ON THE PROBLEM OF TESTING HYPOTHESES

By R. v. MisEes
Harvard University

1. Introduction. The following is known as the problem of testing a simple
statistical hypothesis. The probability distribution of a variate X depends on
aparameter ¢. In the course of experiments each time a value x of X is observed,
one pronounces one of the two assertions: “# equals &’ or ¢ is different from
d.” The first assertion is made when the observed value z falls in a “region of
acceptance’” A, the second, if x falls in the complementary region 4. What is
the chance of these assertions being correct and how can A be chosen to make
this chance as high as possible?

The distribution for the variate X is considered as given. Let P(x|d) be
the probability of the value of X being < z. It isobvious that to know P(x | &)
is not sufficient for computing the success or error chances of the above assertions.
There is another distribution function Py(d#) involved which we may call the
initial or the a priori or the over-all distribution of the parameter #. The
meaning of Po(d) is as follows. In the infinite sequence of trials there will be
among the first N experiences N, cases where the assertion that the parameter
value is < ¢ proves correct. Then Py(¢#) is the limit of the ratio N;/N when N
tends to infinity. If N, is the number of cases in which the actually pronounced
assertions & = & or & # & respectively, prove correct, the limit of No/N is the
success chance and of 1 — Ny/N the error chance of the test under consideration.
It would not make any sense to assume that an error chance exists but the over-
all chance Po(8) does not.!

The success and error chances for the assertions ¢ = ) and ¢ # J, depend on
both functions P(z | #) and Po(#). But in most practical cases nothing or very
little is known about the parameter distribution. Usually, only the limits
within which ¢ varies are known, or a set of distinct values is given which ¢
can assume. Therefore, the problem of testing a hypothesis must be modified
in the following way. We ask: What can be said about the error and success chances
of the two alternative assertions and about the choice of the region of acceptance, if
Po(9) s entirely or partly unknown? This form of the question corresponds
more or less to the conception generally adopted today.

In section 4 of this paper a complete answer to the question is presented for
the case of a parameter distribution that is entirely unknown except for the range
of possible #-values. This solution, with the restriction to a parameter assuming
distinct values only, was already given by Robert W. B. Jackson in a paper
devoted mainly to some genetical problems [1]. The particular circumstances
prevailing under the restriction to distinct parameter values will be discussed

1 The expression ‘‘chance’” rather than “probability’” is used here since no randomness
ig required. Cf. the author’s paper [2] p. 157.
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in section 8. In section 6 the result is extended to composite hypotheses and
in section 7 to problems in several dimensions. An important case of restrictions
imposed to Po(¢#) is discussed in section 9.

In the preceding lines the subject of testing a statistical hypothesis was pre-
sented in its simplest form, with one scalar variate and one parameter, in order
to discard all non-essential complications which would serve only to veil the
principal point. For the same reason it is to be understood, in the following
text, that region (in one dimension) will mean an interval or a finite number of
intervals, and distribution will mean a set of concentrated values at distinct
points with a continuous density in between or a continuous density throughout.
If, for the sake of brevity, a Stieltjes integral is used, nothing else is meant than
the combination of a sum and an ordinary integral of a continuous function.
With respect to the parameter ¢ the distributions P(x | ¢) are considered as
either defined for distinct d-values only or as continuous functions, ete.

2. Error chance. Success rate. J. Neyman who must be credited with
successfully promoting many problems of mathematical statistics introduced
the distinction between errors of first and second type and made this the basis
of his approach in dealing with the theory of tests. An error of first kind is
committed if the assertion & # ¢ is made when ¢ equals & ; an error of second
kind occurs when the assertion & = &, proves incorrect.” The chances P, and
Py of these two events can easily be computed, if the distributions P(z | ¢) and
Po() are considered as known.  From P(x | 8) we derive the probability P(4 | 8)
for x falling in the region A. In particular P(A | ) will be designated by
1 — a. Thus ais the probability of z falling in 4 when ¢ = . The function
Py(9) can have, at the point & = ¢, a jump of magnitude m,. The set of all
d-values except J, will be called . Then the two error chances are obviously

o Pr=am Py= f( _ (] 9)dPyo).

By the integral over H is meant that the term P(A | §y)m in the summation has
to be omitted. The formulae (1) show anew that it would be senseless to speak
of error chances without assuming that an over-all distribution P,(8) exists.

In all papers that follow Neyman’s line of thought first and second type
error chances are discussed. But the formulae (1) are seldom written down.?
It is incorrect to say that o is the chance of a first type error and it is likewise
incorrect to say that the chance of a second type error depends on #; it depends
on the distribution of 4.

The total error chance is

2) PE=P1+P11=aro+ﬁﬁ)P(A|0)dPo(0)

2 See e.g. ref. [4], [5] or various other publications by the same author.
8 They are included e.g. in equation (1) of A. Wald’s paper [5].
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and 1 — Py is the success chance. If the distribution P(z | #), the region of
acceptance A4, and the test value & are given, P depends on Py(8) only. If we
make Py(#) coincide successively with all functions not excluded by some
preliminary knowledge about the over-all distribution, there must exist a definite
least upper bound (l.u.b.) of Pg since Pr has the upper bound 1. The value

S =1—lub. Pg

is the greatest lower bound of the success chance. In other words, for any
positive e there exists a Po(#) for which the success chance is S + € and S is
the greatest number for which this holds true. We therefore call S the sure
success rate or, briefly, the success rate for the test under consideration. If the
success rate S’ for a region of acceptance A’ is greater than S, the test using
A’ will be briefly called preferable to that using 4.

Neyman’s approach consists in comparing two regions A and A’ with the
same a. The difference of the respective error chances Py and Pp-is according
to (2):

@) Py — P = /( [P ]9) = P('|9)] dPy®)

This difference is non-negative, whatever is taken for Py(s), if for all values of &
) P(A|d) =z P(4']|9).
In this case Pz = Py and Lub. Pz = Lub. P; and therefore S < S’. If a

region A’ can be found for which (4) holds for whatever 4, Neyman calls the
test using A’ a most powerful test. In fact, this test has at least as large a success
rate as any other test using a region of acceptance with the same . Neyman
does not use the concept of success rate as introduced here, but implicitly the
success chance is the criterion underlying his analysis of tests.*

The theory of most powerful tests would supply a complete solution of our
problem, if (1) a most powerful test existed in all cases, i.e. for all distributions
P(z | 9) and all &% ; and if (2) a sufficient indication how to chose a were given.
Unfortunately it turns out that in almost no practical case a region A’ of this
kind can be found. The various substitutes for a most powerful test as proposed
by Neyman and others (unbiased test, test of type A, etc.) need not be discussed
here, since it is obvious that nothing can be said about the difference S — S,
if (4) is not fullfilled for all A and #. As to the choice of «, the expression

4 This can be seen e.g. from the justification of most powerful tests as given by A. Wald
[7] p. 15-16. Moreover, the recommendation of a test with highest success rate as the
““best’’ (which is not the purpose of the present paper) could be justified from the stand-
point of the general theory developed by Wald [6]. Wald introduces an arbitrary weight
function for defining a ““best”’ test. If the error weight is taken as one in the case of a false
answer and as zero for each correct answer, Wald’s ‘““best”’ test coincides with the test of
highest success rate. The present paper includes only statements that refer to the actual
numbers of correct and false answers, independently of any arbitrary assumption about
an error weight,
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“level of significance” used by Neyman, leaves it open whether a high or alow
value of a is preferable.

3. Preliminary example. Before attacking the general problem the discussion
of a very simple example may provide some information. Let the distribution
of the variate X be given by the density

)] pix|d) =1+ 8" — 1), 0<z=1l.

It is immediately seen that the integral of p over the interval 0 to 1 equals 1 for
each ¢ and that p = 0, if ¢ lies in the limits —4/3, v/3. Let this be the only
information we possess about the over-all distribution Py(#). The value to be
tested may be 8, = 0. The density for this parameter value reduces to
p(z|0) = 1 and thus the probability of z falling within the interval z;, ,
equals 22 — z;, if 8 = & . According to the notation introduced above we
may consider as intervals of acceptance A all intervals with the limits z;,
21+ 1— a, where 0 < 2; < a.
The function P(A |#) is now given by

P(A|o)=f:  p(@ | 9) de

(6) - 0]

=1—a+(1—a)o2[x§+x,(1—a)— 3

In particular, for the interval A’ between 0 and 1 — a:

) P(Aflo)=1—a—(1—a)029‘9—3;‘32.
The difference of these two expressions is non-negative:
® P(A|d) — PA'|9) = (1 — a)Fmi(m + 1 — @)

Thus the interval 0, 1 — «is seen to be a most powerful one. The error chance
of this test is according to (2):

a@ — a)

3 ]dPo(d)

Py = om + _[1—a—02(1—a)
(H)
(9

—emt (1= —m) = (- %2 [t apy).

The last integral is non-negative and can approach zero indefinitely since the
total amount 1 — m, can be concentrated at a point & 0 with 8* < e. There-
fore the Lu.b. of Py for given « and mo is

arg + (1 — a)(1 — m)

On the other hand, this is a linear function of mo which takes its extreme values
at the ends of its interval, 7o = 0 and ) = 1. Thus the larger of the two values
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aand 1 — ais the Lu.b. of Py, if Py(3) is subjected to no further restriction.
The success rate of the test under consideration is accordingly the smaller of the
two quantities @ and 1 — a.

For a = 0.99 or a = 0.01 the success rate is 0.01. This means: If we use the
most powerful test at a level of significance of either 999, or 19, we risk in both
cases that 999, of all assertions will be false. If a = 3, the success rate reaches
its maximum value which is 2 too. On the other hand it can be seen that each
interval of length 1 with not too large z; would lead to the same success rate.
In fact, the error chance Py for the interval z;, x; + 1 — a is according to (9)
and (6)

Py =am+ (1 — a)(1 — m)

9" —
— - a) ["‘(_2_£) — a1 — a)] f 9 dPy(9).
3 (H)
Therefore, the same reasoning as before applies, if the factor in brackets is non-
negative. This is the case for « = 3 if the interval begins at a point

z, £ Y(v/5 — 1) = 0.309. Among these intervals, that with ; = 0 can be
considered as preferable since its success chance for any Py(d) is at least as high
as that of any other interval.

Now, let us assume that in the definition (5) of P(x | 9) the factor ¢ is replaced
by some function g(#) which takes positive and negative values (within —3/2
and 3) while ¢ varies from —+/3 to v/3. Then equation (6) shows that for
any two intervals of acceptance A and A’ the difference P(4 | 9) — P(4’|9)
changes its sign at least once with varying #. Thus no most powerful test in-
terval exists. But, applying (9) and calling g; the (negative) minimum value
of g(#) we find now

armo + (1 — a)(1 — m) — ¢:(1 — @) [&_;—_«x) -z (i +1— a)] (1 — m)

as the L.u.b. of the error chance of A’ for given a and 7. Thus the smaller of the
quantities

1 — « and 1—(1—a)[1—g1a—(2—3:——a):|
is the success rate of the test using A’. If g, is given we can find, by differentia-
tion the value supplying the highest success rate. Using (9') instead of (9)
we find in a similar way the success rates for any other interval. It turns out
that S = 3 for the interval extending from the above given value z; = 0.309 to
0.809.

There are three things we may learn from this example. (1) It can happen
that a most powerful test, at a high or at a low level of significance, has an
extremely poor success rate; (2) In the case where a most powerful test with
the highest possible success rate exists, there may be other intervals with the
same success rate; (3) If no most powerful test exists, there is no need to look
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for some substitute definition; the success rate for any kind of test can be found
independently of its being most powerful or not.

4. General solution for a simple hypothesis. The distribution P(z |¢) of the
variate X, the parameter value & to be tested, and the set of all possible values
of & are supposed to be given. The set of all possible J-values except d is called
H. Choose a region of acceptance 4 and compute first, for all &, the magnitude

(10) P(4]9) = f( 4P| 9).

In particular, the value of this integral for & = &y will be called 1 — « and its
maximum value or its l.u.b. on H will be denoted by B:

(11) PA" %) =1 — q, Lub.@ P4 |9) = 8.

The chance of committing an error in asserting ¢ = d when x falls in 4 or
& # 0 in the case z falls in the complement 4 is according to (2)

Ps = am + f( _ P19 dP),

where m, is the jump of Py(8) at the abscissa 8 = ¢, or the a priori chance of
% . The domain of integration over His (1 — m) and therefore g(1 — m)
the lL.ub. of the integral. Thus®

lL.u.b. P = max {ouro + 3(1 - 7I'o)}.

As m can take all values between zero and one, the lowest upper bound of Pg
is either a or 8. The success rate S, i.e. the greatest lower bound of 1 — Pg,
is consequently the smaller of the quantities 1 — aand 1 — 8.

If the distribution P(z | &) is given and a region of acceptance A for a test value
Iy chosen, the success rate of this test equals the smaller of the two quantities

(12) 1—a=PA|d) and 1 —8=1—lub.mP]9),

if nothing s known about the initial distribution of the parameter except its range.
Finding a region of acceptance, A, with the highest success rale, ts then a simple
maximum-minimum problem.

This solution is not restricted to some rarely occurring type of distributions
P(z | #) and it is insofar a complete one as it does not leave undetermined the
value of . Using Neyman’s terminology we would have to say: The success
rate is the smaller of the two quantities: 1 minus level of significance and mini-
mum power of the test.

Tt follows from the definitions (12) that, if P(A |#) is continuous in a J-

5 This formula was given by Jackson [1] p. 148 for the ‘‘case when the set of alternatives
is discontinuous”. Jackson calls the test with highest success rate a ‘““most stringent test’’
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interval including ¢ , and ¢ is allowed to take all values of this interval, 8 cannot
be smaller than 1 — a:

B =21—o¢a o a+ =1
Thus 1 — « and 1 — B cannot possibly both be greater than 1. The greatest

possible success rate is then 3 and it can be reached only if « = 8 = 3. Westate:
No test can have a success rate S greater than %, if ¢ can vary in an interval including
o without any restriction and P(A | &) is a continuous function of & in this interval.

We will see later, in sections 8 and 9, how certain restrictions imposed to

Py(¥#) which are effective in some problems improve the success rate of a test.

6. Examples. Let us assume that the variate X is normally distributed ac-
cording to

(13) P(z|8) = ®lh(z — 9)], @) = \%} L, ¢ da.

The parameter value to be tested may be taken as ¥ = 0 without loss of gene-
rality, since in all other cases X — & can be considered as the variate. If the
interval z, , x, is chosen for the region of acceptance, we have

(14) P(A | 9) = ¢lh(z: — 9)] — ¢[h(z: — I)].
The right hand side becomes a maximum, if
'h(x; — 8)] = ¢'lh(z: — )], e & = §@ + m).
Therefore, for ) = 0
1 — o= ¢(he) — ¢(hxr), B = ¢(3h(z: — 21)) — d(Fh(z1 — 72)).
Both quantities have the value %, if and only if
(15) o= -z, ¢ha) =1,  om) = 1.

These are the probable limits of x. ‘The conclusion is that the probable limits
supply the interval with the highest possible success rate S = 1.

The result is not restricted to the particular form of the function ¢, it remains
valid, if ¢ is replaced by any function whose derivative ¢’ has one maximum
and decreases both ways symmetrically. It is well known that this test which
has always been used by statisticians and is here proved to have the maximum
success rate, is neither most powerful nor even, for a general ¢, unbiased. We
also see that the interval determined by (15) is the only closed interval with
maximum success rate.

Our method supplies the analogous solution for the case of an unsymmetric
distribution also. Assume the density

(16) p(z|9) = fz — 9),
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where f(u) is supposed to have only one maximum, say at the point u = 0.
The value to be tested may again be chosen as 9 = 0. For the interval x; , x»
as region of acceptance we have

P(4|9) = Ef(x—a)dx=f

z1

z9—0

f(u) du.
—8

The last expression becomes a maximum with respect to ¢, if
flxr — 8) = flx, — 9).

The maximum will occur at the point # = 0 and accordingly coincide with 1 — «,
if f(z1) = f(x2). Thus we have a region of acceptance with the highest possible
success rate 3, if x; , 2, are determined by

an) [rwa=1 s@ = .

Under the assumptions made for f(u) there exists exactly one pair of values
Z1, 22 obeying these equations. This kind of test too has been much used by
statisticians, but an account of its merits has so far not been given.

Another example is supplied by the density function

(18) p(x|9) = o’ze™, 220, >0

We derive for an interval z;, z,

Pl = [ P p@|9) dr = B + e — (a5 + 1)e=™

z1
If & is the value to be tested, we have

(19) 1—a= @+ Do — @ + e

One may ask for an interval z, , 2, with the success rate S = 4. Then equation

(19) must be fulfilled with « = % and, moreover, P(A | ¢) must take its maximum
value at # = ¢ . This provides the second condition

OP(4|9) _
ad

. 2 -0 2 —9
0 at & =, ie z3e " = gie "7

(19")
There exists, for each dJy > 0, one and only one pair of values z; , x» obeying the
two equations (19) and (19'). '

In all these examples it turned out that at least one interval with the success
rate S = 1 (the highest value for a distribution continuous with respect to )
exists. It seems that this is a common property of most usual distribution
functions P(z | #). But we can easily give an example where the greatest S,
at least for a single interval as region of acceptance, is smaller than 2. Assume

(200 P@|d)=2z+d1—-2)(282—1), 0=z=l, —-1<¢21,
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and let 9o = 0 be the value subjected to testing. For any interval beginning
at  and extending to * + 1 — « we find
PA|9) =1—a+ad+ b8 with a=(1- a2z — a),
b=2(1—a)(—3"+3ax — o’ + a — 7).

It is a necessary condition for a test with S = 4—in the case of a differentiable
P(A | 9)—that the derivative of P(A | #) vanishes at ¢ = d,. Thuswe must
have

@1

oP(A | ¥)

—_ 3_—_ =
3 = a + 3bd 0 for & =0.

(22)
This shows that 2¢ — « must be zero or x = 1. On the other hand, for a = 3,
z = 1 the formula for P(4 | ¢) becomes

PA|9) = } + &

Thus P has an inflexion point at ¢ = 0 and its maximum, 8, must be greater
than 1. In the present example, as ¢ goes up to 1, we have 8 = 11/16 and the
success rate is S = 5/16. This does not exclude that intervals with a success
rate between 5/16 and } exist. E.g.for z = 0.45 and o = 3 one finds the maxi-
mum 8 = 0.60 and thus S = 0.40. The optimum interval can be found by dif-
ferentiating the formula for P(A4 | ) with respect to x and a.

Examples with the ¢ restricted to distinct values will be discussed in section 8.

6. Composite hypotheses. We have the problem of testing a composite
hypothesis, if instead of one value 9 a region H of d-values is given and the
assertions to be made in the course of experiments are ‘¢ belongs to H” or
«“g does not belong to H.” The solution developed in section 4 applies to this
case almost without modification.

Again, let P(A4 | ¢) be the probability of z falling in the region of acceptance A.
By A and H we denote the regions complementary to 4 in the sample space
and to H in the d-space. Then the error chance is

(23) w= [ 11— PU|D]IdPw) + [, P19 apo.
H
This is an obvious generalisation of (2). The equation expresses the fact that

each time z falls in 4 and ¢ in H or z in A'and ¢ in H, an error is committed.
Let us use the notations

o = f( _ dPo®)

(24) o« = Lub. of P(4 | ) for 8 in H
8 = lub. of P(4 | 9) for ¢ in H
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Then the first of the two integrals in (22) cannot be greater than am, and the
second not greater than (1 — m). On the other hand no lower upper bound
exists for either of these integrals, if m is given and Po(#) subjected to no other
restriction.

As mp varies between 0 and 1, the expression

amg + B(1 — )

has its extreme values at the points 7y = 0 and 7w, = 1 and these values are «
and 3. Accordingly the greater of the quantities « and 8 is the lL.u.b. of Pg
and the success rate S equals the smaller of the two quantities1 — aand 1 — 8.
If P(A | ¢) is continuous with respect to ¢, we have again § = 1 — a, thus «
and 8 cannot be both smaller than 1 and no S can become > 3.

If the hypothesis that ¢ lies in H is tested by means of a region of acceptance A,
the success rate of this test equals the.smaller of the two quantities1 — aand 1 — 8
which are the minimum of P(A | §) for 9-values in H and the minimum of P(A | &)
Jor d9-values outside H. The task of finding the region A with highest success rate
18 thus reduced to a stmple maximum-minimum problem.

As an example let us take the density function

25) pz|9) = fiz — 9,

where f(u) has a maximum at ¥ = 0 and drops on both sides symmetrically and
monotonically towards zero. The hypothesis to be tested may be given as

-b=s=0b
We find, if the interval z; , z, is taken for region of acceptance:
/ T2 z9—0
(26) P(A|9) = f fz — 9) dz = f ) du.
) -0

This function of ¢ has its maximum at ¢ = (z; + ) and drops symmetrically
both sides. If 1(x; + x2) is supposed to lie in the interval (0, b) we find

zo+b ze—b

l1—a= f(u) du, 8= J(u) du.
+b -

£31 z1

Both quantities reach the value %, if we choose z; = —x; = a and take for a
the uniquely determined solution of
a+b a—b
(27) fwydu= [ s du = 4.
—a+b a—b

For this interval the success rate has its highest possible value %.

7. Case of n variates and k parameters. The analysis given in section 4 for
a simple hypothesis and in 6 for a composite one extends immediately to the
case where instead of one variate X and one parameter ¢ a groupof n variates
X, Xz, --+, X, and a group of k parameters ¢,, &2, - -+, % are in question.
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The region of acceptance A is now a portion of the n-dimensional sample space,
determined by an interval of a function F(z1, 2, --- 2,). The hypothesis
to be tested will consist in assuming that the point &, d2, - -+ & falls into a
certain region H of the k-dimensional parameter space. The success rate of
such a test is again the smaller of the numbers 1 — @ and 1 — 8 where a and 8
are defined in exactly the same way as in the preceding section. The minimum
of P(A | ¥) when the d-values fall into H is called 1 — @, and the maximum
of the same function for all d-combinations belonging to the complementary
region H is 8.

If the test function F(z;, 2, -+ - z,) is known, the interval with the highest
success rate, can be found on the same lines as in the case of one variate. In
fact, the quantity F takes the place of = in the former analysis. If the interval
thus found has the success rate %, we know that no other test exists which would
have a higher success rate as long as nothing is known about the a priori distri-
bution in the parameter space. If a certain F(x;, 2, « -+ ,) does not lead to
an interval with success rate 1, one may try another test function. In the most
general case the test function F with the highest success rate would be found
by solving the problem of calculus of variation that consists in maximizing
1 — aand 1 — B. As arule such an elaborate analysis will not be necessary.

To ask that a test be a most powerful one is too much and too little. It is
too much since such a test does not exist in most cases. It is too little because
there can exist another test (on a different level of significance) with a con-
siderably higher success rate. The correct description of a most powerful test
is that such a test can be shown, in a simple way, to have no smaller success
chance whatever Py(#) is than a group cf other tests. If a most powerful test
exists, it may be considered preferable to all other tests of the same success rate,
but there is no reason why it should be considered more favorable than any test
with higher success rate. As to unbiased tests, and other substitutes for most
powerful tests, nothing at all can be said about their merits as compared with
that of other tests.

A simple example for tests with the highest possible success rate in the case of
several dimensions is the following. Assume a density function

(28) PE|d) =fl@r— S, 22— 0y, oo Tn — )

where f(uy, us,* -+ u,) depends on the absolute values |ui|, |u2|, <+ | ua|

only and decreases monotonically with increasing u; 4+ u; + --- u% in all di-

rections. The parameter point &, = 9 = -+ &, = 0Oois to be tested. Let

F(zy, 22 - - - 2,) be a function likewise depending on |z, |, | 2|, - -+ | z. | only,
2

vanishing at the origin, and monotonically increasing with z; + 23 + --- 2% .
Then the set of points for which

(29) F(xy,22,:2,) £C
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is a region of acceptance with success rate 1, if C is chosen in such a way as to
have

(30) j;Kc)f(xl, Zoy +vo @a) drday o dza = b

This applies e.g. to normal populations. The proof is obvious.

8. Distinct parameter values. Tests with higher success rate than 1 can be
found, if the parameter ¢ is restricted to a set of distinct values. Take for
instance our first example in section 3 and assume that ¢ can only take the
three values 0, &=1. Then in the second expression (9) for the error chance the
integral can not approach the value zero since the region H does not include
the point # = 0. The minimum value of the integral is (1 — =) and thus

3

The success rate is the smaller of the two quantities

@1) Pe<am+ (1 - a)[l - “_@:_"‘)] 1 = m0).

1 —a and 1—-(1—-'a)[1—a(2—3—22:|=1—ﬂ.

The best value of « is found by equating « and 8. This gives about @ = 8 =
0.436 and the success rate S = 0.564, for the region of acceptance z = 0 to
x = 0.564. Other intervals or sets of intervals can be examined in the same way.

A more impressive example is the following. We draw n = 12 times from an
urn which contains three balls, black ones and white ones. The observed value z
is the number of white balls drawn. The probability ¢ of getting a white ball
in one experiment can have one of the four values 0, 1/3, 2/3, 1, and we want
to test the hypothesis ¢ = ¢y = 1/3. The probability distribution is given by

(32) n(z|d) = Co¢1 — N

Let us choose the set of points = 1, 2, --- 6 as region of acceptance. Then
6

(33) P(A|9) = Z; CLo°(1 — &)

This sum can be computed for the 4 possible d-values:

PA|#)=0 0926 0178 0
ford =0 1/3  2/3 1

Thus 1 — « has the value 0.926 and 8 equals 0.178. The success rate is the
smaller of the two quantities 0.926 and 0.822, thus S = 0.822. If we restrict
the region of acceptance to the points z = 1 to 5, the valuesof 1 — aand 1 — 8
become 0.815 and 0.934, thus the success rate S = 0.815. In the first case we
have more than 829, chance of making a correct assertion, whatever the a priori
probability of # may be!
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It is obvious that this result will become more and more strongly marked, if
the number of observations increases. This is connected with the. subject of
the next section.

9. Asymptotically increasing success rate. It seems strange that in the case
of a continuously varying parameter and a distribution P(z | #) which is con-
tinuous with respect to # no test can have a successrate >3. One has the feeling
that something might happen in the continuous problems similar to what was
the case iri the example of section 8. On the other hand our proof that S < 1,
in sections 4 and 6, is conclusive and it applies to problems in more than 1 di-
mension also. The answer is that in the kind of problems where a large number
of observations is involved a definite restrictive assumption about the over-all
distribution Py(##) is silently introduced.

The problems we have here in mind are connected with sequences of distribu-
tions of the form

(34) P,.(il? | l’) = ¢n(x - 7-’)7

where ¢;(u), ¢2(u), ¢z(u), - - - are cumulative distribution functions for distribu-
tions more and more concentrated around one point, say © = 0. In a rigorous
form the sequence ¢.(u) can be described by the following statement: For each
¢, 7 > 0 exists a number N (e, n) such that

(35) én(n) — ¢n(—m) Z 1.— ¢ forn > N(e, n).
One wants to test the hypothesis
—-b

IA

D)

IIA

b,

under the assumption that the parameter distribution does not depend on n. In
this case, as we shall show, one can find for each ¢ > 0 a region of acceptance A
such that the success rate S, of the test corresponding to this A and to P.(x | #)
is greater than 1 — e for sufficiently large n.

We divide the region H, ie. |¢| > b, into two parts H, and H, where H,
consists of the points | # | < b 4 27 and satisfies the condition

(36) _ dP®) £ =,
(H1) 3

Then the region of acceptance will be
—a=-b—-—ns2=b+19=a,

and the probability of z falling in this region:
(37) Pn(All’) =¢n(b+ﬂ_ 0) -¢n(_b— 77—0)-
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As long as ¢ belongs to H the right hand side in (37) is not smaller than
¢.(1) — ¢n(—n) and thus, according to (35) the error chance of first kind

H”=Ly—Pquﬂw»§L4®w—mhmég

(38)
forn >N :—;—, n) .
The error chance of second kind can be written as
(39) P = [ PuBI9P@) + [ Pu(d]9) dP).
(Hy) (H2)

The first of these integrals cannot be larger than —36- according to (36)

since P,(A |9¥) = 1. The second integral cannot exceed the maximum value
of P,(A|9) for ¢in H,. Butif |#| > b 4 29y the two arguments of ¢, in (37)
have always the same sign and are in absolute value greater than . It then
follows from (35), in connection with the fact that ¢,(u) increases monotonously

from 0 to 1, that the difference of the two ¢,-valuers cannot exceed ge for n >

N(e/3, 7). Therefore

(40) PP §§+§ and S, =1—-P" —=PP21—¢ for n> N(-;,n)

This result has a wide range of application in the cases where a hypothesis
is tested on the basis of a large number of independent observations. Consider
a sequence of variates X;, X,, X5, --- subject to probability distributions
Qi(r1), Qa(x2), Qs(xs), -+ . Letx = F(xy, 22, --- x,) be a statistical function,
i.e. a function depending on the distribution of its n variables only, and ¢ the ex-
pected value of F. Then the general law of large numbers states that the
distribution of = has the form (34) with ¢, satisfying the inequality (35), if the
Q.(x) fulfill certain conditions concerning mainly their behaviour at infinity®.
The proof of this theorem which is the real source of most ‘“asymptotical”
properties of statistical tests was given for the first time in 1936. The particular
case where F is the arithmetical mean of the n variables 2, , 2, , - - - z, has been
known as Tchebychef’s theorem since 1867.

Applying this general law of large numbers we can now state the following
fact. In lesting a hypothesis about the expected value & of any regular statistical
SJunction of n variates we can reach a success rate 1 — ¢, no matter how small € 1s,
if the number n increases indefinitely and the initial disiribution of & is supposed
to be independent of n. On the other hand, no test with a success rate greater than
1 is available, if an assumption of this type is not used.

6 For exact conditions see ref. [3].
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10. Summary. In this paper a solution of the problem of testing hypotheses
is presented in the following sense. It is assumed that a probability distribution
depending on some parameters is given and that nothing is known about the
initial distribution of these parameters. For any simple or composite hypothesis
about the parameters and any region of acceptance chosen in the sample space
the success rate S is computed, i.e. the minimum chance for getting right answers
out of the test. From the formulae given for S a test with highest success rate
can easily be found in each case.

This theory shares the point of departure with the actually used theory which
leads to the concept of most powerful tests. A most powerful test is described
as a test which, by simple reasoning, can be seen to have no smaller success
chance than any other test on the same “level of significance” «. In the rare
cases where most powerful tests exist for all a-values, one of them, with an
a-value singled out by our theory, has the highest success rate and then is pref-
erable to all other tests which might have the same success rate. In all other
cases our method supplies a test of highest success rate in no relation to ‘“un-
biased” tests or other current substitutes for most powerful tests.

Some of the main results are: No test has a success rate >3}, if nothing is
known about the parameters except the limits of their values and if the
given distribution is a continuous function of the parameters. The success rate
can be higher, if the parameters are restricted to certain distinct values. A
success rate no matter how close to 1 can be reached in a sequence of tests based
on an increasing number n of observations, if the initial distribution of the
parameters is known to be independent of .
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