SOME FUNDAMENTAL CURVES FOR THE
SOLUTION OF SAMPLING PROBLEMS

By Epwarp C. MoLiNA

East Orange, N. J.

1. Summary. In using collateral information in an inverse probability situa-
tion to estimate a population fraction from a sample fraction it is necessary to
use some particular form for the a prior: probability function. This paper points
out the advantages of using Kz'(1 — z)* for this purpose. The application
then involves only the Incomplete Beta Function.

Graphs of the 10, 25, 50, 75 and 90 per cent points of the Incomplete Beta
Function are given. They cover a range which includes and extends previous
tabulations.

2. Introduction. The engineer, scientist or industrialist is often confronted
with the following ‘“‘sampling” problem:

“The probability, p, of an event happening in a single trial is constant from
trial to trial, but the numerical value of this constant is unknown. A series
of n trials is made and the event happens ¢ times, ¢ < n. What light does
this statistical data shed on the unknown value of p?”’

As a concrete example, suppose that a new type of brakes is proposed for a
given class of steam locomotives making the run from Buffalo to Detroit.!
Let each of 30 locomotives be equipped with a set of the new brakes and given a
trial run. Of these, 26 make satisfactory runs, so far as the behavior of the
brakes is concerned ; the remaining four encounter difficulties. Here, the event
of interest is a satisfactory run, n = 30 and ¢ = 26. What “weight’’ (confi-
dence’) may the design engineer assign to the assumption that, say,25/30 <
p < 27/30?

Practical decisions involving such statistical data are usually based on a com-
bination of the data with ‘“collateral’’ information. In fact, the applied statis-
tician is all too familiar with the extreme case where the statistical data are so
meagre as to provide no information and where a decision must be made now—
in these cases the decision is made solely on the basis of the collateral informa-
tion, and rightly so.

The methods of statistical analysis and presentation developed up to the pres-
ent have concentrated on the other extreme case, where the statistical data are
so good that collateral information can be neglected.

1 This fictitious example convicts the writer of total ignorance of railroad engineering.
Nevertheless, the illustration brings out, in concrete terms, the class of sampling problems
under consideration.

2 The purely intuitive meaning to be attached to “weight’’ and ‘““confidence’’ is the same.
However, the curves presented with this paper are not based on the theory which underlies
what are known, in statistical literature, as ‘‘confidence intervals’’.
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There is a real need for methods of analysis and presentation to be used where
both the statistical data and the,collateral information should be used. How-
ever, when the significance of the ‘collateral information is adequately expressed
by a function w(z),  being a permissible value of the unknown p, the classic
Bayes-Laplace theory (see [1]) of inverse probability gives the solution to a
sampling problem.

The purpose of this paper is to present a set of sampling curves based on a
w(z) function whose form embodies some important properties.®

3. Hardy’s collateral frequency function. Consider again the locomotive
brakes problem. The new design may have been carefully engineered, in ac-
cordance with well-known principles, to reduce costs at the expense of a slight
reduction in reliability of operation. In such a situation, the collateral informa-
tion would be somewhat as follows: There is a high ‘“probability’’ that the un-
known value of p is a little below the known value for the old type of brakes.
Moreover, it may be assumed that the ‘“‘probability’’ drops rapidly for values
of p departing materially from this old value. Suppose the latter is p = .95;
then the collateral information would be presented by some such curve as num-
ber 5 in Figure 1, the mode (peak) of this curve being at .90, which is slightly
below the old .95 value.

Number 5, of Figure 1, belongs to the family of curves corresponding to the
frequency function

w(x) = Kzr(1 — z)*

This form for w(z) was suggested, in 1889, by the British actuary Sir George
F. Hardy (see [2]) for the construction of mortality tables. Its mode, mean
and variance are given by the equations

Mode r/(r + s)
Mean r+1)/0r+s+2)
Variance = (r + 1)(s + 1)/(r + s + 2)*(r + s + 3)

G. J. Lidstone (see [3]) has pointed out that the Hardy form for w(z) has two
important advantages: First—‘By suitable choice of r and s any required values
of the mode or mean and the variance of z, can be reproduced, and thus a great
variety of distributions may be approximately represented.” Lidstone’s
2z is our w(z). Second—“The factors z” and (1 — z)* unite in the simplest
and most elegant way with similar factors in the Laplacian integrand ...”.

3 Many statisticians, including a referee of this paper, feel that it is a common situation
to have the collateral information so vague and elusive that it is virtually impossible to
take it into account via inverse probability. (The author doubts this.) Such statisticians
may wish to use the Clopper-Pearson confidence intervals, using no collateral information,
in which case these curves can be used as indicated by Scheffé (“Note on the use of the
tables of percentage points of the incomplete beta function to calculate small sample
confidence intervals for a binomial p’’, Biometrika, August, 1944).
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From this second advantage there follows a third which will be presented in
section 6 below.

4. Theory. The Bayes-Laplacian formula gives us

p.¢ 1
1) Pp=X) = j; w(r)r’(l — 2)"° dx/l w(x)z’(1 — 2)"° dx
for the ‘““a posteriori probability” that p < X. In this formula, the product

Fic. 1
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z2°(1 — z)"° takes care of the fact that the event happened ¢ times in the n
trials; the factor w(z) represents, quantitatively, the collateral information.
Adopting, now, Hardy’s frequency function, we assume that

2 w(z) = Kz7(1 — z)*,
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r and s being assigned values in accordance with the collateral information
pertaining to the particular problem under consideration. Theoretically, the
constant K should be such that

[ w(x) de = 1,

but, since w(z) enters in both numerator and denominator of (1), any desirable
value may be given to K. Advantage has been taken of this in constructing
Figure 1; to facilitate comparison of the five curves shown therein, for each
curve K is such that the maximum ordinate is equal to 1.

The second advantage, pointed out by Lidstone, of the form adopted in this
paper for the function w(x) becomes apparent immediately on substitution of
(2) in (1). We obtain

®) Plp < X) = f (1 — 2" do / f 0 — ) ds

withC =c+ rand N = n + r 4+ s. Therefore, a single family of fundamental
curves, plotted with reference to C and N, will give the solutions for a multitude
of different practical problems. To solve a particular problem, for which the
values of n, ¢, r and s are specified, we merely enter the curves with ¢ = ¢ +
and N = n 4+ r + s. These linear relations transform all a posteriori curves,
published on the assumption that w(z) is a constant, into fundamental curves;
namely, that they are applicable with the more general form (2). For example:
The information given on the sheets of inverse curves (inserted in the back cover
pocket) of Col. Leslie E. Simon’s Engineer’s Manual of Statistical Methods in-
cludes the restriction ‘“‘that prior to sampling, one lot fraction defective is as
likely as another”. It is now obvious that the use of Col. Simon’s curves is
not so limited; his curves may be used in any situation wherein the available
collateral information is covered by the assumption that w(x) has the Hardy
form. Likewise, the “Weight = .98”’ and ‘“Weight = .8" curves (‘“confidence”,
in the intuitive sense), presented by R. P. Crowell and the writer in their paper
now have a much wider range of applicability.

6. Curves. The ratio of definite integrals in equation (3) is tabulated, in a
different notation, in “Tables of the Incomplete Beta Functions”, edited by

Karl Pearson.

This paper Pearson Tables Thompson Tables (see [5])
C p—1 (v, — 2)/2
N-C qg—1 (nn — 2)/2

X z tabulated value
P(p £ X) tabulated value caption to Table

The range of values of C and (N — C) covered by the Pearson Tables is indi-
cated by the shaded area in Figure 7. For curve points falling outside this
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range (except for C = 1 and 2, found from the binomial summation by trial
and error) recourse was had to a series developed by the writer for the solution
of some problems confronting him, as Switching Theory Engineer, in the Bell
Telephone Laboratories. Many points of the C = 1,2, 3,4,5,6,7,8, 9, 10, 12
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and 14 curves can be obtained directly from the Thompson Tables. They do
not, however, give any points for the C' = 16, 18, 20, 25, 30, 40, 45 and 50 curves.
It may be added that, except for certain marginal values, the Thompson Tables
were also derived from the Pearson Tables.
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Five sets of fundamental curves are submitted, namely,

Figure2, P(p < X) = .25, X =p,
« 3 « =75 X =p
“« g “« =10, X=p
“« 5, “« =90, X =g
« g, “« = .50, X=op

It will be noted that p, has been written instead of X for the curves such that
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P (p < X) is less than .50;likewise, p, for X for those corresponding to P (p < X)
greater than .50; po for X for the P (p < X) = .50 curves.

P(p<p, ) = +10

«999
«998
<995
.990
0980
<950
<900
i\
\
800 ©
TIRRS \
. 700 Cd A
.600 L N\d % \‘\‘4&"\'@‘?‘\\ \ \\\\\\\\
! 500 N\ hN! \Q{ NN \\\\\\‘\ N AN
=% AN NN ANNATINEY
300 A NIANANNNAN RN
(] N N N \
U B AN NN NN
' L NEL NSNS SNANNSSE
< N NN
T~ \\>>\QS§Q
+050 T o ~ ~ -_
3 ] \\ N | = :
~020 \\ \\\\ ‘\:\
«010 T~ g =
oow —
002 e~
-0, 2 y 6 8 10 20 40 60 €0 100

X —

’ Fia. 4
For each pair of values of C and N, the curves of Figures 2 and 3 give the range
P(pp<p < p)=.50
whereas, the curves of Figures 4 and 5 give the range
Ppp<p<p)= .80

As an example of the applicability of the fundamental curves, let us reconsider
the locomotive problem for which n = 30 and ¢ = 26. It was suggested that
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P(p£p,) = .90
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the r = 9, s = 1 curve of Figure 1 might well represent the collateral information
available. Therefore we take N =30 4+~ 9+ 1 =40and C = 26 + 9 = 35.
Entering Figures 2, 3, 4 and 5 with this data we find

Fe |Po<w| m | | Fe |Po<w| m
2 ‘ .25 .83 l 3 l 75 .89

4 .10 .79 5 .90 .92
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P(p‘p.) = .50
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Thus we have, for the unknown probability of a successful run with & new set
of brakes,

.83 < p < .89, with weight .50
and

79 < p £ .92, with weight .80

6. Sequential property of the curves. The original draft of this paper was
submitted to Dr. W. V. Houston* in connection with the solution of a problem

4 Of the California Institute of Technology and now President of Rice Institute, Hous-
ton, Texas. It was Dr. Houston who gave the impetus to the publication of this paper.
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“Tables of The Incomplete Beta-Function,” edited by Karl Pearson, can be used for
evaluation of
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in which he was interested. Regarding equation (3), Dr. Houston made a very
significant comment, the burden of which may be stated as follows: Suppose
that before the series of 7 trials had been made, it was known that, at some
earlier time, a series of r 4 s trials had resulted in r successful outcomes. Sup-
pose, moreover, that the collateral information called for the assumption that,
a priori, all values of p were equally likely. Under these circumstances equation
(3), derived by substitution of (2) in (1), gives P(p < X) for two consecutive
series of trials, one of r 4+ s with r successes followed by another of » with ¢
successes. An immediate generalization of Dr. Houston’s thought shows that
the fundamental curves may be entered with
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N=m+n+ - +n+--+n+r+s,
C=at+at+-+ct --+emtr

for the solution of a problem involving m consecutive series of trials, n; and c;
being the number of trials and successes, respectively, in the ith series; the in-
troduction of r and s removing the restriction that all values of p were a priori

equally likely.
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