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Unaversity of Peking, Kunming, China

Summary. It is well known that various statistics of a large sample (of
size n) are approximately distributed according to the normal law. The asymp-
totic expansion of the distribution of the statistic in a series of powers of nt
with a remainder term gives the accuracy of the approximation. H. Cramér
[1] first obtained the asymptotic expansion of the mean, and recently P. L. Hsu
[2] has obtained that of the variance of a sample. In the present paper we
extend the Cramér-Hsu method to Student’s statistic. The theorem proved
states essentially that if the population distribution is non-singular and if the
existence of a sufficient number of moments is assumed, then an asymptotic
expansion can be obtained with the appropriate remainder. The first four
terms of the expansion are exhibited in formula (35).

1. In a fundamental paper' P. L. Hsu [2] has devised a method for obtaining
the asymptotic expansion of the distribution of various statistics. The present
paper deals with the so-called Student statistic.

Let

Elr&, "'7£n

be n independent random variables having the same probability distribution
represented by a distribution function P(z). The rth moment and rth absolute
moment are denoted by «, and B, respectively. It is assumed that oy = 0
and that for a certain k = 3, 8 < « and that e > 0. Hence there is no loss
of generality in assuming that o = 1.

Student’s statistic is defined as

n -3
Z(fr_g)z 1 n
N where §=;LE£,.

n(n—1) =1

For brevity, we consider
n -}
né (E & — z)“‘) .
Let its distribution function be denoted by F(2), i.e.,

Pr {né 'Z_:nl & - 2)2)_* = z} = F(2).

1 The definitions of the various constants A, Ax, Qx, Ak, ¥, ©, O, are the same as
in Hsu’s paper.
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Discarding the case k¥ = 3 where we can prove a more precise result and the
singular case which can be shown to admit no asymptotic expansion in the sense
of Cramér [1], we shall prove in this paper the following theorem:

THEOREM. Let P(x) be non-singular and az, < o for some integer k = 4
Then

1) F(z) = (2) + x(2) + R(2), ®(z) = \/_ f= —iy? dy,

where x(2) is a linear combznatwn of the derivatives ®'(2), - - -, 8 (2) with each
coeﬁiczent of the formn™(1 < » < k — 3) times a quantity dependmg only on as ,
- +, ax—1 whose beginning terms are given in (35) and where

k—1) l: ]
@ IB@| S Q1+ |2, ao = — L2

k b
2((3)+1)
where Qi is a constant depending on k and P(x).!

We shall need some of Hsu’s lemmas, i.e., his lemma 3, lemma 7 (both for
the particular case m = 2) and lemma 8. These we shall quote with this num-
bering. The application of Hsu’s method to Student’s statistic depends on the
following lemma.

2. LemMa A. Foru = —1,1 = 1, we have

1+2IZ—3l r(g) "—1+2§ (—1)"r<§2’) o™

u

Fr(G-i)ra+ T3 -i)rG+

H

21—1 T 5 .

=Vi+us1+ z; 3 W
. r(-2- - j) I+ 1)

Proor. By Taylor’s expansion of v/1 + u, we have

211 P(g) )
Vitu=1+4+ 3 3 4
Tr(E-i)rG+ .

+

()
'\s

(1 + t,u)—i(u—l) uzl’
r (g - 21) r@l + 1)

whence it follows that (1 + du)*“™ is finite, and positive. The right-
hand side inequality follows.
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ViTazl+ X F(g) W+ — P@) o
~r (?—’ - j) TG+ 1) r(§ - 2z) T+ 1)

Similarly, if u = 0,

2 2
211 T (% ) s (—1T (%)
=14 > 3 w14 3 u”

j=1 . . j=1 . .

’ r(é—a)r(z+1) ’ r<§—a)r(a+1>

since by a well-known result on the binomial theorem we have
. vr(3)
143 =vVi=-1=0.

Fr(E-i)ra+
For —1 £ u < 0, we have
21-1 I‘(’g) . S N
1+Zl 3 u’—\/1+u=l—), say.
B I‘(’é_j)r(j'Fl)

For —1 = u < 0, we have

211 I‘(g) .
D=1+2 2 ¥ +vVI+u
= I‘(Q—j> rG+1

Next,

@ .
21—1 T 5 )
N={(1+4+ 2, 3 v —(1+w
=1 . .
is a polynomial in u of the form
w(ao + a + -+ + au™)

where @, > 0 and the successive coefficients have alternating signs; hence for
—-1<u=0,a+ au+ -+ + ayu® assumes its maximum at w = —1. This
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maximum is obtained by putting © = —1 in the numerator, hence for —1 =
u < 0,

v (3
N=u"|14 X 3
Hr-i)ra+

The left-hand side inequality in the lemma now follows.
For brevity we write the inequalities as

() 14 Py(u) =14 Pyy(u) —byu® =1+ u =1+ Pya(u), by>0.

3. We write
;@,—92 =X a—n=n+t Vila —1) X — Y
where

n ff_l .
X = ——_— Y = .
;\/n(m—l) vk

Then Student’s statistic may be written as

né(g & — zf)_’ - y(1 +g/at -

Then, for every z, we have

1

—
X -Y §z}

22 -1
=Pr{1/1+—Y§zV1+Vﬁ_x}.
n n
For brevity let
2., -1
1/1+r_zY_V’ - X =U.

Suppose z < 0; then we have by (3),

24 2Py (U) £ 214 U £ 2z + 2Py(U)
Pr{V < z+4 2Py (U)} < F(2) < Pr{V £ z+4 zPu(U)}

F(z) = Pr {Y(l + "“n‘

4

Suppose z > 0; then we have by Lemma A a similar inequality with the
extreme terms exchanged.

Now we take | = [g], and fix it henceforth.
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Our next step is to obtain an asymptotic expansion for
PriV <z 4+ zP,(U)} = Pr{Y <z (1 +2;—:’)“i
+e(145) (925 %))
withm =2l — 1lor 2,1 = 1.
Let b be any real number, and

z<1 +%2>-}P,,.<1/"‘T“1X) = La(X).

Until section 12, we shall write simply L(x) for either of the L, (x).

4. Let W be the probability function of the distribution of the random point
(X, Y) and let f(# , t2) be the characteristic function.

W(S) = Pr{(X, Y)eS} for every Borel set S in R,

St 8) = ‘[ : ]_' : Gy gy {p (%_1’ , %)}"

P, ) = f " e NetD e gp
—c0

Then
® PriYsb+LX)= [[ aw= fde+[[G(x,y)dW
ySb+L(z) y=<b
where
1 ifb <y =b+ Lz),
Gz, y) =<(—1 if b4 L(z) <y =< b,
0 otherwise

We approximate G(z, y) by H(z, y), where

( e fb<y=b+ L
H(z,y) = ) —e ifb4+ L) <y=<b
0 otherwise

We approximate dW by (w(z, y) + ¥(z, y)) dz dy, where
1 w pw
w(z,y) = (?ﬂ_')‘z /; . [_ . e (1 ) dty it
1 Y —ityz—i e
v,y )= @)t ‘[_” _[ . e TG (4 b)Y (it yits) dty At

b(t,h) = Mt o _ g ((E“" — I)E) 7 ag

-1 as— 1
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2 —1
and ¥(it1, it) is given in Lemma 3 by taking therein {; = gah —, Ca=% ¢
Y —

being any of the ¢,’s.
We write

[: [: Gy — u) dW
= [: [: (G(z,y — w) — H(z,y — w)) dW

- [: [: Gy — w) — Hzy — w))(w(z,y) + v(z,p)) dy dz

: + [: f_ : H(zy — u) dW
- [: [: H(zy— w)(w(z,y) + v(z,y)) dy dz
+ f.: [: Gy — w)(wz,y) + v(z,y)) dy dz
5. We have
@ 6@y —w) — Hzy —u) | <1 — " < e

®) ’ [: [: @y — 0) — Hny — ) dW’ =/ : @ dW = eB(X?) < Que

since
. gz -1 21
where Q. depends on a3, - - -, au .
Similarly,

9)

[: [: (Glzy —w) — Hzy — w)(w(z,y) + v(2,9)) dyde | < Que

Next,
.[: [: G(x’y - u)(w(x)y) + 7(1:’:'/)) dy dx
VS u+b+L(z) vSuth

where the first term on the right-hand side, regarded as a function of n¥, has
a Taylor expansion in powers of n™?, whose first few terms we shall compute in
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section 9; for the present let us denote it by B(u + b) + C(u + b)n**® where
C = C(u + b) is a constant depending on k, P(z) and 2, a more explicit estimate
of which will be given in section 10.

Further, we have

(11) [:[:G(x,y—u)dW= ff dW—fde

ySu-+btL(z) ysutbd

by Cramér’s asymptotic expansion for the mean 4/nY, and as is also shown
in Hsu’s paper we have

12) f f aw — f f (w(z,y) + v(z,y)) dy dz =An ¢

ysu+b y=u+b

Collecting all the results from (5)-(12), we get

[ .[ dW — B(u + b) — C(u +b)n?¢?

VS u+b+L(2)

= Aule 4 0% ) + f [ Hy — u) dW

— -[: [: H(zy — u)(w(z,y) +v(z,y)) dy dz

1 — cos Tu

Now we use A. C. Berry’s weighting factor — and obtain
LL___‘Z‘Z’ST“( f f dW — Blu+b) — Clu +b))du
YSu+b+L(z)
= AT(e + n %)
(13) +[ 1—cosTu<f [ Hizy — u) dW

h L, f_w H(z,y — u)(w(z,y) + v(z,y)) dy dx) du
since
‘[Q k‘ﬁ'ﬁl’l‘ du = nT.

6. To transform the triple integral on the right-hand side of (13) we use the

Fourier transform as Hsu did.
Let

[ [ e"“"—“’”H(x, y) dy dx = h(tl ,t2) ’
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then

[ [ T 2,y — ) dy de = ¢ h(t, 1)

[ [ e—tt;z—-tl;ﬂ ( ];____Eos—q’u H(x’y —_ u) du) dy dz

© u?
w(T — || )h(t,t) of || <T
10 otherwise
since

u2

1 —cos Tu —itu (T — &) if |&|ZT
[TLmso T g, -
o 0, otherwise

By Fourier inversion we have, almost everywhere,

[ 1_—393_71‘ H@x,y —u)du = — f f YT — | Vh(t, &) dt dty
Hence

[Q——%‘j_‘w [”H(x,y — u) dW du
(14)

1 ) T
-2 [ [ @ = luhre, b, & dua,
Similarly we obtain

“1 — cos Tu
u2

(f_: [: H(z,y — w)(w(z, y) + v(z, y)) dy dx) du
(15)

— [ [ @ = 1abs, (1 + v, i)}, 6 dads

From (14) and (15) we obtain
wl;:iiﬂ‘([w [ HGy —waw
B f.w f_w H(z,y — w(w(, y) + v(z, y)) dy dx) du

L[ [ a-1adue, o
- ¢(tl ) t2)(1 + "l’(ztl ) it‘l))}h(tl ) t2) dtZ dtl .

7. To estimate the double integral on the right-hand side of (16) we break
it up into parts and use the following estimates of A(# , &).

Lemma B. We have forl = [g:l =1,
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21
@ [hti, )| = Axlz| ‘g (s — 1) ¥ g2,
2) [h(t, &) | = Quti’2’N( | &1, i
where N( |t |, ™", €'*) is a polynomial with constant coefficients in the indicated
arguments.
Proor.
[kt , t) | = f f gt dy dr — f f g tia—itay—est! dy dz
bysbii(® bHL(2) <y <b

b+L(z) b . -
— (f f - f f )e—ttlz—it’y—ez dy d:v
L(z)20 Jb L(2)<0 Jb+L(2)

- (_ztz)—-l e—“zb [“ e—itlz—ez’l(eitgll(z) — 1) dz.

Hence
I )| = 16 [ 16L6 6 da.
Since
L) | S Asl2] 35 (e = DY
we obtain

0] S Aal2] 3 (o = 0¥ [ Jape o
< Ailz| i (a — 1)¥ p=H GO/
£
Next, we write
h(t, &) = (—it) e [: w'(z)v(z) dz

with
ull(x) — e—itlz, v(x) = e—w”(e—itgL(z) - 1).

Integrating by parts twice, we get

Rt , ) = (—it) et ‘[” u(z)v''(x) dx
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whence
b, )| 5 4t [ L@ |+ @ K@) |+ el 2P L@ |

+ &7 L@ | + |6l L@ | Jdz S Q2] + AN( &, o7 )

The lemma is proved.
Now we write

f_:[Z(T— &) {f — ¢(1 + )}k ds; dt,

(17) - [[ + [[ + [[ =p+n+5.

1e115Qend 1) >Qund Ih‘léen*
liz|SQint lt2]sT Qeni|ty| ST

On I, we use Lemma 3 and Lemma B, (1):

© a0 1
[ = Qil2] _[ [ T(E Y e—-}(lc—2)> D

=1

(Sl o JapeD} i g
tam]
21
< 2z Tn—i(k—z) ,n—}f —(J"f'l)/ﬂ.
= Q2| ;; €

On I, we use Lemma 7 and Lemma B (2). Since [& | > Qn}, [#(1 + ¢) | =
¢ ™%, and by Lemma 7, p(tln_*, tn ) = ¢ % g0 that |ft, &) | < e |f —
1+ y)| = ™

Loz [[ 162 eN(n], 0 dnan.
141]> Qg nd
It2] =T
Let e = n™®, 8 > 0, then it is evident that
|I.| < Q.
Similarly using Lemma 7 and Lemma B, (1) on I5 we see that
| I5 | = Qk l z].

Therefore

L[ @=1abise, 0 - o, 0+ 96t i) s, ) di d

(18) )
=S (I 2|+ 2+ 2| Tn D 3 Y e-—(i+l)/2l) .

i=1
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8. Combining (13), (16), (17) we obtain
[ 1 — cos Tu( ff dW - B(’u + b) _ C(u + b)n—'}(k—ﬁ)) du’

© u?
(19) YSu+btL(z)

21
S (Te + Tp -2 4 2|+ 2+ |z| T3¢ 3 p ¥ e—0+x>lzz) )

=1

Now we shall choose T and e suitably. Let
T = n% e=n" a>0, B> 0.
To make the right-hand side of (19) a constant depending on z only, we must
havea < 3(k — 2) - 8 £ a. Then

21 21
Z n—’h e—-(;+1)l2l = z: n((ﬂ—-l)H-ﬁ)lzl.
je=1 =1

We must choose 8 < k/2, then
i aH SR < g s
J=1
To make the exponent as small as possible we choose 8 = a, then

IZ l Tn—-)(k—2) 221 n—-!j e—(j+l)/2l < Ak l 2z I nu-}(k—2)+(2a—-l)l2l — Ah I z | ”(H-l)all—l(k—l)
g1

since « is to be as large as possible, we choose

ao 2 9 2(l + 1) ] -_— —2‘ .
Then we obtain
®1 — cos Tu _ _ e
(20) Mm u? (j] dW — B(u + b)— C(u + b)n )@I
VS utb+L(z)
S Q1+ 2.

Let F*(u) be the distribution function of ¥ — L(X), and let
Fy(u) = B(u) + C(u)n~¥*?

Then we may write (20) as
[ Lo T8 vy + ) — Fitw + b)) du| s Qul1 + .

By the definition of F;(u) we see that the conditions in Lemma 8 are all satisfied
with a certain constant D depending on k, P(z), and z for the M therein. Then
choosing b to be the @ in Lemma 8, we obtain from Lemma 8 and (21),

TS
(22) DT6{3 .£ l"T;”sﬁ dz — «} < QG + 2

(21)
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where

—_ 1 % —

=355 Lub. | F¥(u) — Fi(u) |-
Now there exists A such that if 76 > A, then

TS 4 _
Y LI
o x

hence it follows from (22) that
Ts < max (4, D7'Q:(1 + 2%).
Thus for another Q; exceeding both 4 and the above @Q; , we have
Ts < Q1 + 2°)
and so finally, dropping the prime,

(23) | F¥(u) — Fi(u) | £ @(1 + 2)DT " = Qu(1 + 2&)Dn ™.

In particular, taking b to be z(1 + n 2%~} = 2/, say:

(24) Pr{Y — L(X) = 2} = BE) + C@**? + a1 + 2)Dn~"
where

B(z') + C)n~ 1% = the Taylor expansion with a remainder of

[[ @@+~ dydz
y—L(z) <z’

and D is an upper bound for
| B'(u) + C'(un ™2 |

9. Let A = n}, and rewrite the 2/ + Ly 1(x), I = 2 there as g(\):

o (s — D" _au— 1.2 4 (a — 1) 5 5 )
g()\)—z(l-i- 5 Az g Ax-l-T)\x-l-
Then
9(0) = 2’
— 1\
g'(O) — (04 5 1) 2'x
g'(0) = — 2 Z L

3—————(‘!‘ — ™ P

g"0) = 3
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grte
Let p 2 0, ¢ = 0;wy(z,y) = Ww(x, y) where w(z, y) is defined in section
4 and we know that
_ ___1—__ —(22—2pzy+y2)/2(1—p2)
w(xr y) - 27|"\/1 — pz .
Let
o agQ)
(26) I = [ [ e 9) dy da.

Then
Foa®) = [ 70044tz 60 do

75 = [ @O0z, 900 + O 01a(2, 90)) d

27
foa®) = [: (@ N wae(z, gO)) + 39" (N)g' N)Wp,041(z,9(N))
+ g\ wp.gr2(z, g(N))) dz
Let
d = P(z) = \/L‘—?; ’ v dy, o9 = %@(z) ,
(28) © =g

I = _[ T wpe(x,2") dx
We have computed the following table of values of I%,:

P
0 1 2 3 Z4
r

0 | @9 0 0 0 0
1| - —3@ 0 0 0
2 q,(q) + p2<I>(q +2) 2 pq,(q+l) 2@(01) 0
3 -3 pq>(q+l) _ p3q>(q+3) _ 3¢(q) -3 pﬁq:,(q +2) | _ 6 p@(qﬂ) _ 6@“) 0

Next, we find, from (25)-(28),

Jnl0) = ;
f2e(0) = I(;J»ﬂ—l forq = 1;
_ 1\
fo@ = @0,
2 1 1
a0 = = 2= 2T + 2=l
3 — 1)*2 — 1) _ 1\32
R e A L TTTE o A
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Now we can expand

f f w(z,y) dy dxz = [: [:0) w(z,y) dy dz = foo(\)

ySb+L(2)
Write the Taylor’s series for fu(\):

o) = Ju0) + iolOn + LD r O yo
Substituting from (29), we get

® o™ — 1/2
_[ [ w(x,y) dy dx =& — (i‘___]L pz'fb(l)

il
-1
@oy t g (TFET ) @V + )
(e — 1, @ ® 2 @ _ 3z@)
+ g {32/ (—3p2" — p"®®) — 32"(—3p2® — p*3“)

+2°(—3p8" — p3®)} + - - -

Further, we must obtain the beginning terms of ¥(z, y) as given in Lemma 3,
for which purpose we refer to Hsu’s paper. We have, in fact

. U* U, Us U:U. Us\ ¢
w(ul,ztz)=—gn—l,—2+(—‘— ) +( - 25 21;)7%,#---

where

-1 3
Us=E (tl \5;4————_ i + lzf)
ag — 304 +2

axtg+3\/a4—1t§tl+3a6 '(—'T)a/z

(oSt (e )

— Y w—da
—(a4 3)t2+4\/a4 1

Us=E ((tl Va1 + tzf) 10E (tl j—————— + tzE) E (tl \/———— + tzf)
= (a5 — 10as)i§ + -

To avoid the exhibition of very long expressions, let us separate the terms
in ¥(sty , it,) according to the powers of n~"'%, and denote the terms of the power
w0 by ¢, ¥, ¥, respectively.

Thus ¢ = —1iUs/6n"?, and the corresponding v(z, y) is

2““ Lt + £

Ui

G+ - - -
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1
) e = = g (ewnten) +3 Ve = T waen)

+3

wgl(x,y) + - )

where, as hereafter, the terms omitted will yield nothmg in the long run.
Now we have by (31) and (26),

[ [m 1@, ) dy da

ag —

~ on 1/2 (aafoa()\) + 3V — 1fu(z,y) + 3 le(:c, y) + - )

— g (@ a0) + 37/a = 1) + 3 “;“_2f“fu(o) o)

—G.I_n (aafés(O) + 3Va — 1£1:(0) + 3 “;4‘_2;"3121(0) + )

- 1713—/2 (asﬁ;(O) +3va — 1a(0) + 3% =25 2 0) + )
n oy — 1

12
©2) = “én 1/2 (aslo) — (—1)— Z(aslos + 3V ag — 1112)
"'OZT;WI{‘ ("‘“1°3+3\/a4 ~ 1l +3°% — 2o 121)

-2 (as I+ 3V — 115 +3 "‘;‘_2;"“ 122)} + -

Y
_6‘1""_:/24,(2)_'_(0’4 = ) 2 (s @(4)_‘__3\/0“_ 10®)

o — 1 —
+ Ty { [as(é(s) +0°9®) + 6V — 1 109® 46 ‘lfb(n]

-2 [aa@“’ +0°2®) + 6V — 198 + 6% 2;'3 q:"’]} + ..,

Similarly, omitting the intermediate steps to save space, we have

®© ag)
[ vste ) dy dz = -1 (3004 — 318 + 2030

2 —4
(33) - —(": . 4n,1,2 2 {3(0:4 - 3 + 12 5= "2 40

+ 203087 + 12051/ — 1@‘5’} + ...
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®© Ag\)
[ [ vs(z, y) dy dx
(34) -
__}_ a5 — 10as _ 30y o (6) @® R
nm< 20 2 Tzl "'216‘I> +

Combining (30), (32)—(34) and simplifying, we obtain, as the first four terms
of the asymptotic expansion of F(z):

[ f (w(x,y) +v(e, y) dyde = & — 6:3/2

I@(l) + @(2))

y—L(z) Sz’
1 Jau — 3 _3 )
— [}
+ 4n{ 6 + q;
(G w 2w —1) —a; ey ai— 1 (o))
+ 2 (gq) + —‘—‘—‘—’-2 ® "‘-‘_’2 P
+ 2 (0‘4 2— oYV 4 B q,(s))}
1 | o5 — 1005 .0y , 304 c® ®
(35) +24nm{ 5 ¢ T3 ¢? +94,
+ [60!5 — 3azs — 9azay 30 + Tag(es — 1 — af) — 2a5 3@
2 2
I as(ed — By + 7) 3® _ gg @a)]
2 3
+ 2 [90!30!4 + ;aa — 6as 3@ + as(3as —270!4 + 7) q;“’]
+ 2* [—30!3(;4 = 1) 3® — 512;@(5)]} 4.

10. In order to estimate the remainder C'(z’)n"*®'* in the Taylor expansion
we write, in accordance with Lemma 3,

© gl
[ [ @@y + 1@ ayde
w0 agQ) k—3
= j; [ {w(x, y) + ; N E’(—l)"“L"2 yy 3 Wryry (T, y)} dy dx

k—3 k-3

= f00(>‘) + ; )‘.E(""l)yﬁ—y2 avlvzfvlvz()‘) Ef(y)(o)
+ 150N (———, + TN o,

k—3—v y fni2) )‘k—-2—1
. { ]; fﬁli,(O) +f§,y, (V] m,}
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A + (k—2—7) A
148 2 —a Y,
TR Z:z( D™ Gy Sy 7 ON 75—
= BE) + a0 (10 + 3 g ™).
Thus

= B(?) + fo (6N

k-3
o) = m(15700 + 1)
Now we may write
G0 = [ 200 0) s, gOV) do

where, if we attach a weight s to ¢"’(6)), the polynomial under the integral
sign is isobaric of weight k — 2 — » in these g"’s, and the coefficient of each term
is a constant multiple of a certain w,(z, g(6\)). Further, it is easily.seen by
induction that we have

g9(6) = Pra(2)(1 + 6N%2)

where P2 (2) is a polynomial of the three variables 2, z, 6\ which is of at most
the (1 + 2s)th degree in z and of the (21 — 1)st degree in z, and whose coef-
ficients are all A; .

Therefore,

175700 1 s [ @zl +a + o+ 2P
.(1 + lz ‘(1+2¢)(k—2—v):_1)wpq(x’ g(0)\)) dz
é ‘[eo Qk(l x I + xz + . + | z |2l—1)(1 + I 2 |1+2(k—2))e—4)23dx

S Q1+ |2
Thus
(36) Cl2) < Q1 + |2*7)

Lastly, an estimate of D is easy:

o cutLz)
Fi | =& [ @ + 1 9 dy s
@

< [ i u+ L) + v, v+ L) D do < Q.
Collecting the results of (24), (36), (37) we obtain
Pr{Y — L(X) < 2/} = BE) + Al + | 2[* )7 + (1 + ™),

) womfrz2, L)
B\ ERD
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Or, more simply,
39)  |Pr{Y — LX) =2} — B&)| = Gl + |2[* ),
where the first four terms of B(z’) are given by (35).

12. To return to F(z). We see that B(z’) depends on the function L(x).
Recalling section 3 we now write By, for the B corresponding to L. , with m =
2l — 1 or 2L

Then by (4) the value of F(2) lies between

Pr{Y — Ly (X) £ 2/} and Pr{Y — Lu(X) = 2'}.

From the asymptotic expansion just obtained for either of them, we see that
the absolute value of their difference does not exceed

| Ba—a(2') — Bau(2') | + @(1 + | 2 s
But.
Ly(x) = Ly(x) — 2'by(ou — 1)17'"—19721 = Ly,(x) — b;lxm 8ay,

hence

0 es'+Laj—1(z)

| Bua@) = Bu@)| < [ (e, ) + 7, 9) | dy d

w0 Jz/4Lg;—1(x)—b3 23
S Qb = Qulz|n < Qu|z|n.
Therefore
| PriY — Ly(X) =2/} — Pr{Y — La(X) <2/} | = Qu™™

and so we obtain
(40) Fz) = B(2) + Ml + |2[* ™
which is equivalent to (2) in the theorem stated in section 1.

Thus the theorem will be proved if the assertions regarding the form of f(2)
in (1) are shown to be true.

For this purpose we denote, as before, the terms of the order n™"'* in y(it, , it,)

and y(z, y) by ¥, v, respectively. Since the term in ¢, which yields a w,,
with the greatest ¢ is Uz, we have for every w,, in v, the condition ¢ < 3».

© ag(\)
We expand [ f v(z, y)dydz to k — 3 — v terms, in which f,4(0), fe(0),
coey fE37(0) occur. In the integrand of f%*77(0), e.g., the coefficients of
each w,,(z, z) are polynomials in z and z of a total degree in z and z not exceeding
that of (¢'(0))*™*, i.e., 2(k — 3 — »). Hence the expansion of vy, will give

rise to terms of the form
21%, q=<3», s+t=2k—3—y).
Such a term will yield a term 2'®“*™, which in turn yields the terms & with



STUDENT’S STATISTIC 465

r<s+q+t=3r+2k—3 - =3k —3),

Equality holds only when » = k — 3and ¢ = 3(k — 3). But whenv =k — 3,
the term in question is

fosa—s(0) = I3 g0 = 8%

Next, we see that y, contains Us, ---, U,4s. Since f**™ (0) is a poly-
nomial of the (k — 3 — »)th degree in z, the expansion of v, will yield I%,,
co, 1B But I8 = 0ifp >k —3 — v, hencep < k —3 — ». Thus
in ¥, we need only take account of the terms (¢t)”(it)? withp < k — 3 — ».
Nowifj <k —3 — »,inUjonly a3, « -+, ase—s— Occur. Ifj =2k —3 — »,
in the coefficient of a term (it,)"(it;)? with p < k — 3 — » the greatest index
of ais

2—-3—v)+j— k-3 —-—»=j+k—3—v=k-—1

since j < v + 2. Hence in the expansion of every v only es, - - -, ax1 occur.
The proof of the theorem is completed.
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