ON THE DISTRIBUTION OF THE RADIAL STANDARD DEVIATION

By Frank E. Grusss'
Aberdeen Proving Ground

1. Introduction: Of interest in the field of ballistics is a measure of the
accuracy of bullets. In acceptance tests of small arms ammunition lots, for
example, a sample of rounds from each lot is fired from a fixed rifle at a vertical
target placed a specified distance from the rifle. The accuracy of the bullets
is taken to be some measure of the scattering (or lack of scattering) of the bullet
holes on the target. The purpose of such a test would be to determine whether
or not the lot under consideration differs significantly in accuracy from (a)
standard values or (b) its predecessors.

One useful measure of accuracy is the radial standard deviation which is
defined by the relation

(1) Z = g/ 32— 9+ 25 - 9,

where x; and y; are respectively the abscissa and ordinate of any point measured
from an arbitrary origin and N is the sample size.

It will be the purpose of the present discussion to call attention to a series
expansion for the distribution of the statistic Z in samples of N assuming that
the distribution of all rounds of the lot on the target follow the bivariate normal

population law
22 42

(2) fx,y) = ~—— ¢ 7 23, (z and y statistically independent)

210102

where o} and o3 are the parent variances of x and y respectively. In the above
probability density function, the population means are taken to be zero since
the statistic Z is quite independent of the origin selected.

2. Moment generating function of Z°. The distribution of s} = Nl =(x; — £)°

in samples of N from a normal population is given by the well-known law,

N
. o 2 Ns? N 3 Ns .
@3) d(s) = 2o gsg) cwrdst, &3>0
r{=——— ,
)

The moment generating function of s} may be found (in a neighborhood of
t = 0) by straightforward integration:

2 “ 2 20’2t —HN-D
@ Mo = B = [ ettarch = {1 - %

t Captain, Ordnance Department, Ballistic Research Laboratory, Aberdeen Proving
Ground, Md.
75

S
ol
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[& )2

The Annals of Mathematical Statistics. MIKORY
WWWw.jstor.org



76 FRANK E. GRUBBS

Likewise, for s; = I_tl 2(y: — §)°, we have

2 \—-¥N-1)
(5) M) = {1 - 2—"]\;—‘}

Now Mz(t) = Ma.3(t) = E{e''™} = E('V)-E(e#") since = and y are in-
dependent. Thus,

_ \ , _ 20“ —HN-1) 2 cgt ~§N=-1

3. Distribution function of Z*. Making use of the Fourier theorem, we have
o _ 1 [°f 2606 MY 2033t Y g,
(6) 1) =5 '”{1 N } 1-% e dt,

at all points of continuity of f(Z%).

The discussion will be divided preferably into the two cases: Case I: o} = o3,
and Case II: o} # o3 .
Case I: ot = o3 = o".

In this case the distribution of Z* reduces to

» 2 =N
) 2% = ;;; [ {1 - 2—‘;\,1‘} e gL,
2

It will simplify the algebra to find first the distribution of u* = Ig—fz and then
that of Z°. Since Mu2(t) = {1 — t}~*",

@®) Jo) = ‘2‘1,; [o {1 — iy~ ™ .

This integral may be evaluated easily by the calculus of residues since the inte-
grand has only a single pole of order (N — 1) at ¢t = —i. We will, however,
make use of the following method.

Put —v = u* — 4u’t; then

—u2+ieo —(N=1)
@) = 2% (——"—) ot &

[

© u2—ioo u? u?
9 2, 2 2
_ —6—“ (u )N-Z ‘[—u —100 o —(N=1)
= om L e (—v) dv.

The integral in the last expression is Hankel’s integral [1]; namely,

1 _ —'L_ —a—1% ~t, -z
0 =l TC0Ta E@>0  a>o.

1

F(N - 1) e—u (u2)N—2’

Therefore f) =



RADIAL STANDARD DEVIATION 77

N
] Nz* N-2
and dF (2% = P(_N2'Li_1) e (?—;’-Z;) dz*; from which
N~-1
2(3)
(11) dF(Z) = yat

TN — 1) ¢ 2* Z2"" %4z,

(Note that f(Z) is continuous over 0 < Z < ».)

This expected result has been obtained by Reno and Mowshowitz [2] who
employed an extension of the famous Helmert distribution.

Actually, the result is an obvious one and may be argued as follows: Nsi/o*
is distributed as x* with N — 1 degrees of freedom and N. 82/0' is also distributed

as x” with N — 1 degrees of freedom. Hence, the statistic e (sl + s3) is, from

the additive property of x’, distributed like x* with 2N — 2 degrees of freedom.
We now turn to the general
Case II: o} # o3
No generality will be lost by taking o1 < ¢3. In fact, the present attack will
hold with obvious modifications provided ¢ < 203 .
Recall that

© 2 ) —H(N-D 2 v-n
12 @) = 2% {1 - 2"‘”} {1 - 2i3‘} e % dt,

N N

at all continuity points of f(Z?).
In a manner analogous to that employed by Hsu [3], we replace

(1 B 2o§it) by 5%(1 _ 2«3it>{1 1= a}(ag }
N o1 N 1-— 20’1'5t/N

Further, since

I 1-— af/og <1,

1 — 20}4t/N

we may write

r (N -1 " r)
{1 _ 24} z’t}‘*‘”“’ _ (ﬁ)*‘"“’ (1 ' 2 z‘t)‘*‘"‘” i 2

2 —
N N r-OI‘(N2 1)F(T+1)

a2
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Thus,

E (1-3)

- 1—-— 2.\ —

2 © 2 2. (N+r—-1) X
a3) @) =3 [ 5 “ L

aor=0rB(N—lr> {1_ N

with the understanding that 8 <N 2_ 1, r) = 1forr = 0.

We note that the moduli of the terms of the above series are for all ¢ not greater
than the corresponding terms of the following convergent series of positive terms:

Therefore, uniform convergence over (— «, ) is established. To show that
we may integrate over the infinite interval term by term, we observe that

| 8@ — 8. | <, eo(t) for all ¢ and all large r, where

_ 20_3 it —3(N-1) 203 Z't}_“ﬂ—l)

S0 = - B,

S,(t) = the sum of the first » + 1 terms of the series, and the function ¢(t) =
2 12

ll - 2‘;\1,“ which is integrable over (—, «). That is, S,(!) converges to

S(¢) uniformly relative to (f). Hence,

2
o1 o1

( HN=-D 2\r
— ® 1 —— w 2 o\ —(N+r—1)
% _ a%) ( U§> [ _ 20yt —iz%
(14) (2% o (N — ) Rtlnh ¢ = dt.
ml——,T
2
We have already carried out the integration under Case I with the exception

that (N — 1) should now be replaced by (N + r — 1). The distribution of Z*
will then be given by

2\ }(N-—-1) o - — 20_2
Y2\ g_l gy 1
‘”'(Z)‘(z) grﬁ(N—IT)I‘(N—}-r—l)

2 H
__I_VZ__: NZ2\N+r-2 "
e 29 ’273 a(z).

2

(15)

2 The author is indebted to Prof. E. J. McShane for this definition which is due to Prof.

L 0

E.H.Moore. It may be shown easily that lim [ S.(¢)dt = lim S,(¢) dt.

r—>00 00 ) =00
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Finally, the distribution function of Z is

2\r N \N+r-1
(16) dF(Z) = 2(01)“1\’"1) i (1 - -0_';) . (20’?) e'—‘:—;z; Zgy+2,_3 dz
a3 ,,.orﬁ(N—l r) TN+r—1) ' )
2 ?

We remark that the above series expansion holds, of course, for N odd or even.
In case N is odd it may be shown that the dxstnbutlon function may be expressed
as a finite series of Incomplete Gamma Functions.’ However, the finite expan-
sion for N odd appears to offer no marked advantage since for computational
purposes the infinite series expansion converges quite rapidly (N either odd or
even) and may be put into a convenient form given below.

4. Computational form for the distribution function. In deciding whether
or not an observed value of Z is 51g1nﬁcant and likewise in control chart proce-
dure, one is interested in the percentage points of f(Z). For example, it may be
desired to find the value of k£ such that P{Z < kv/e? + o2} = .995, say, for
various sample sizes N. In this connection it will be convenient to work with
the distribution of Z°, for P{Z < kv/o% + a3} = P{Z* < K(¢} + o)} also.
Now,

PIZ <K@+ = [ aF @
s 0’1+0’2)} = dF(Z)

A (N
(18) > (-5 )

o2 ,.orﬂ(N—lr)'r(N+r—1)

2
2
k’(v‘f-i—ag) _N2z2 NZ2\N+r—2
.4['. 6 2¢f (20%) d(zz)’

02
since we may integrate the series term by term over the entire range of Z* or
any part of it [5]. In the terminology of Karl Pearson’s Incomplete Gamma
Function [3],

uy/p¥1

= _ 1 f —v
19 I(u, p) = CESA eV dy,
we may write the above series in the form
P{Z’ < K'(ei + o3)}

2\r

(20) > (1-%)
U% r=0 N - 1
Tﬁ —2— ,» T

3 Prof. C. C. Craig kindly pointed out this fact to the author.

2/N+r—-1’

Nk’(1+"’)
I =1 N 4 r—2/.
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It is indeed convenient and enlightening that the result is a function of the
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ratio, 1/03 , and not o3 and/or o3 explicitly.
Hence, for a given sample size and ratio of ¢i/03 , we may find k by inverse
interpolation such that P{Z < kv/o? + ¢2} = a,any desired level of probability.

5. Moments and percentage points for Case I. For the case met many times
in practice, i.e. a3 = o3 = o°, we will give a table of the mean and standard devia-
tion and also several probability levels which are obtainable directly from the
percentage points of the x* distribution [6].

From (11), we have

N N-1
E(ZY = i(gv )1)

(21)

Thus,
(22)

(23)
and
(24)

_Nz?

~ 202 Z2N+k—3 dZ

- Sy

’

M2:z2 =

2
#2:2—']V{N"1—[

(N —

N

_ IV — 1/2)

) N’

2N =1 .

N

(N — 1/2)
TV =1)

}

In the table below, the mean and standard deviation are given as a multiple
of v/2¢ and k.gs , for example, is that value of k such that P{Z < ky/2¢} =

TABLE 1
Percentage Points
N Mean | Standard
Deviation | ™ ks ks Fan

2 .6267 .3276 .0501 .1602 1.2239 1.6276

3 .7675 .2786 .1857 .3442 1.2575 1.5738

4 .8308 .2443 .2906 .4521 1.2546 1.5226

5 .8670 .2198 .3667 .5227 1.2453 1.4817

6 .8904 .2014 .4239 .5730 1.2351 1.4488

7 .9068 .1869 .4686 .6110 1.2255 1.4218

8 .9189 .1752 .5046 .6408 1.2167 1.3991

9 .9282 .1653 .5345 .6651 1.2087 1.3798
10 .9356 .1569 .5597 .6852 1.2014 1.3630
11 .9416 .1498 .5813 .7023 1.1949 1.3483
12 .9466 .1434 .6001 L7170 1.1889 1.3353
13 .9508 .1378 .6166 .7298 1.1835 1.3237
14 .9544 .1330 .6313 L7411 1.1784 1.3132
15 .9575 .1285 .6445 L7512 1.1738 1.3038
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