A TWO-SAMPLE TEST FOR A LINEAR HYPOTHESIS WHOSE POWER
IS INDEPENDENT OF THE VARIANCE

By CHARLES STEIN
Asheville, N. C.

1. Introduction. In a paper in the Annals of Mathematical Statistics, Dant-
zig [1] proves that, for a sample of fixed size, there does not exist a test for Stu-
dent’s hypothesis whose power is independent of the variance. Here, a two-
sample test with this property will be presented, the size of the second sample
depending upon the cesult of the first. The problem of determining confidence
intervals, of preassigned length and confidence coefficient, for the mean of a
normal distribution with unknown variance is solved by the same procedure.
These considerations including the non-existence of a single-sample test whose
power is independent of the variance, are extended to the case of a linear hy-
pothesis. In order to make the power of a test or the length of a confidence
interval exactly independent of the variance, it appears necessary to waste a
small part of the information. Thus, in practical applications, one will not use
a test with this property, but rather a test which is uniformly more powerful, or
an interval of the same length, whose confidence coefficient is a function of ¢,
but always greater than the desired value, the difference usually being slight, at
the same time reducing the expected number of observations by a small amount.

Any two sample procedure, such as that discussed in this paper, can be con-
sidered a special case of sequential analysis developed by Wald [5].

The problem of whether these tests and confidence intervals are in any sense
optimum is unsolved. It is difficult even to formulate a definition of an optimum
among sequential tests of a hypothesis against multiple alternatives. However
it is shown that, if the variance and initial sample size are sufficiently large, the
expected number of observations differs only slightly from the number of ob-
servations required for a single-sample test when the variance is known. It also
seems likely that the confidence intervals do possess some optimum property
among the class of all two-sample procedures.

Although Student’s hypothesis is a special case of a linear hypothesis, it is
treated separately, because it illustrates the basic idea without any complicated
notation or new distributions. The test for Student’s hypothesis involves the
use only of Student’s distribution, even for the power of the test, while the power
function of the test proposed here for a linear hypothesis involves a new type of
non-central F-distribution.

The notation x> is used as a generic symbol for a random variable equal to
the sum of squares of n independently normally distributed random variables
with mean 0 and variance 1, i.e., x4 has the x* distribution with n degrees of
freedom,
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2 —_ -__1__ T —4u _ §n—1
Pi{xa < T} = (\/é)nr(%n)fn e™utdu  forT >0
=0 forT <0.
\/-

tributed with mean 0 and variance 1, mdependently of x%, i.e., t, has the dis-
tribution of Student’s ¢ with n degrees of freedom,

. 1 2\ —}(n+1)
P{tn<t}=1~‘§j%;,"(—%73)) ‘(1+"—) da.

Fy.,a i8 a generic symbol for a random variable of the form F,, = nxa/mx’ ,
the numerator and denominator being independently distributed, i.e., Fom,» has
the distribution of an F-ratio with m and n degrees of freedom,

T'G(m + n)) - m L\
P{Fpn <T} = TGmTGn) ( ) ™ (1 + -;;F dF.

A symbol of the above type with an additional subscript o denotes the upper
100a%, significance level, e.g., .. is defined by

Plty > tna) = .

The symbol E{x | Q(x)} denotes the set of all x such that the condition Q(xz)
holds. This should not be confused with E(x | T), which denotes the expected
value of a random variable z, given the conditions 7.

The size of a critical region is the probability that the sample point will lie
within the region under the null hypothesis. The terms length and volume, as
applied to confidence regions are used in the ordinary geometrical sense.

The notation ¢, is used as a generic symbol for , where z is normally dis-

2. The test for Student’s hypothesis. Suppose z;, 1 = 1, 2, - - - are inde-
pendently normally distributed with mean ¢ and variance ¢*. We wish to test
the hypothesxs £ = &, the power of the test to depend only upon ¢ — &, not
upon o, For this purpose we define a statistic # as follows. * A sample of g
observations, z; - -+ x,, is taken, and the sample estimate, s’, of the variance
computed by

no 2
¢))] s = —*{Ex. — ;x;)}.
Then n is defined by

) n = max {[2—2] + 1, n + 1},

where 2 is a previously specified positive constant, [g] denoting the smallest
integer less than ¢. Additional observations, Za11, - -+ , Z» are taken, and, in
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accordance with an initially specified rule depending only upon s*, real numbers
a;,? =1 ... nare chosen in such a way that

26=1 G=a= =0,

@ n

This is clearly possible since

<2 by @,

P
4) mm}l:a.—;l__s2

the minimum being taken subject to the conditions
Ea.-=l, G = Ay = *°° = Qngy.

Then ¢’ is defined by
; a; Ty — Eo lzai(xt‘ - E)

’ 5 - £0
(5) : Vs Ve + Ve
tF—b
=u + —-———\/; ,
where
Z:: a;(x; — §)
(6) u = ——-:;7:- .

Then u has the distribution of Student’s ¢ with ny — 1 degrees of freedom, re-
gardless of the value of ¢°. For (no — 1)§’/o” has the distribution of x%,;and

1
the conditional distribution of —= a;i(x; — £) = u, given s, is normal with
Ve
1

mean 0 and variance ¢°Sa%/z = ¢°/s’. But the usual form of a random variable
tng—1 I8 tay—1 = ¥/s, y being normally distributed with mean 0 and variance o°,
and (ny — 1)s*/o® having the distribution of x%,_;, independent of y. Thus the
conditional distribution of u, given s, is normal with mean 0 and variance ¢°/s*,
so that ¢,,—1 and u have the same distribution.

This theorem can be used to obtain an unbiased test for the hypothesis H,
that ¢ = &, the power being independent of ¢*, which is supposed unknown.
Let a be the desired size of the critical region and let ¢,,-1,4/2 be such that
(7) P{tﬂo—l > tn°—1.¢/2} =

NI R
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Then if we reject H, whenever

n

E a; 2 — &

X
Ve

we obtain an unbiased test of Hy, whose power function is 1 — B(¢) where

(8) > tﬂo-l.ﬂ/2 )

9) BE =P {"'tno—l-alz + f%{f < tag—1 < tng—tiaz + &\;;s}.

The fact that the test is unbiased follows immediately from the symmetry and
unimodality of the ¢ distribution.

If we wish to test the hypothesis Hy:f = ¢, against one-sided alternatives
¢ > &, the procedure is similar. The critical region of size « is defined by

); a:z: — b
10 —— "> tyyta
(10) s )
and the power function is
(11) 1 - B(e) = P{tn.—l > tno—l.a + &JE }-

A confidence interval for £ of predetermined length ! and confidence co-
efficient 1 — « can be obtained by selecting  so that

{ l
1—a=P{""2\/;<tno—l<2_\/;}

(12) P

= P{Zam ~Lle £E< D ax; +£},
1 2, 1 2
where £ is the true mean of the distribution. Thus (Zax; — 1/2, Zax; + 1/2)
is the desired confidence interval.
In the above tests and confidence intervals, the distribution of the required
number of observations, n, is

2
P{n = no + 1) =P{s;$no+l}
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(13) = P{(no — 1)8*/d* < (o + 1)(ne — 1)8/0’} = P{xso—1 <y}

v
o ui( no—3) du,

- 1 f
(V2" TTGRme — 1) h
where y = (ni — 1) 2/d°,
Pi{n = v} =P{v<§+1 Sv-l-l}

(14) = P{(v — 1)(no — 1)e/0* < xne1 < v(ng — 1)2/d"}
1 v(no—1)e/o?

T (V2)" TG0 — 1)) Joning-narer

for integral » > no + 1, all other values being impossible. Thus the expected
number of observations, E(n), satisfies the inequalities

1 —du , d(no=3 —hu, H(no cu }
(V2)™ T(3(mo — 1)) {f (mo + 1)e” ) +f ¢ —a)s(no -5
< E(n)

(15) 1 v i o= =3 .
< (V2)"™ ' TG — 1)) {fo (no + 1)t ul¢ ’du-i-f P -

u
(B(no + l) du}

e—‘}u ul(ﬂo—l) du,

which can be rewritten

2
(o + DP{xne1 <y} + %P{xim >y}
(16) .
<E@®) < (0 + DP{xoes < 9} + 7 Plxaen > 4} + Plxaer > ).

Consequently E(n) is a function of ¢°, and can be evaluated from tables of the
incomplete I' function.

As mentioned in the introduction, these tests and confidence intervals will
not be used exactly in this form, since they waste information in order to make
the power of the test or the length of the confidence interval strictly independent
of the variance. Instead of (2) we take a total of

@a7) n = max {[s;z] +1, no}

observations, and define l
1
(;L 2r—h)Vn

t// = 1

8

i(xi—‘f)
_nAq i E_&\/n

8

=uI+E—s'£0\/;",.

(18)

S|
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By the same reascning as that following (6), ' has the ¢ distribution with ny — 1
degrees of freedom. By (2)

(19) n > s°/¢  sa that, although lg—:;éo V4 ﬁ}

is a random variable,

& — & /- "é — &
> ||
(20) B \/nl > |8
Thus, if we use
(21) [¢7] > tug-t,arz O0 1" > tuyr,a

instead of (8) or (10) respectively, we shall always increase the power of the test.
Also the expected number of observations will be reduced from that in (16) by
P{x5,1 < y}. Similarly if 2 is defined as in (12), the interval

1 & l 1< !
(2e-3 iZa+))

n 1

has length [, and the probability that it covers the true mean £ is a function of o,
but is always greater than 1 — «, and differs only slightly from 1 — « if &* >
nez. Thus it can be used instead of the confidence interval (12).

From (16) it follows that

_— 2
lim {E(_n) - 2} <1

. ol

lim {E(n) - ;} >0,

the approximation £(n) = o°/¢ being fair provided ¢° > 2no. The length of
the confidence interval (12) is given by

20'tno—l.a/2

V'E(n)

When the variance o° is known, the length of the single-sample confidence
interval of confidence coefficient 1 — « obtained on the basis of » observations

is given by
1 1/ n/2 e
1l —a = ——=‘[' e dx
o V2 1/ /20

l = 2tuy—1,a2 \/; =

ie.,

l = Zt”,a/za'/’\/;l, N

Since, even for moderate values of ny , say ny > 30, {,,—1,q/2 differs only slightly
from { a2, the expected number of observations for a confidence interval of
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given length and confidence coefficient is only slightly larger than the fixed num-
ber of observations required in the single-sample case when the variance is
known provided the variance is moderately large.

3. Distribution of a non-central F-ratio. In the extention of the above
considerations to the testing of a general linear hypothesis, the power function
depends on the distribution of a quantity

(22) =3 (g — ),
1

Xy . . . . .
where ¢; = ‘\/—;, x; being independently normally distributed with mean 0 and

variance 1, and r having the x% distribution, independently of the z;. The
¢; are real constants.
Let

(28) s=Yewn/ 4T
1

X2 =}Z(1f - ('ii')2 = 12373 __§.2

(24) S
m e B / m 2
=2 (@ — V) -—(s“ —\/r/‘/ > )
1 1
Now, 2 (x; — ¢if)? is a quadratic form of rank m — 1 since the x; — c¢if are
1
subject to one linear homogeneous restriction, namely Z ci(z; — ¢f) = 0.

Also ¢Fis of rank 1, and x° + ¢ = E % so that, by Cochran’s Theorem, x* and
1

¢* are independently distributed as x4_1 and x; respectively. Thus there exist
Y1 -+ Ym, independently normally distributed with mean 0 and variance 1
such that

(25) =i+ o+ Ym

yi.

x
I

¢
]
I

Let u; = Y . Then the joint distribution of u; - « - um is given by
Vr '

1 1
Pl < iy < 7l = (829 (V3T

= i v VE 3
— 00 — o0

(26)
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The density function is given by

a"‘P{ul <71,y Um < T
81'1 a‘fm

1 * 5.2
f ¢V D pim W2k gy

1
T (V)" (\ﬁ)”r(%n) b

1 +2r n+m—2
@) - wvar el ) s g

—§(m+n)
(1+%7)
(\/_)m 2§(an) I‘(ln) f 1y g-i(n-(-m—z) v

_ TG(n + m)) S\
= (V=) ) (1 + 217 ) '

2
(28) '=f7;=£=un -t

Then let
+oee .

Y5

= U

The joint distribution of " and = is thus, by (27).
P{n <, 1" < 1)

ST (B) e

up<n, Eu.<r2

P(!i(m"{'n)) 2\ —d(m-tn)+i(m- 1
= ot o] aarene

v m
(2¢ uy<m Syi<r/ (14u)
2

Il

m ~3(m+n)
: (1 + ;yi) duy dys - - - dyn

= (I‘\(/ign)—'”_—%én)—)) ff [ (1 + uf)—knﬂ)

uy<n, Svi<e/ (1+ud)
m (m{n)
' (1 +Eyf) duy dyz + -+ * dyn, .

[n order to evaluate this integral, we use the fact that the distribution of a ratic
of x&-1t0 x%41, the two being independent, can be expressed in two forms, by
(27) and Wilks [2], p. 114,
I(3(m + n))
P {xm—1/%x =
O/ 2t <91 = Fgm — D)PGO+ D) b

(30) . P(z (m 4+ n)) m—1 —m+n)
T (VD" rGm 4+ 1) f f (1 +2 qz) dgs -+ dga,

2«.<¢'

2
3 (m—1)— —3(m+n)
(m—1) 1(1 l ) (m+n) l
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so that

Ply <, < 7
_ I'(3(m + n))
VT ()T (3 (m — 1))

o=12/(1+u}) . » +
X f . / (1 + u,)’“" )‘P!(m—a)(l + ‘p)—}(m ”)dq)dﬂa
%1<7

(31) I'G(m + n))

~ VETGmI(Gm — 1))

n 2
1 2\~}(n+1) $(m—3) (1
x [ e

\/*'IF((;;;'II‘(-:Z»_ 1) _/; — j;-o S+ 4+ I g du.

Now we wish to find the distribution of

F' = }m:(t.' - Co’)z
1

- “\2
T r r
="+ (v — VI

Carrying out the transformation (32), it is found that the joint density function
of " and F' is
p(n', F') dv' dF’

_ rG(m + n) , , 213 (m—3)

= Vataram - ) 0 = VED]
(33) X [1+0%+F = (0 = V2] dn' dF’

_ P(%(,’n + n)) [F/ _ 2]5(#&—8)1
© VAT GnIrEem — 1)

X [1 4+ F' + 20/Zc2 + 2™ dp dF,

where p = 0’ — \/Z¢? . Inorderto obtain the distribution of F/ we must inte-
grate out p over —\/F < p < A/F, obtaining

P{F' < T} = @m,n(yv ch
_ T'Gim + n))
(34) VaTEnrGm — 1))
T \/"7
x [ Y7 AV F o 203 + 2T dp .
Fle0 Jp=—n/F7

In the case =c% = 0, (34) reduces to the distribution of the ratio x&/x% .
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4. Test of a linear hypothesis. In this case the power of the test usually
employed is affected not only by the variance, but also by the values of the pre-
dictors. In order to avoid this difficulty, it will be assumed that only a prede-
termined number of different sets of predictors are used, and that these sets are
repeated as a whole, as many times as is necessary. This covers, in particular,
the replication of orthogonal designs for the analysis of variance.

Let ;5,2 =1---m,j = 1, 2, --- be independently normally distributed
with means

»
(35) ’ Ey,; = E 0 Tri uw < m, rank (zx;) = u,

k=1
and variance o°, the xx; being given in advance, ¢° and a, unknown. We wish
»
to test Hy: Z cudy = Cp, ! =1---r < u, where we may suppose equations
k=1
(36) linearly independent, the cy being given constants. It will be convenient
to reduce this to a canonical form, as in Tang [3]). First, by a non-singular
linear transformation

(37 ohc = 32 bu
we can make
21
(38) i (s +++ 2u) = L, the u X u identity matrix,
= ;m.

any two sets of by; that accomplish this being related by an orthogonal trans-
formation. Then (35) becomes

» »

By = > a2 bueu

k=1 i=1

39)

®

"

B
7
= Z 277 bkl) 2y = Z Qr: Bl
=1 k=1

=
and (34) becomes

u o u
Co = D Cuay = > > anb™
k=1 k=1 m=1

u u
(40) = > an ; cu b™

m=1

m
=Zc;ma7,n; l=1"°2'§#,

m=1

where b™ are such that Zb™b;; = 6.1, the Kronecker delta, or, in matrix notation
(bem) ™ = (b*™). Next, the equations (40) can be made into an orthonormal set.

m
(41) Clo = 2 Cimm

m=1
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i.e., one in which

(42) . Cim Cim = Ot

by a non-singular linear transformation on the ¢;» . Clearly Zcio’ is an invariant
of (41), i.e., it does not depend upon the choice of a particular transformation
(387), or of a particular transformation OF the ¢} into cim , since, in both cases,
all admissible transformations are connected by an orthogonal transformation.
Then we define

(43) Vo= LoV, i1 u
(44) y:i':z;diqyw‘; 1:=“+17"'7m
=
in such a way that (;"’) is an orthogonal matrix which is possible, by (38).
+q
Then
m m »
Eyzi = Z 2By = E Big Z L7 ax
(45) q=1 q=1 k=1
' ’ - ’ .
=D 4 D Bigtkg = a; for i =1, ,p,
k=1 ge=1
m m m
Eyzi = 2 digByq; = Z diq Z Brq ax
6) g=1 g=1 k=1
4 . .
=2 D digtig=0 for i =p+1,---,m.
b=1 q=1
Finally we define
(47) vi = ¥is, i=p41-,m
M
(48) y:,z ="‘Zlct'my:"j’ t=1,-.-,r
M
(49) vii = Zle.-my,',.,-, i=r4+1, -,

C;

where the e;,, are such that ( "’) is an orthogonal matrix. Since the transforma-

tion applied to the y:; to obtain y7; is orthogonal, the yi; are independently
normally distributed with variance ¢°. Also

yo”

(50) By =0t =p+ 1,1t
»

(51) Byl =Y comtm =€, i=1,---,r
m=1
»

(52) Byi =3 emam, i=r+1, -,

me=1
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Since (50), (51), (52) were obtained from the original formulation by a non-
singular linear transformation, the derivation can be reversed, which implies
the equivalence of (50), (51), (52) to the problem as originally formulated.
Thus we can restate the problem in the following manner. Let y;;, s = 1,
-, t, j =1,2, --- be independently normally distributed with variance o
and means

yii=t,i=1,-,n
Ey;;=0, i =p+1,---,t ¢ and ¢ unknown.

We wish to test

(54) Hygi=0i=1--,p<p

(53)

the ¢ for i = p + 1 -+ u and ¢ being nuisance parameters.
Obtain a first sample y;;,7 =1, ---,¢,j=1,---,ny. Estimate the vari-
ance by

2 P, . 2 _l_ £
(565) $ —_not_”{]z_;'z_:lst—no'z_;(ZytJ)‘}'

Let 2 be a predetermined constant, and n be defined by

(56) n = max {[s;] + 1, n0 + 1}.

After s* has been obtained, determine a set of real numbers, @; - - - a, , in accord-
ance with a preassigned rule, so as to satisfy

Ea, =1
(57) $'Za} = o
al = e e = aflo .
Then
Zl (E a; yu)
5 ]1v/ — =
(58) z(net — p)

has the non-central F-distribution given by (34) with n = ng¢¢ — u, m = p and
p P
(59) 2= 2 E/ (ot — we,

where £; are the true means, allowing for the possibility that Hy is not true. For,
(not — w)s’/c” has the distribution of x%,,_,, and, after it has been determined,

> ayi;j — &,% = 1---r, are independently normally distributed with mean 0
j=1

n
0 2 2 2 2 . 2 = .
and variance ¢ Za; = 0’2/, so that, given s, (Z ayi; — &)/NVeai=1--p
=1
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are independently normally distributed with mean 0 and variance o*/s’. But
the random variables ¢; , in section 3 are of the form x;/+/r where the z; are inde-
pendently normally distributed with mean 0 and variance ¢°, while 7/¢* has the
X'aot—u distribution independent of the z;. Thus £; can be considered to have
been obtained by first selecting a stochastic variable » such that r/¢” has the
distribution of x5, and then selecting ¢; to be independently normally dis-
tributed, given r, with mean 0 and variance ¢’/r. Since r corresponds with
(net — w)s’, comparing this with the above, we find that

z; a;y; — &
(60) e i=1--p
VeVt —u
have the same joint distribution as the ¢;. The \/ e S a,le constants, so

that

2

Z (Z a'.v?/u) » i a;ys; — & &
(61) F, = 'Li_ = + - e
P S 2 b o IRV e

P
has the same distribution (34) as Z (t: — ¢)® with ¢; = &/4/ (not — p)e .
=1

The tests of significance and confidence regions are obtained by a procedure
completely analogous to that used in the case of Student’s hypothesis. If we
define & = Fpnyt—p,« DY

(62) P{Fp.not-—p > k} =

then a eritical region of size « for testing H, is given by

(63) jLinily /0N
Its power function 1~
( 28
(64) 1 - 5(5) =1 - (I)p.not—-p k, m
Similarly, a confidence region for £;,7 = 1 - - - p, of confidence coefficient 1 — «

is given by the set of all £; such that

(65) Ml B k) <
where
P n 2
Zl (Z a;Yi; — e)
(66) F'(g - &) = L Y A

a(ngt — p)
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It is evident that this defines the interior of the hypersphere
P ”n 2

(67) 2 (f.- -2 aw.-;) < kep

=

1=1

whose volume is independent of the variance o.
The distribution of 7, the required number of sets of observations for the
above tests and confidence intervals is given by

Pi{n = no + 1} =P{s;2_<_no+l}
(68) = P{(nt — p)§’/o” < (ng + 1)(not — p)2/o’}

1 v
= P{xi <y} = m£ oy,

where
= (no + 1)(net — w2/’
(69) Yy (no wa/a
o=mngl — p
and

2
P{n=y}=P{y<s;+1<y+1}

(70) = P{(v — 1)3z/d" < xi < vb2/o"}
1 véglo?

—_— —ju _ §3—1
= > d
(,\/2)3 I‘(%&) (v—1)5s/e2 € u u’

for integral » > my + 1, all other values being impossible.
Thus E(n) satisfies the inequalities

1 v . ,
@) < Em)

I S i —hu, 11 Ry £
< (vé)sr(%a) {j; (’no+ 1)6 u du +'/;I (4 u o2 +1 du N
which can be rewritten
2
(o + DP{3 <y} + 7 Plxdie > o)
(72) < E(n)

2
< o+ VPG <yl + 7 Plxda > 9} + Plxd > vl
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The modifications required to avoid wasting information are exactly analogous
to those made in the case of the test for Student’s hypothesis.

6. Non existence of a single-sample test for a linear hypothesis whose power
is independent of the variance. The canonical form (see Tang [3]) for a linear
hypothesis in the single sample case can be derived immediately from (563) and
(54). Let z;,7 = 1 --- n be independently normally distributed with means

(73) Exi:—‘g'-,i-_—l.-.p
Ex;=0,’i=p+1...n

and variance ¢°. The ¢ and ¢° are unknown, and we wish to test Hy:£& = 0,
i=1---p.

The most powerful test for H, against a given alternative §&; = £, =1 --- p,
if the variance ¢° is known, is that based upon the probability ratio (see Neyman
and Pearson [4])

- {E (zi—i0) 2+ E z*}

(\/zw )"

._P. == . = e_;ﬂ‘z
Po -——;—2—2l z
(\/2r o)™ °

Since any strictly increasing function of pi/po is equivalent for this purpose,
we can use

(74)

(75) o@ - xp) = Z:: £t .

The critical region of size a based upon ¢ is given by

i £

(76) Wo(o) = E x‘—‘—p—->g ,
g /‘/ }1: £ J

where

(7) \/127 [+ az =

b4
since, under Hy, Y £ox: is normally distributed with mean 0 and variance
1

P Y4 yd
o X th. Under Hy, D tir; is normally distributed with mean > % and
1 1 1
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P

variance o° Z £ . Thus the power of the test for the alternative H, as a func-
1

tion of ¢° is
1 — Bo(0) = P{x e Wo(o) [& = ¢, o’}

P

> box — Z_‘, £ /‘/\; £
-

= p{1 >z -

(78) ” ,‘/ Eg} -

1 ® e
= \]*2;; f.__\/zéfoe dz.

Now let us suppose there exists a test based on the critical region W of size o
whose power 1 — 8 is independent of ¢*. Since Wy(s) is the best critical region
of size a for any ¢ we must have

1 ° 2
(79) 1821 =6 = 7= [ vam ¥ dn,
so that
1 .
(80) 1 -8 <glb [l - o)l = 5= [ dn=a

By interchanging H, and H; we can reverse the inequality (80), proving
(81) 1—8=a

Thus any single-sample test for a linear hypothesis whose power is independent
of the variance has constant power equal to the size of the critical region.
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