AN EXPERIMENTAL DESIGN FOR SLOPE-RATIO ASSAYS

By C. I. Buiss
Connecticut Agricultural Experiment Station and Yale University

1. Summary. When the response to a drug is a linear function of arithmetic
dosage units, the relative potency of two preparations can be computed as a
slope-ratio assay. Their dosage-response curves are computed by solving three
simultaneous equations to obtain the common intercept a’, the slope of the stand-
ard, b, , and the slope of the unknown, b, . The method is applicable to certain
microbiological assays for the vitamins. Usually several unknowns are assayed
at one time with a single standard. Their calculation is simplified when such
assays meet the following requirements: (1) restriction of treatments to the zone
within which the response is related linearly to the dose, (2) equal spacing of
doses on an arithmetic scale beginning with the negative control, (3) an equal
number (k) of doses of standard and of each unknown and (4) r replicates for
each dose of unknown, &’ replicates for the negative control and & replicates for
each dose of the standard.

2. Method of Analysis. The design and analysis of assays for measuring drug
potency has been developed largely about the linear relation between response
and the logarithm of the dose of many drugs. An alternative procedure is
available when some measure of the response is related linearly to arithmetic
dosage units. Recently Finney [5] has applied the technique to microbiological
assays of the vitamins. The relationship is also suitable for experiments with
toxic agents on micro-organisms, where the length of exposure to treatment is
the dose. Since potency is measured from the ratio of the slope of the dosage-
response curve for an unknown to that for the standard preparation, Wood [6]
has termed the method a ‘‘slope-ratio assay.”

The validity of quantitative biological assays depends upon a qualitative
similarity between the standard and the active agent of the unknown. When
the response is related linearly to the log-dose, this is determined by testing the
parallelism of the lines fitted separately to the results for the standard and to
those for the unknown preparation. If the departure from parallelism is within
the sampling error, the combined slope is determined from the data on both
preparations and used in computing potency and its error. The analogous test
in slope-ratio assays is the convergence of the lines relating response to arith-
metic dose at zero content of drug, using drug as a generic term which includes
vitamins, poisons and physical agents. When the curves for the standard and
the unknown are computed separately, their zero intercept should agree within
the experimental error. In assays meeting this requirement, the curves are
computed so that they are forced to intersect at zero dose. The curves
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and

Y2 = a’ + bure
are fitted by solving three simultaneous equations to obtain the three statistics,
a’, by and b, which are the best estimates of their respective parameters. Finney
[5] has illustrated the technique with data from the microbiological assay of
nicotinic acid and given a suitable test for convergence as well as the error of the
estimated potency.

The calculation described by Finney is flexible but not adapted for routine-
use. With certain restrictions in design, the calculation can be reduced to a
practicable form for the assay of (m — 1) unknowns against a standard prepara-
tion. These restrictions are as follows:

1. Doses both of standard and of unknowns must fall within the range for
which some function of the response is related linearly to an arithmetic scale of
dosage units with convergence at zero dose.

2. Within this range the doses (x) of standard and of all the unknowns must
be spaced similarly and preferably equally on an arithmetic scale, beginning
with the negative control (x = 0).

3. The doses of each unknown must match those of the standard in respect
to both number (k) and their expected potencies, so far as the latter can be
judged in advance. Within an assay group there may be b’ replicates of the
negative control, & replicates of each dose of the standard and r replicates of each
dose of each unknown.

4. Some element of randomization must be introduced within an assay group
in respect to the preparation of the tubes, their handling and the reading of the
results. Replicates of any given dose or of the negative control must not be
prepared together.

3. Computational Procedure. The simplified calculation of potency and its
error depends upon substituting the assumed for the actual doses. When
spaced equally on an arithmetic scale, they may be coded by using the numbers
1, 2, 3, .-+ k, k being equal throughout the assay. The sums of the coded
doses, 81, and of their squares, S, are then the same for each preparation and
may be entered in the equations for computing the inverse matrix, of which the
first three are

t=0 71=1 =2

Neoi + hSicri + 78icei + -+ = 1, 0, 0, :-
(1) hSicoi + hSycr: = 0, 1, 0,---
781C0: + r8zc24 = 0: 0; 1, .-

where the total number of observationsis N = &’ 4+ kh + kr(m — 1). Multi-
plying the last two rows by —8,/8; and adding the products, we have

hS? rsf} Sy S
oo — 2N, =1 o e SR
{N 5 M- D=1 5 5,
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where the subscript ; refers to the standard and the assay includes ; t0 » unknown
preparations. Substituting
D = NS, — S} — r(m — 1)8},

this leads to the following reciprocal coeflicients:

co = S:/D

Coi = Ciop = — Si/D, 1=1,2 ¢c0m,

en = 1/hS: + Si/D8S,

¢ = 1/r8: + S3/DS:, t=2,3,+++m,and

¢i; = Si/DS, fori,j = 1,2, «++ m, where ¢ 5 j.

The reciprocal coefficients are computed from the sums of the doses and their
squares, which are the same for all preparations. The doses are multiplied by
the responses observed at each dosage level to obtain T; = S(zy;) for any given
preparation. For the standard there will be & responses at each dose and for
each unknown rresponses. Let T = S(T’;) be the sum of these products over all
m preparations. The total response for all N observations S(y), including the
negative control, the standard, and all the unknowns, is designated as T, .

Using normal regression theory, the common intercept is computed as

a' = cwTy + cuT.
Substituting the above reciprocal coeficients,
2 o' = (8T, — S&T)/D.
The slope of the standard is computed with the reciprocal coefficients as
b = caTy + euTh + T — ciiTh.

We may take advantage of the identities

¢ =—§coo and c¢; = —§300
01 IS2 1¢ S2 1
to obtain
b= (Cn - Cls)Tl - %:a'
reducing to
T a'S;
(3) bl = h_;S:2 - —g;l .

Similarly the slope of each unknown is equal to
bi = culy + cusTy + caTi + ¢i;T — cai{ Ty + T4}
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where ¢,j = 2,3, -+ mand j # 4. Since ¢;; — ¢;; = 0, this may be reduced to
TSz Sz ’
The computation is further simplified if the k¥ doses of all preparations are

spaced not only similarly on an arithmetic scale but also at equal intervals.
In this case

Sy = k(k + 1)/2 and S: = k(k 4+ 1)(2k + 1)/6.

Substituting in equations (2), (3) and (4), the common intercept, the slope of
the standard and that of each unknown may be computed as

r 2@k 4+ 1T, — 6T

4) bs i =2,3,+0m.

®) T NG D3+ D
3 2T, )

© b= 1{hk(k+ 1)_“}
3 2T ,

@) b‘=2k+1{rk(k+1)’“}'

In computing the slope for each unknown in an assay the only variable is 7'; .
The intercepts and the slope can be checked by substitution in the equation

(8) 2Nd’ + hk(k + 1)by + rk(k 4+ 1)(be + <+« + bm) = 2T,

In terms of coded doses, the potency of an unknown () relative to that of the
standard (;) is computed as

r_ b
) Ji—gl.

Each J’ is converted to original units by multiplyiné it by the ratio of the dosage
intervals, I,/I,, the potency being

_ b,
bl

The variance measuring the distribution of the observations about the m
lines may be determined as

2 Sy — aIT,, — 0T — - — bpTn
(11) &= [ .

The variation about the individual lines is assumed not to vary from one prepa-
ration to another. This is more likely to be true when the assumed potencies
differ but little from those computed from the assay, so that J’ differs relatively
little from unity.

The confidence limits for potency as estimated from the ratio of the slopes
may be computed from Fieller’s basic formula [4]. For confidence limits, X, ,

(10) J
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at an appropriate level of significance, such as P = 0.05, ¢ is read from the Stu-
dent-distribution for N — m — 1 degrees of freedom and entered with s* from
equation (11) in the equation
(12) X501 — cus’) — 2X,(bibs — aus’®) + (b — cus’t) <0,
where 7 indicates one of the 2 to m unknown preparations. When solved for 0,
the limits may be written
(13) X, = bib; — c1i8%2

L= bi bl 61182t2

= stV (en — €1:)b2 + (cis — €13)b? + (b1 — b3)? — (cucis — cii)s2l

b2 — cns't?
2
where ¢y — ¢ = l/hSz y Cii — C1i = l/r‘S’ and cuci — 61;2 = (r +1”;l)DS§2+ E )

In all critical cases, the exact limits should be computed.

In most slope-ratio assays the individual slopes differ very significantly from
zero. Undocr these circumstances the approximate limits may be computed
with reasonable accuracy from the variance of the estimated potency by the
familiar formula for the variance of a ratio [1].

bis’ fen | ¢ 201-}
, —3 _—,—‘ — -—‘ d s
VU) =5 {b% T8 b

(14) )
= 1::-4{(011 — )b + (cis — cu)bi + (b — b))
1

The discrepancies between the approximate and the exact limits are evident
from a comparison of equations (13) and (14). When the doses are spaced at
equal arithmetic intervals, equation (14) can be reduced to the more convenient

form

68 {h+rJ'2 + 31 — J') }
T BNk + D) \rhk(k + 1) | N(k — 1) + 3h'(k + 1)) °

A major limitation to slope-ratio assays is the frequent curvature in the rela-
tion between response and arithmetic dosage units. For this reason it is advis-
able to use routinely four or more doses of each preparation. Occasionally an
assay in which there is curvature at the highest dosage level may be salvaged by
computing the potencies from the data of the smaller doses. The agreement of a
given assay with the postulate upon which it is based may be tested objectively
by an analysis of variance, segregating the sums of squares (a) for the agreement
of the negative control with the intercept, (b) for the agreement of the individual
curves at the intercept, (c) for agreement of the observations with straight lines
fitted individually and (d) for the variation among the h replicates of the stand-
ard, the &' replicates of the negative control and the r replicates of the unknowns.
The calculation of such an analysis is greatly facilitated by the recommended

(15) 3
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design. Since it follows the usual pattern, it will not be described here. The
procedure has been tested with the data from an experiment on the depth dose
of x-rays [2] and has been applied to microbiological assays [3] in papers where
the reader will find the technique exemplified.
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