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In a recent paper' the author has generalized some inequalities of Fréchet to
the following:
letn =2 a=m = 1,and let

(" - "‘)_l P () = AL

a —m
AF(a) = F(a) — F(a+1), A'F(a) = A(A"'F(a));
then
AA™ 2z 0, A4z 0.

Using a generalized Poincaré’s formula, P. L. Hsu has improved these inequali-
ties to the recurrence formula stated below.
Hsu’s formula is

(l) AAém) = n—l_n*—'m Acg-'i'-l‘l'-”.
Proor: We have
< w0 —1
patl@) = 3 -0 (2 7 1) s,
bem m 1

For a fixed “a” summing over all (a) € (v),

T om@ = o (AT D)soen

a0 = (2D E e (IDGI ) s
AA™ = (n ){,,‘_:n( - "‘[( _Z)
B <a j—l m m)] (2: }) Sy((v)) = (=1
("77) st}

(m - 1> i (=1 ( B 1)(Z - }) ()

m +1
= ASTY, QED.
n—m

1¢On the probability of the occurrence of at least m events among n arbitrary events,”
Annals of Math. Stat., Vol. 12 (1941), pp. 328-338. We use throughout the same notation
used in this paper, and that referred to in footnote 3.
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Applying the formula repeatedly, we obtain for 0 £ h = n — a,

 — 1\/n — m\™*
AAM™ = <a + m )( ) AP
a h h a

Since every A = 0, we have, for0 < h £ n — q,
AMAM 20,

which includes my former results.
Further, we may write (1) as

@) ' (n — a)P{™ = (@ + 1 — m)P, + mP&HY
or
@+ DPE — (n — a)P™ = m (PG — PETY) = mP]
It follows that
®) (@ + DPH — (n — a)Ps™ 2 0.
From (2) it also follows that
4 (n — a)P" — (@ +1—mPJ 20,
which is the same as A4{™ = 0. Combining (3) and (4) we obtain

n—a n—a
P(m) (m)lé P‘sm)
a-+1 a+1—m

If we take the special case ». = 1 and instead of the original events E,, -+, E,
consider their negations, we easily obtain

n2 (1) - sonf = (7) = sented 52 72{(2) - suonh.

This is equivalent to a result given by Fréchet’.
There is an analogue of Hsu’s formula for P , as follows:
Letn =2 a=m = 1,and let

(n - m)—lP{m] = g™
a a )

a—m
then
m 1 tm
ABI™ = ™t 1 ptminy,
n-—m

It follows that for0 < h < n — aq,

h\/n — m\-
R L
@ m h ¢ !

A*BI™ > 0.

2 “Evénements compatibles et probabilités fictives,” C. R. Acad. Sc., Vol. 208 (1939).
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The other results on p, in the paper! also have analogues for pim; . For the
result on conditions of existence see the author’s recent paper’. Here we shall
state the following extension of Boole’s inequality.

For2l +1 = n — aand 2l £ n — a respectively, we have
214+1
m+ < m
2 (1) ( + > Smri((¥)) £ pm(() £ Z (1) ( + %> Smti(()).

i=0

Proor: We have
Smti((v)) = g <Z + z>I’[m+hl((l'))

Hence,
£ (") seon = ELE o (M () peento
P @) + 2 (") S 1 (F) pimen(o)

Pm((») + :Z;::. <m + h) (- 1)”( ; 1) Pimin ((#)).

The inequalities follow immediately.

Finally, we record two formulas which express p,((»)) in terms of P{™((»))
and in terms of P{™ ((»)) for a fixed m and ranging b’s. Formulas which express
P;((»)) in both ways have been given®.

We have,

I

<c __ 11> p((’)’)) = i (—l)b—m Z pm((ﬁ))
b=m B) € (7)

m

Hence

(L2 ser= T £ T m@

m () b=m

- (P f,’) S pall6)

B) e (»)

sion = (5L S o (P2 ) e
)

By a generalized Poincaré’s formula, we gét
n — b c — 1 - (m)
(c - b)<m— 1) B

Il

() = 3 (—1" 3 )”(
ba==m

1

c=max (a,b) l

__1\p—etd—m b ) l

b—m;n-a ( 1) <7L - a 1

340On fundamental systems of probabilities of a finite number of events,” Annals of
Math, Stat., Vol. 14 (1943), pp. 123-134.
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Similarly we have

s = () £ o () e

m

e =2 o{ 5o (CTY) (o)) () et

It remains to be seen whether the series in the curl brackets can be summed.
Using a formula in footnote 3, we may obtain the desired formula in another
way. We have, in fact,

2u(()) = 2 pra(@))

n n

2, 2 o (0T () Aoy

I

c¢=a b=m+n—c n-—c¢ m

,.:{* (- { > (= (l; - 72) (;)_l} Pi™(())

=m =m+n—b

o g_w (=)™ {; (=™ ('; — ’Z) (;)_l} Pi™ ().

The “complete” series

R AR T Y
e

The “incomplete” series we denote by

K(n, a,b,m) = Z (=™ (2__”» (7:1)—1 .g (= Dd( )(n ;t d>-l

Then we may write

m+n—a _
O (Gulk) I LD SR )

be=m b=m+n—a+1
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