to that of the univariate
case, we will merely outline it briefly.

As tolerance limits for z; we will use the functions ¢;(6, £) and ¥.(6, £) where
the value of ¢ has to be properly determined. Problem 1 is solved if we can
determine ¢ as a function of 8 and v so that

¥p(6.,0) V16,9

(23) P{f f o f, ez, 0) day - dr, > 7[0} = B.
¢p(0v€) 01(6,8)

Problem 2 is solved if we determine ¢ as a function of 8, A and N such that con-

dition 2 is fulfilled. ILet

) ¥p(6,5) n.p
@)  16ep=[ "
14

f(xl, Tty Xpy o)dxl e dxp

0p(6.5) 1 (66
and let X ) .
X ¥p(6,0 Vi+10,0 pei—10,p
Ii(ay 07 E) xi) =f i et f 66 f o
op(0,8) ei+1(0:¢ ei—1(0,
(25) ’ ¥1(6,6
' ‘/; o Sy, ooy xp, 0)dry <+ diy diiyy - - da, .
1 (6,
We have
. \ 2, a0,
016,08 _ 5~ WG 8 110 6 ¢ o, 0]
96; 6= =1 06;
(26) L ps(0, £)
- Zl 60” I‘[07 0’ E’ (Pg(o, E)]‘
Assuming that the partial derivatives 3_1(%9@,_@ is (=1, ---,k) are con-

tinuous functions and that . is not zero for at least one value of
A 0=0

1, it follows from our Lemma that /n[I(6, 6, £) — I(6,6,£)] = V/n[I(4, 6, ) — £
is in the limit normally distributed with mean value zero and variance

0,0 = 3,3, 2 2 WD NOD 1y 4 ¢ 0, 91100,0, 61,0, D0

g=1 s=1 j=1 1=l

_9 ; zq: Z; > all/.;g; £) 3¢q§3; £)

7

(27) <118, 6, £ ¥u(0, 1,10, 8, £ o468, £)lo:(6)
3040, £) dpy(0, £)
ERIPDPIS Sl
'IO[G, 0, &, 908(01 E)]Iq[oi 0, £, <Pq(9, E)]O'ij(o)

oI, 6, &)
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where || ¢:;(6) || is the limit covariance matrix of Vb, — 6), -,
V06 — 6k).
For any positive 8 > 1, let As be the real value defined by the equation
R v
(28) \/51; s e dt = ﬂ.
Let
: 5 5(6, )
29) By, ) =7 — M2
( $(8, v Ly
and

* _+_ M /ma@ =N 4+ N&#@G, N
(30) £*(B, N, 8) = A i - .

We can easily prove the following two theorems:

TueoreM 3. Let ¢i(0, £) and ¥:(6, &) (¢ =1, -+, p) be p pairs of functions
which satisfy (22). Let the functions I (8, 8, £), (6, £) and £(B, v, 0) be defined
by (24), (27) and (29) respectively. Denote by 6, -, 6% the true values of the
parameters 61, « -, Ok . It is assumed that there exist two positive numbers e and
& such that the following three condz;ctions are fulfilled:

(a) For any point 0 for which Z 6; — 0%)? < e the limit joint distribution of
‘ te=1

Vnlb — 6), -, Vn(b — 6, calculated under the assumption that 0 is the
true parameter point, is normal with zero means and a finite non-singular covariance
matriz || 0:5(8) || where o:;(6) s a continuous function of 8 in the domain

2 (6 — 6 < e

(b) The partial derivatives

aI(h, 0, )
36;

k
tions of 8 and £ in the domazn 3, (6; — 67)° < eand | £ — v | < 8.
=1

a1 (8, 6° )
b;
not equal to zero. J
Then the probability that

Ii6, 6% 8, v, O] > v

holds, converges to 8 with n — .

TuroreM 4. Let ¢i(0, £) and ¢:(8,8) ¢ =1, ---,p) bep pairs of functions
which satisfy (22). Two samples of size n and N respectively are drawn and the
mazimum likelihood estimate 6 is calculated from the first sample only. Assume
that conditions (a), (b) and (c) of Theorem 3 are fulfilled and let (8, 7, 6) and
£*(8, N, 0) be defined by (29) and (30) respectively. Denote by Y« the outcome of
the a-th observation on the i-th variate in the second sample.

@=1,---,k) are continuous func-

(c) At least one of the partial derivatives @=1,---,k)1s

=00 (
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If n and %/ both approach infinity, the probability that M > AN holds converges

to 8, where M denotes the number of different values of o« for which
‘Pt’[éy f(ﬂy >‘y é)] S Yia S 101[97 f(ﬂ) )‘) é)] (7/ = 1) ) P)-

If n and N approach infinity while %r remains bounded, the probability that

M > AN holds converges to 3 where M denotes the number of different values of o
Sfor which
‘pi[éy g-*(ﬂy )‘7 é)] S Yia S ‘/’i[é, g‘*(ﬂy >‘7 é)] ('l = 11 T p)-

The proofs of Theorems 3 and 4 are omitted since they are similar to the
proofs of Theorems 1 and 2.

From Theorem 3 we obtain the following

LARGE SAMPLE SOLUTION OF PROBLEM 1. For large n we can approximate the
lower and upper tolerance limits for x; by o6, §(8, v, 8)] and ¥.6, £, v, 6)]
respectively where {(B, v, 0) ts given by (29).

From Theorem 4 we obtain the following

LARGE SAMPLE SOLUTION OF ProBLEM 2. If n and % approach infinity, the
lower and upper tolerance limits for x; can be approximated by o[, £(B, N, 6)] and
Wild, £(B, N, 8)] respectively. If n and N both approach infinity while % remains

bounded, the tolerance limits for x; can be approximated by o8, {*(8, N, 6)] and
vilb, ¢*(8, N, 8)] respectively.  The expressions ¢ (8, N, 8) and {*(B, \, 8) are defined
i (29) and (30) respectively.

6. An example. Let x be a normally distributed variate with mean value 6,
and standard deviation 6, , i.e.-the probability density function of x is given by
1 K00 %03

f(.’l), 01, 02) = %—roze

For any positive ¢ < 1 let p(£) be the value for which
1 p(®) "
By p—— i t —3 .
L -[,»(:-) ¢ d ¢

40(9’ 5) =6 — P(f)ez

[]

Then the functions
and

¥(0, &) = 01 + p(£)6

satisfy conditions (5) and (6).
We have
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The variance of v/n(6: — 6;) is equal to 63 and the limit variance of v/n (8, — 62)
is equal to 165 . Since the covariance of 8, and &, is equal to zero, we obtain
from (13)

200, = 2{ = O 6+ 100

1 2 2 2| 2
- 2{ TR } {63 — 30200(£)I"}

Il

L@,

Hence for large n the tolerance limits satisfying (1) can be approximated by
6 — p(®)6, and 6, + p(%)6, respectively where

_ ely)
Feoy— )‘”\/_ﬁre bol(m]2

and )g is the value determined by the equation
1 0
~e2
e t = .
'\/27l' Ag ¢ d B

If n and N are large, the tolerance limits satisfying (2) can be approximated by
6; — p(£%)6y and 6; + p(£*)6. respectively where

E* =\ —9N /‘/)\(11'\7 A) + [P,'(:;Blz e_[p()‘)]z.




