ON THE STATISTICS OF SENSITIVITY DATA

By Bexsamiy EpstEIN aND C. WEsT CHURCHMAN
Frankford Arsenal

1. Introduction. “Sensitivity data’ is a general term for that type of ex-
perimental data for which the measurement at any point in the scale destroys the
sample; as a consequence, new samples are required for each determination.
Examples of such data occur in biology in dosage-mortality determinations,
in psychophysics in questions concerning sensitivity responses, and, more
recently, in the theory of solid explosives, in questions concerning the sensitivity
of explosive or detonative mixtures.

Methods of analyzing such data have been discussed by Bliss' and Spearman®,
and others. The present paper is a generalization of Spearman’s result; it is the
feeling of the authors that Spearman’s method, if properly founded in mathe-
matical theory, is preferable to Bliss’, for it does not necessitate the assumption
of some type of distribution prior to analysis, and hence resembles the standard
treatment of independent observations made on the same object.

Throughout the following discussion, we let x; be the magnitude of a certain
“stimulus” (be it dosage, physical stimulus, or strength of blow) and p; the cor-
responding fraction of objects unaffected by the stimulus. Bliss’ method con-
sisted in assuming that the p; represented the cumulative distribution of some
known function (in his case, the normal function), and hence the p; could be
transformed into a variable ¢; linearly dependent on the x;. The difficulty of
this treatment, in addition to the distribution assumption, lies in the fact that
the ¢; do not have equal standard errors, and the straight line fit is very cumber-
some.

Instead, Spearman makes the much simpler assumption that if p; is unaffected
at z;, and p;1 at .41, then p; — pi41is an estimate of the fraction that is just
affected (i.e., the fraction of those that have ‘‘critical” responses) at about
1(x; + zi11). If the z; are evenly spaced, as we shall assume them to be through-
out, and p; = 1.0 and p, = 0, then any set of sensitivity data may be trans-
formed into a set of data on critical responses classified into classes whose mid-
points are evenly spaced. Without loss of generality, we shall assume the z.’s
to be integers and the intervals to be unity. The data on critical responses can
then be treated in the normal way, and X and all the measures of dispersion
calculated in the usual fashion. In order to justify such procedures, however,
it is necessary to show how the sampling errors of X and the higher moments
can be estimated.

1C. 1. Bliss, “The calculation of the dosage mortality curve,” Annals of Applied Bi-
ology, Vol. 22, pp. 134-167.

2 C. Spearman, ‘‘“The method of ‘right and wrong cases’ (constant stimuli) without Gauss’
formulae,” British Jour. of Psych., Vol. 2, 1908, pp. 227-242.
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2. The moments and their errors. By definition,
1) X = Z! (pi — piy1) (@i + 2:41)/2 = Z} P — pipr) (@ + 3).

If we let x; represent the stimulus for which none of the samples can be affected,
then

n—1

2) X=x1+.5+§__;p.~,

as Spearman has shown (3). Since z, is constant, and the p; are all independent
(non-correlated), it follows that (N, being the number of objects in the ith
sample)

n—1
3) 6§'=“§9i=”ix+a2pz+"‘+€’2p,.=z¢12,,..=E?ﬂ"‘

=2
(since o5, = a5, = 0).
Again by definition, the gth moment about the origin is
#) po = Z:l (i — pin) (@ + )%
As before z; 4 .5 can be taken as the origin (x; + .5 = 0), in which case we have
e = (1 — p2)-0" + (p2 — p)-1° + (ps — p1)-2°
+ o+ (P — pa)(m — 1)

If we let b,,; represent the ¢th first difference of the consecutive qth powers of the
positive integers (including 0), then

©)

n—1

(6) :“; = Z; bq,ipi )

by expansion of (5). Hereafter all = will be taken from i = 2to 7 = n — 1.
Evidently

"—l . .
® = &t (B,

=2

or
2 = 2
® Oug = 22 ba:i"pi .
i=

We are interested now in the standard error of the gth moment about the sample
mean. To obtain this, compute first the correlation between the gth and rth
moments about the origin.
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If uq is taken to be the sample error in u, due to deviations §p; from the true
values, then we have

n—1

Sug = ,}:2 b.i Ops

n—1

22 b,-,.' 52); .

dur
Hence
Ougdur = 2 ba.sbri(dp:)? + E (ba,ibr.i + bg,ibri)0p; bp; -

Summing for all samples:

2
g Oup Tugny = Z by ibrioy, + ; (bg,ibr,i + bg,j br,s) (0, Op; T,,,-p,-)
5”7,

2
= E bg,i br.s Op; +

Since evidently r,,,; vanishes for all ¢ # j (the p; being completely independent
in the statistical sense).
In particular, when u, = u; = X, we have

9)

(10) TusORTuy® = Zbiiop, .
By definition, the gth moment about the mean will be
1) o= 2@ — P + 3 — X = Zpia + 3 — X
where p:- = Pi — Pis1-
For computational purposes, this may be written as

(12) ne = pg — ¢Xugs + Q(q D g pra+ o+ o X tgrn - + X0

where X = Zp; = w1, if 2, + 4 is the origin.
To obtain af,q , where X is estimated from the sample, we may follow the usual
procedures, arguing that

(13) = 2{(@: + D%pi) — @XZ@: + H7pi 4+ T

where T contains terms involving X and higher powers of X.
From (13) we obtain

(14) dlzlq = dﬂq + qu—-IVX 2qy¢“lo’xo’llqrxﬂq + U
where U involves X and higher powers. From 3), (8), (10) and (14) we have
(15) qu = qu i » T qzl-‘;—i" Pi 29#;—12170-‘”:'6 +U

= Z(byi — Que—)’oy, + U.

We now shift the origin to X. All the terms in U vanish, u,_; becomes uq_y ,
and the b,,; values go into 8,,;, where

=0(-X?-G-1-X)0"
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That is, (15) becomes
(16) Uzq = E(ﬂq,i - ql-‘q——l)2“2p" .

It is of interest to give an alternative proof of the relation (16) possessing the
desirable property of being very short and simple and at the same time yielding
an expression for the 8, ; in terms of b, :(1 < r < ¢) and powers of X.

If z; + .5 is taken as the origin, then (11) may be written as (17)

17 pe = ZG — X)%; .

The application of the 8-operation to both sides of (17) yields:
(18) bug = (i — X)%pi — ¢=G — X)'pX
(19) = 2 (Bo.i — qHe—1)0Ds -

Repetition of a previous argument gives the result:
(20) oy = Z(Boii — qua-1)’05, -

In order to derive the relation connecting the 8,,; with b,:(1 < r < ¢q) we
expand =(i — X)%p; in equation (18). This expansion yields:

36— X)6p; = D (80 — i X + 0K
+ o (DT L X 4+ (— 1) Xap;

(21)
= E (bg.l - qu bq—-l.iX + qC2bq—2.f' Xz
+ -or (—1)TqXy,) dps
ie.,
@2) Bai = bgi — Cibg-1: X (Cabosi X*

4+ oo F (1D Xy

The relationship (16) combined with (22) enables one to compute the standard
errors of a number of useful statistics. In particular in case ¢ = 2 it follows that

(23) opy = 001 = Z(bs,i — 2X)%%, .
Combining (23) with the well-known result that

(24) 0o = 0uy/20

we see that

o V2 (@i—3) - 2% s,
VY@ -3p - Cp)

Formula (25) is useful in significance tests involving the standard deviations of
sensitivity data.

(25)

3. Standard errors of the moments in standard units. We now turn our at-
tention to the derivation of the standard error of the higher moments when
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expressed in standard units. Before proceeding with the derivation it is con-
venient to find the correlation between the qth and rth moments about the mean.
This result is an immediate consequence of (19), for since

Bﬂq = E{Ba,i - q,“q—l}api

and

(26) 6#1‘ = E{Br,i - rﬂr—l}api

it follows that

(27) Ougdu, = E{ﬂq,i - QI-‘q—l} {Bri — 7'#r-1}(517i)2 + Z

where Z contains terms 6p;6p;( ¥ j). Hence, as before,
(28) OuOuTugny = Z{Basi — Qi) {Bris — Ty} -
Let us now derive the standard errors of the moments in standard units, i.e., of
(29) ag = pg/o’.
Now in general,

%81 — qo¥ g do _ 90ug — gugdo

(30) Sy = prr prss
and since
(31) dus = 2060, or &c = dus/20 -
we have
20781, — Quq Ous
(32) 5aq = —q20q+-2q—
and hence
10* (u0)” + q°ua(8u2)* — 490 g Spq S
33 (sap)t = 2 00) T ChalOra) = 4907 oS0
(34) o,‘-’ — 4/-"3 aiq + qzﬂiﬂfe - 4qﬂ2/“q°’uq‘7u1 Tugna
aq .

4#2-%2
In this case, it follows that

4z D (Bos — que-1)’op; + Cul 2, B35, ,
(35) 2 — 4quq pe Z By — Qug—1)B2,s Op;
Tag 43

or

° E (2p2(Bg.i — qug—1) — quﬁli)z"‘;i
(36) Tag = 4yg+2
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If the gth moment about the mean vanishes, then
2

s 4up D Bai — que) oy, _ Oug
(37) an - +2 - Tq°
4us™ s
It is readily seen that the standard errors of the skewness and flatness are special
cases of formula (36) when ¢ = 3 and ¢ = 4 respectively.

4. Some minimization problems. In the analysis of sensitivity data it is most
desirable to minimize o% or o>z in order to increase the precision of significance
tests involving X or o respectively. Therefore, it is of interest to solve the
following problem: Suppose that we have a sample of size N which is to be sub-
divided into n samples of size N; to.be tested at a number of fixed levels {z}
i=12---n 2 N; = N. Then what choice of values {N;} will minimize

=1
0% = z p.q. where Y, N: = N?
fum] je=]

In order to solve this problem most quickly we use the method of Lagrange
multipliers, i.e., we minimize the expression

(39) @, = B (SN - N).

Taking the partial derivatives with respect to N; we obtain the n equations
(39) ’X,Z‘ =), ie, N;= \/)\Ix)/;q" i=1,2--,n
Summing over 'all values of ¢ we obtain

(40) N=n Vs o oo N

1/2
=1 A E Vi q.

i.e., the best choice of values for {N;} is given by
N, = YVpia:
Z Vg

The value of o% for this choice of the set {N;} is

(&vow)

(41)

(42)

It is obvious that this is actually a minimum. In particular, it is less than the
value of ¢% for Ny = N, = N/n (the number of groups is n). This follows from
the application of Schwartz’ inequality to (42), for

n 2 n
(E \/p.-q.-) n 2P,
==l < yom]
N - N

(43)
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which equals the value of ¢% for Ny = N; = --- = N, = N/n. The equality
holdsif and only if p = p, = -+ = p,.
Suppose next that we wish to minimize
n 2
(44) 0’33 — Z (b2.t' Z,X) Ds q' Z 52 ;p; q:
=1 N; =1
where
Bei = by — 2X.
We proceed as before to minimize the expression
(45) Ly(N:, ) = Z'”‘“‘H(Z;N —N)
1e=] -
Taking partial derivatives with respect to N; we obtain
2
s P8 s . ﬁ 13 s 4 .
(46) B——ZA?,‘_2Q=)\ ie. Ni= I 2L}lz/pq, 1=1,2,---,n

or summing over all values of 7 we obtain

(47) Z l ﬁz i I ‘\/p.g- or 1/2 Z l 62 < ] '\/psq'

oo =1
i.e., the best choice of values for {N:} is given by
(48) N: —_ JY | B2.i I \/PiQi .
.Z; | Be.i | V/Pigs

The minimum value of o3z is given by

(5 1ol vi)
N .

In practice we desire a set {N;} which will make ¢% and o2 small simultane-
ously. Unfortunately this is not in general possible. In fact, it may be asserted
that the set {N:} minimizing, ¢% will yield a large value of ¢7: and similarly the
set {N';} minimizing ¢7: will yield a large value of o%. The reason for this curious
behavior lies in the fact that the only difference between the set {N,;} and the
set {N:}] is the set of numbers { |B2.|} = {| (2 — 3) — 2% |}. These num-
bers, however, change the character of the sets {N;} and {N:}. In particular
{N:} takes on its largest values for both small and large values of 7, whereas
{N.} takes on small values in these regions; {N;} takes on small values for those
values of 7 which are the integral values closest to X + 3/2, whereas {N,} takes
on large values for such values of 7. It is this curious juxtaposition of {N;} and
{N} that renders it impossible to choose sets of numbers {N;} minimizing o%
and o2 simultaneously.

(49)




