ON THE CONVERGENCE OF SEQUENCES OF MOMENT
GENERATING FUNCTIONS

By W. KozAKIEWICZ

Unaversity of Saskatchewan

1. Summary. The purpose of this paper is to give a few theorems con-
cerning the reciprocal relation between the convergence of a sequence of distribu-
tion functions and the convergence of the corresponding sequence of their
moment generating functions.

The paper consists of two parts. In the first part the univariate case is
discussed. The content of this part is closely related to that of a recent paper
by J. H. Curtiss [1, p. 430-433], but the results are of a somewhat more general
nature, and the methods of proofs are different and do not make use of the theory
of a complex variable. The second part deals with the multivariate case which,
as far as the author knows, has not been treated before with proofs in as com-
plete and rigorous a way.

In both the univariate and multivariate cases the proofs are based on the well
known Helly selection principle [2, p. 26] for bounded sequences of monotonic
functions.

2. The univariate case. Let X be a random variable and F(z) its distribution
function. That is, for any real z, F(z) = P{X < z}, where P{X < z} denotes
the probability of the event X < z. The function

+o0
o) = B = [ &% arG),

in which the integral is taken in the Stieltjes-Riemann sense and is assumed to
converge in some neighborhood of the origin, is called the moment generating
function of X (or of F(x)).

Henceforth we use the abbreviations d.f. and m.g.f. for the terms distribution
function and moment generating function respectively. The variable ¢ will be
always real.

TraroreM 1. Let {F,(x)} be a sequence of d.f.’s. Let M(x) for any fixed
non-negative x be the least upper bound of the sequence {F,(—z) + 1 — Fu(z)}.
If the sequence {F,.(x)} converges on an everywhere dense set of points on the z-axts,
and if there exists a positive number « such that for any fixed ¢ in the interval |t| < a

1) lim ""“M(z) = 0,
T—+4-00
then:
(a) there exists a d.f. F(x) such that lim F,(z) = F(z) at each point of continuity of
of F(z);

(b) the m.g.f.’s of F(z) and F.(x), say ¢(t) and ¢a(t) exist for | ¢ | < a;
(c) lim ¢.(t) = ¢(t) for | t| < a and uniformly in each interval | t| < B < a.

n—+o
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To prove (a), it may be noticed that there exists a function F(z), non-decreasing
and continuous on the right, such that lim F,(z) = F(x) at each point of con-

continuity of F(z). But F(x) must be a distribution function. Indeed, we
have forz > 0

) F(-z) +1 — F(z) < M(z—).

Now from (1), putting ¢ = 0, we find that M(x) and consequently M(z—)
approach zero as £ — + «. This proves that F(— «) = 0 and F(4+ «) = 1.
To prove (b), we notice first that the integral

0
on(t) = L & dF.(z) (=12 ),

is convergent for | ¢ | < a. This follows immediately from (1) by applying the
method of integration by parts to the integrals

N 0
f ¢ dF.(x) and [ & dF . (z),
0 N

which for any ¢in the interval | ¢| < & will be seen to be bounded for all values of
N. By the same argument, the relation lim M(z—)e!'* = 0, [¢| < «, which

=400
can be easily deduced from (1), together with (2) imply that the integral repre-
senting ¢(f) is convergent for | ¢ | < a.
Let now 8 be a positive number less than « and let v be such that 8 < v < a.
Let M, be the least upper bound of M(x)e"™ for x > 0. Using the method of
integration by parts and applying (1) we have for | ¢{| < 8

+00 +o0
f e dF,(z) = [1 — F,(N)] ™ + tf ¢'[1 — F,(z)] dx

(3) N(B-v)

< M(N)e™ + M,8° .
vy—8

We could prove easily that the same inequality is true for the integrals
—N +o0 —-N
f & dF.(z), f & dF (z), f & dF (z).
— 00 N =00
Now let € be any positive number. Because of (3), we have

) f ¢ dF.(z) < e, f FAF@) < ¢,
|z| >No |z| >Ny

for a sufficiently great number N, , and uniformly with respect to n and ¢, when
| ¢| < B. Clearly, N, can be so chosen that F(z) is continuous for x = =+ N,.
Then

No
5) lim f P () = f
n->0 —-No e
uniformly for | ¢ | < B.

N

0
¢ dF (z),

No



MOMENT GENERATING FUNCTIONS 63

The relations (4) and (5) prove that ¢.(t) — ¢() as n — o, uniformly for
|¢] < B. But g canbe chosen as near to « as we please; thus (c) is proved.

TaEOREM 2. Let {F.(2)} be a sequence of d.f.’s and {¢.(f)} the corresponding
sequence of m.g.f.’s. If ¢a(t) exists for |t| < a, and if there exists a finite valued
Junction ¢(t) defined for | t| < a, such that lim ¢,(¢) = ¢(t) for | t | <-a, then

(a) lim M()e''"® = 0 for |t| < o
z—++400

(b) there exists a d.f. F(zx) such that lim F,(x) = F(z) at each point of continuity

of F(x)
(c) the m.g.f. of F(x) exists for | t| < a and is identically equal to o(t) in this interval.
(d) lim @a() = ¢(8) uniformly in each interval | t| < 8 < a.

To prove (a), let ¢ be a number in the interval | ¢| < «, and let 8 be chosen so
that || < 8 < a. Then, for z > 0, we have

+o0

Fu=2)+1 = Fa@) = [ dFa) + [ aFutw)

—z +o
< e f P dF(u) + f & dF . (u)

< € [on(—B) + en(B)].
Consequently
M@)e"* < e"P7 Lub. {ea(—B) + ¢a(8)},

and since the sequences {p.(—8)} and {¢.(8)} are convergent, and therefore
bounded, it follows that M (z)e''* approaches zero as z — + .

To prove (b) we may notice that by the Helly selection principle we can
choose a subsequence {F,(r)} which is convergent to some non-decreasing
function F(x), at each point of continuity of F(xr). Now the Theorem 1 together
with (a) imply that F(z) is a d.f. and that the limit of the subsequence {¢,, (t)},
namely ¢(f), must be identical, for |¢| < @, with the m.gf. of F(z). By the
uniqueness property of a m.g.f. we know that F(z) is uniquely determined by
¢(?), and therefore it follows that every convergent subsequence of {F.(x)}
approaches the same limit F(z) at each point of continuity of F(z). This is,
however, equivalent to the statement that the sequence {F,(z)} itself converges
to F(x) at each point of continuity of F(x). Thus (b) is proved. We see at
once that (c) and (d) follow immediately from the Theorem 1.

Theorem 2 is of course similar to the Theorem 3 in the paper of Curtiss [1,
p. 432]. The proof of (a), however, is not contained in his paper. From the
Theorems 1 and 2 there follows immediately

THEOREM 3. Let {F.(x)} be a sequence of d.f.’s, and let {¢.(£)} be the correspond-
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ing sequence of m.g.f.’s, which are all assumed to exist for |t| < a. The necessary
and sufficient conditions for the convergence of {oa ()} in the interval | t | < a, are:
(a) lim M(z)e'"™* =0, [t] < a
n-—>-400
(b) the sequence {F,(x)} converges to a d.f. F(x) at each point of continuity of F(x).
Further, the m.g.f. of F(x) exists for |t| < a and is equal in this interval to the limit
of the sequence {¢.(t)}.

In his paper Curtiss gives an example of a sequence {F,(z)} of d.f.’s which
converges to a d.f. F(x), while the corresponding sequence {¢,(t)} of m.g.f.’s does
not converge to the m.g.f. ¢(¢) of the d.f. F(x), though both ¢,(f), n =1,2, - -+),
and ¢(t) exist for all £. It may be easily proved by the direct method that in the
case considered the condition (a) of the Theorem 3 is not satisfied.

It is perhaps worth while to notice that the condition (a) of the Theorem 3 may
be expressed also as follows:

lim 2z log M(z) < —a.
T—-+o0

3. The multivariate case. For the sake of simplicity we shall consider here
the bivariate case only. The results obtained in this chapter, can be, however,
easily extended to the case when d.f.’s and m.g.f.’s are defined in the Euclidean
space of any finite number of dimensions.

Let (X;, X,) be a random vector variable in the two-dimensional Euclidean
space, and let F(z;, z2) be its d.f. That is, for any real numbers z; and z,

F(z,,2) = P{X: <z, X, < 22}
Let
Fy(r) = P{X; <} = F(a1, + =),
Fy(x) = P{X; S 1} = F(+ »,15);

then Fi(z;) and Fi(x:) are called the marginal d.f.’s of X; and X, respectively.
The m.g.f.’s of the d.f.’s F(x; , x,), F1(x1) and Fs(z.) are defined by the equations:

+c0 +o0
oltr, 1) = BTy = [ [ gttt gp(e, )

+oo
wit)) = BE) = [ o aia), G =1,2),

in which the integrals are assumed to converge in some neighborhood of the
origin. It is easy to see that ¢1(f1) = ¢(t1,0) and ¢(f) = ¢(0, ).

THEOREM 4. Let o(t1, t) and ¢*(t, t) be the m.gf.’s of d.f’s F(x1, x) and
F*(xy, x,) respectively. If o(t, &) and o*(t1, t) exist and are equal in some
neighborhood of the origin | t;| < ai, (¢t = 1, 2), then F(x1, 22) = F*(21, 22)
identically.

To prove this theorem, let us introduce two random vector variables (X; , X5)
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and (X7, X5) of which the d.f.’s are respectively F and F*. Consider now two
random variables

7 =X+ Xots, Z*=Xt+ Xot,

where 4 and { denote two real numbers not both zero. If ¢(¢) and o*(¢) are
respectively the m.g.f.’s of Z and Z*, we have

o(t) = o(th, t),  *(t) = o*(th, tt).

Consequently ¢(f) = ¢*(¢) provided that | ;| < a;, (¢ = 1,2). It follows from
the uniqueness property of the m.g.f. in the univariate case that the d.f.’s of
Z and Z* must be identical. Now, according to a theorem due to Cramér
[3, p. 105], if the d.f.’s of Z and Z* coincide for all pairs of values (4 , &) such that
|| + | | # 0, the d.f.’s F and F* must be identical. It may be worth while to
reproduce here Cramér’s proof. Let y(ti, t,) = E(e™* X2y and y*(4, ) =
E(¢"*i"* i) he the characteristic functions of F and F* respectively.
Then y(it,, ;) and *(t, ;) are the characteristic functions of Z and Z*
respectively. Since Z and Z* have the same d.f.’s, it follows that ¥ (¢, tty) =
Y*(tt1 , tty) for all values of t. Putting ¢ = 1, we find that (&, &) = ¢*(b, &)
if |t + || # 0. Fort =t,=0,¢(0,0) =¢*0,0) = 1. Therefore (¢, t,) =
¥*(t1, 1) identically, and since the characteristic function uniquely determines
the d.f., it follows that the d.f. F and F* are identical.

THEOREM 5. Let {F.(21, x3)} be a sequence of d.f.’s. Let F1,(x1) and Fy,(x2)
be respectively the marginal d.f.’s determined by F,(x: , x2). Let

M,‘((IJ.‘) = lL.u.b. {Fin(—xi) + 1 - Fin(xi)}

where x; > 0, (¢ = 1, 2). If there exist positive numbers oy and oy such that for

l t; l < a;

(6) lim M;(z;)e''* = 0, G =1,2),
Z; >+

and if {F.(z1, x.)} converges on an everywhere dense set on the (x, x,) plane,

then:
(a) there exists a d.f. F(xy, x2) such that lim F,(x1, x2) = F(x1, x2) at each point

of continuity of F(x1, xs),

(b) there exist two positive numbers 8, and 8, 6; < «a;, such that the m.g.f.’s of
F(x1, x3) and Fo(x1, x2), say o(t1, &) and ¢.(h, &), exist for | ;| < &;, (1 = 1, 2),
(¢) lim @,(t1, &) = o(t1, &) for | t: | < 8, and uniformly in each two-dimensional

interval | ¢ | < B: < 8:, (2 = 1,2).
To prove (a), we notice that there obviously exists a function F(z,, z;), con-
tinous on the right with respect to each variable, satisfying the relation
NF(xy, 2) = F(xi, @) + F(xi, 2) — Flxi, 23) — Fla', @) > 0

4 "
forz; <z ,x < 23 , and such that
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(7) lim F,.(xl, xz) = F(:c1 , xz)

n-—+0

at each point of continuity of F(z;, 22). We shall prove that F(z, x») is a d f.
In fact, it is easy to see that we haveforz; > 0, ( = 1, 2),
(8 F(—mz ’ —3) < F(—m, x) < My(2:1—), F(z, ’ —25) < Mz(xz—):

1 — F(xl N xz) S Ml(xl) + Mg(xz).
Now, according to (6), lim Mi(z;—) = lim M(z)) = 0, (¢ = 1, 2), therefore it

z5—+0 z5—>+00

follows from (8) that F(—w, —®) = F(—», 2;) = F(z1, —«) = 0 and
F(+ o, 4+ ) = 1, which proves that F(z, z,) is a d f.

To prove (b), let ¢i(t;) be the m.gf. of the d.f. Fuu(z:), ({ = 1, 2). Let
Fi(zy) and Fy(x;) be the marginal d.f.’s determined by F(z1 , x2) and let ¢i(¢;) be
the m.g.f. of Fi(z;), (z = 1,2).

Now let N’ > N > 0 and

N? N’ N N
R.(N,N', t,t) = f f EItRR G (21, 25) — f f TN G (3, T2)
L nr J—nN? '—N J—N

S A N A I
N —N
+ f_N' f_m Frvtntrgp (o oa)y =L+ L+ I+ 1.

Applying the Schwartz inequality to I; , we find

N! N 3 N! N 3
(9) Il S <</;V ‘/_‘N' 62““ an> (-/1;' [N' eza;zh dF”>.

But
N’ N N’

(10) f f R (0, ) < f &4 G (),
N —N? N

and similarly
N’ N N

(11) f f R (21, 7)< f &7 ARy (22).
N J-nv N’

Let € be any positive number and v; a positive number less than a; , (7 = 1, 2).
It follows from the proof of the Theorem 1, taking into account (6), that the
integrals representing ¢, (t:) and ¢i(t:), (i, = 1, 2), exist and are uniformly con-
vergent with respect to n and ¢;, when | ¢; | < vi, (0 = 1, 2). Consequently
we have

(12) f AP @) < € f FAF@) < (G =1,2),
[EX D |zg| >N

uniformly with respect to n and ¢; when | ¢ | < v:, (¢ = 1, 2), provided that N is
sufficiently large, say N > N,. Letustake8; = v:/2, (i = 1,2). The integrals
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representing ¢i,(¢:) and ¢i(t;), (4 = 1, 2), are obviously uniformly bounded for all
n and when | ¢ | < v:, (0 = 1, 2), they are all less than some constant C. Con-
sequently taking into account (9), (10), (11), and (12), we find

I, < AV/Ce,

uniformly with respect to n and ¢ when | ¢; | < B8, (¢ = 1, 2), provided that
N’ > N > N,y. Since the same inequality is true for I», I3 and I, we have

(13) R.(N,N',t1, 1) < 44/Cé,

uniformly with respect to n and ¢, when | ¢; | < B;, (¢ = 1, 2), provided N’ >
N > N,. Hence the integral representing ¢,(4 , &) is uniformly convergent for
| t: | < B:, and consequently convergent for | ¢; | < /2, (¢ = 1, 2), since 8;
can be chosen as near to «;/2 as we please.

Similarly, using (12), we could find

(14) R(N,N',t.,t) <44/Ce, |t:| <B:;N' >N 2N,

where
N’ N’ N pN
R(N, Nl, i ,tz) — f '[ ez1t1+zztz dF(xl, 272) - [ f ex1t1+zzt2 dF(xl, xz)-
—N’ J-N’ N J-N

This proves, in turn, that the integral representing ¢(t;, %) is uniformly con-
vergent for | £; | < B; and convergent for |¢;| < ai/2, (¢ = 1, 2). Thus (b) is
proved with §; = @;/2, (¢ = 1, 2). '

To prove (c),let N’ — + « and N = N,in (13) and (14). We obtain

(15) Rn(N07 + °°,t1’t‘2) S 4'\/5‘;’ R(NO’ + °°,t1,tz) S 4'\/5;

uniformly with respect to n and ¢; when | ¢; | < ;.
Clearly, N, can be chosen so that Fi(z;) and Fy(z:) are continuous for z; =
Xy = :’:N 0- Then

No No t1+xzot o Mo t1taot
: X
16) lm f f ST GR (1 ) = f f FUT R ()
n—w v—N) Y—N, —Ng v=Ng

uniformly for | ;| < Bi, (1 = 1, 2).
The relations (15) and (16) prove that
lim ‘Pn(tly t2) = ﬂa(tl; t2)7

n-—r

uniformly for | ¢; | < B:, @ = 1,2). The ordinary convergence obviously holds
for l ts l < ai/2, (l =1, 2)

It follows from the above proof, which refers to the bivariate case, that we
may take 6; = «a;/2, (: = 1, 2),1in (b) and (c).

The existence of the corresponding numbers 6;, 86; < a;, (¢ = 1,2, -+ , k),
in the k-variate case can be easily established by the repeated application of the
Schwartz inequality.
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THEOREM 6. Let o,(ty , &), 0in(ts), Fu(@1, 22), Fin(z:) and Mi(z), (0 = 1, 2),
have ‘the same meaning as in the Theorem 5. If ¢.(ti, &) exist for | ¢ | < ai,
(i =.1, 2), and if there exists a finite valued function o(t1 , &) defined for |t;| < a; ,
such that im on(t, ) = o(t1, &), | ti| < ai,

n—ro0

then
(a) lim M=) %% =0  for|ti| < e, G=1,2),

z§—+00

(b) there exists a d.f. F(xy , ,), such that lim Fo(x1, %) = F(z1, x2) at each point of

continuity of F(x1 , x2),

(c) the m.g.f. of F(xy, x) exists for |t;| < o and is identically equal to (11, t) for
It'l <(1;,(i= 172)7

(d) lim @u(ts, ) = (1, &) uniformly for | t:| < B < as, (1 = 1, 2).

To prove (a), it is sufficient to notice that ¢i(t) = ¢a(t1, 0) and eum(t) =
¢a(0, t;). Consequently we have

lim ‘Pln(tl) = ‘P(tl ’ 0); £1_I£-° Wn(b) = ‘P(07 tZ); l ts I < a, (Z = 1, 2)0
Therefore (a) follows immediately from Theorem 2.

To prove (b), we may notice that according to the Helly principle of selection
applied to the sequence {F.(z1, )}, there exists a subsequence {F,,(z1, z2) 1,
selected from the sequence {F,(z:, x;)} which is convergent to some function
F(z,, x,) continuous on the right and with non-negative second difference.
But F(z; , 22) must be a d.f. according to the Theorem 5, since the relation (6) is
satisfied by the sequence {Fn,(z1, z»)}. Moreover, the limit of the sequence
{@m(t1 , 1)}, namely o(t , &), when considered in a sufficiently small neighborhood
of the origin, is the m.g.f. of F(z, 22). Since the d.f. is uniquely determined by
its m.gf., it follows that every convergent subsequence of {F.(z:, z»)} con-
verges to the same limit F(z, , ) at each point of continuity of F(z:, »). This
is, however, the same as to say that the sequence {F.(2:, z2)} itself converges to
F(x, , 1) at each point of continuity of F(z: , z2).

To prove (c), we have to show that the m.g.f. of F(z1, z2), say o*(ty , ), exists
for |t;| < a;and is equal to o(t1, %), | #;| < ai, (i = 1,2). (Wehave proved that
o*(t, &) = o(t, 1) only for sufficiently small values of | ¢, | and | & [). The
existence of ¢*(t , &) for |t;| < @i, (i = 1, 2), can be easily established by the
method used by Curtiss [1, p. 433]. Suppose indeed that ¢*(#, t») does not
exist at some point (& , %), where | ;| < a;, (1 = 1,2). That means that we
can find a positive number N such that

N N
an [ [, ettmarm, o) > o, &)

Since lim F,(z1, 2)) = F(x1, 72) at all points of continuity of F(z,, z2), and since

n—o0
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N can be so chosen that the marginal d.f.’s Fi(z;) and F»(z,) are continuous for
T = &y = =N, it follows that

. N v t92,+t%z Yoy t021+t%
(18) hmf f LT | O, =f f e GR (2 7).
LN J-N —N J—N

The formulas (17) and (18) give lim ¢,(# , #) > o(fi , &), which is impossible
because lim gan(tl , t2) = qo(tl , tz) for l t; l < a; N (’L = 1, 2)

n—oo

To prove that ¢(t1, &) = ¢*(t1, &) for | ¢ | < a;, (¢ = 1, 2), let (4, &) denote
a fixed point such that | t;| < o, (¢ = 1,2). Clearly, pu(th, th), (n = 1,2, --+),
and ¢*(#; , tty), considered as functions of the variable ¢, are m.g.f.’s provided that
|#:] < ai, @ = 1,2). (See first part of proof of Theorem 4). Now, according
to Theorem 2, the limit of the sequence {¢a(tt: , i;) }, namely o(tt , th), | t: | < ai,
(z =1, 2),is also a m.gf. Since ¢(tt:, t) = ¢*(tt1, t) in a sufficiently small
interval containing the point ¢ = 0, it follows from the uniqueness property of the
m.g.f. in the univariate case that ¢(tt, tt) = ¢*(tt:, tt2) identically for | #; | < a,
(1 =1,2). Puttingt = 1, we find o(ts, &) = ¢*(bi, &), | t:i | < i, G = 1,2).
Thus (¢) is completely proved.

To prove (d), it is sufficient to notice that the sequence {¢.(t: , 2)} is uniformly
continuous in each two-dimensional interval | ¢; | < 8; < i, (1 = 1, 2), (that
is, for any € > 0, there exists a positive number § = §(e) such that

| et 82) — ealti , 82) | < e
if
|6 =& | <8 6| <8, |]<B,G=12, @®=12- ).
Consequently, the sequence {¢n(t; , %)} which is convergent for | ¢; | < §; , must
be uniformly convergent if | ¢; | < 8;, ( = 1, 2).
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