PROBLEMS IN PROBABILITY THEORY

By Hararp CrRAMER
University of Stockholm

1. Introduction. The following survey of problems in probability theory
has been written for the occasion of the Princeton Bicentennial Conference on
“The Problems of Mathematics,” Dec. 17-19, 1946. It is strictly confined to
the purely mathematical aspects of the subject. Thus all questions concerned
with the philosophical foundations of mathematical probability, or with its
ever increasing fields of application, will be entirely left out.

No attempt to completeness has been made, and the choice of the problems
considered is, of course, highly subjective. It is also necessary to point out
explicitly that the literature of the war years has only recently—and still far
from completely—been available in Sweden. Owing to this fact, it is almost
unavoidable that this paper will be found incomplete in many respects.

I. FUNDAMENTAL NOTIONS

2. Probability distributions. From a purely mathematical point of view,
probability theory may be regarded as the theory of certain classes of additive
set functions, defined on spaces of more or less general types. The basic struc-
ture of the theory has been set out in a clear and concise way in the well-known
treatise by Kolmogoroff [53]. We shall begin by recalling some of the main
definitions. Note that the word additive, when used in connection with sets
or set functions, will always refer to a finite or enumerable sequence of sets.

Let w denote a variable point in an entirely arbitrary space Q, and consider
an additive class C of sets in @, such that the whole space Q itself is a member of
C. Further, let P(S) be an additive set function, defined for all sets S belonging
to the class C, and suppose that

P(8) =2 0forall Sin C,
P@Q) = 1.
We shall then say that P(S) is a probability measure, which defines a probability
distribution in Q. For any set S in C, the quantity P(S) is called the probability
of the event expressed by the relation w C 8§, i.e. the event that the variable
point « takes a value belonging to S. Accordingly we write
P(8) = Plw C 8).

Suppose now that o’ = g(w) is a function of the variable point w, defined
throughout the space @, the values o’ being points of another arbitrary space
. Let 8" be a set in @' and denote by S the set of all points w such that o’ =
g(w) belongs to S§’. Whenever S belongs to C, we define a set function P’(S’)
by writing

P'(8) = P(8).
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It is then easy to see that P’(S’) is defined for all S’ belonging to a certain
additive class C” in the new space @/, and that P’(S’) is a probability measure
in @, such that P’(8’) signifies the probability of the event ' < 8’ (which is
equivalent to w C §). We shall say that P’(S’) is attached to the probability
distribution in Q' which is ¢nduced by the given distribution in © and the function

o = g(w).

3. Random variables. Consider in particular the case when «’ is a real
number £, such that § = g(w) is a real-valued C-measurable function of the
argument w. Then (’ includes the class B, of all Borel sets S’ of the space @' =
R, of all real numbers, and we shall call £ a one-démensional real random variable.
The probability of the event § C §’ is uniquely defined for any Borel set S’ of
R, , as soon as the function

F(x) = Pt = )

is known for all real z. F(z) is called the distribution funciion (d.f.) of the
random variable £&. If the function £ = g(w) is integrable over @ with respect
to the measure P(S), we write

Bt = fng(w) dP = f_:xdF(x),

and denote this expression as the expectation or mean value of the random vari-
able £. Any real-valued B-measurable function 4 = h(f) is also a random
variable with the probability distribution induced by the original w-distribution
and the function y = h(g(w)). If 7 is integrable over @ with respect to P, its
mean value may be written in the form

Ey = ER() = fn h(g(w)) dP = [: hz) dF ().

More generally, if o’ = (&, « -+, &) is a point in an n-dimensional Euclidean
space R, , while C’ includes the class B, of all Borel sets of R, , we are con-
cerned with an n-dimensional real random variable. The distribution of this
variable, which is also called the joint distribution of the n one-dimensional

variables &, - -, £, , is uniquely defined, as soon as the joint d.f.
F(x17 ""xn) = P(El éxly "',En éxn)
isknown forall real 2, , -+, Zs .
The variables &, - -+ , £, are said to be independent, if F(zy, - - -, 2,y = F1(x)

-+« Fo(x,), where F,(z,) is the d.f. of the variable &, .

The extension to complex random wvariables is obvious. Suppose e.g. that
¢ = g(w) and 7 = h(w) are two one-dimensional real variables, and consider
the complex variable £ + 79 = g(w) + 7h(w). By definition, we identify the
distribution of this variable with that of the two-dimensional real variable
(& m), and we put

E + 1) = Et + iEn.



PROBLEMS IN PROBABILITY THEORY 167

Joint distributions of several complex variables are introduced in a correspond-
ing way.

4. Characteristic functions. If £ is a one-dimensional real random variable,
the mean value

o(2) = Ee™* = [ ¢ dF (z)

exists for all real 2z, and we have

le@ | =1, ¢0) =1.
¢(2) is called the characteristic function (c.f.) of the distribution corresponding
to the variable £ The reciprocal formula (Lévy)
‘[Z e—izz _ e—izy

z

F@) — F@y) = — ~- lim (@) dz,

21!" Z. Z—0
which holds for any continuity points  and y of F, shows that there is a one-
one correspondence between the d.f. F(x) and the cf. ¢(2). As we shall see
below, the c.f. provides a powerful analytical tool for operations with prob-
ability distributions.

When a complex-valued function ¢(2) of the real variable z is given, it is
often important to be able to decide whether ¢(z) is or is not the c.f. of some
distribution. If we assume a priori that ¢(0) = 1, each of the following condi-
tions is necessary and sufficient for ¢(z) to be a c.f.

A. ¢(2) should be bounded and continuous for all z, and such that the integral

A A .
f f oz — ™™ dz du
o Jo

is real and non-negative for all real  and all A > 0 (Cramér [11], in simplifica-
tion of an earlier result due to Bochner, [4]).
B. There should exist a sequence of functions y1(z), ¥2(2), - - - such that

o2 = lim f_ : Ya( + 2)¥a(z) dx

holds uniformly in every finite z-interval (Khintchine, [45]).

These general theorems are not always easy to apply in practice. Among
less general results which are more easily applicable, we mention the almost
trivial fact that a function ¢(z) which near z = 0 is of the form ¢(z) = 1 4 o(z%)
cannot be a c.f. unless ¢(2) = 1 for all z, and the two following theorems:

1) An integral function ¢(2) of order v < 1 cah never be a c.f. (Lévy, [64]), and

2) an integral function ¢(z) of finite order v > 2 cannot be a c.f. unless the
convergence exponent of its zeros is equal to y (Marcinkiewicz, [72]). The
latter result shows e.g. that no function of the form ¢°*”, where g(2) is a poly-
nomial of degree > 2, can be a c.f.

It would be highly desirable to obtain further results in this direction.
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The c.f. of the joint distribution of n real random variables &, - - - , £, is the
function (21, -- -, 2,) defined by the relation

¢(zl ‘e zn) = Eei('1£1+o-.+2n£n)
b K .

Most of the above results for c.f. in one variable can be directly generalized
to the multi-variable case.

5. Random sequences and random functions. Let ¢ be a variable point in
an arbitrary space T, and consider the space @, where each point w is a real-
valued function o = z(¢) of the variable argument ¢ Let &, ---, t, be any
finite set of distinct points ¢. The set of all functions «w = z(f) satisfying the
inequalities

ai<x(ti) éb,,(j-': 1, 7.'"’):

will be called an #nterval in the space Q. The Borel sets in 2 will be defined as
the smallest additive class B of sets in € containing all intervals.

Suppose now that, for any choice of n and the ¢;, the variables z(4), - - - , ()
are random variables having a known n-dimensional joint distribution. If the
family of all distributions corresponding in this way to finite sequences ¢,
.-+, t, satisfies certain obvious consistency conditions, a fundamental theorem
due to Kolmogoroff asserts that this family determines a unique probability
distribution in the space Q of all functions z(¢). The corresponding probability

P(S) = P(z(t) € 8)

is uniquely defined for all Borel sets S of Q.

Consider in particular the case where T is the set of non-negative integers
{=0,1,2, ---. The space Q then is the space of all sequences (o, Z1, - )
of real numbers. As soon as the joint distribution of any finite number of
variables x,,, ---, %, is defined, and these distributions are mutually con-
sistent, it then follows that there is a unique probability distribution of the
random sequence (%o, %1, ---), the corresponding probability being defined
for every Borel set of the space @ of sequences. Similarly we may consider the
doubly infinite sequence (- -, z_1, &o, L1, «*).

Consider further the more general case when T is any set of real numbers.
Then © is the space of all real-valued functions w = «(f) defined on the set T,
and as before the knowledge of the distributions for all finite sets of variables
z(t), -+, x(t,) permits us to determine a probability distribution in the space
Q of random functions z(t), the probability P(8) = P(z(f) C S) being always
defined for all Borel sets S in Q.

The generalization of the above considerations to complex-valued random
sequences and functions is immediate.

6. Various modes of convergence. Consider a sequence Fi(z), Fa(z), ...
of d.f:s, and let the corresponding c.f:s be ¢1(f), ¢2(f), - -+ . In order that F,(x)
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converge to a d.f. F(x), in every continuity point of the latter, it is necessary
and sufficient' that ¢,(t) converge for every real ¢ to a limit o(f) which is con-
tinuous at ¢ = 0. Then ¢(¢) is the c.f. corresponding to the d.f. F(x).

Further, let z and 21, 72, --- be complex-valued random variables, such
that the random sequence (z, z;, =, ---) has a well defined distribution. We
shall be concerned with various modes of convergence of z, to x.

A. When P(|x, — x| > €) — 0asn — o, for any e > 0, we shall say that
T, converges to x in probability.

B. When E |z, — z | — 0, as n — o, wherey > 0 is fixed, we shall say that
Z, converges to = in the mean of order yv. Unless otherwise stated we shall in
the sequel always consider the case vy = 2, and in this case we shall use the
notation

lim.z, = z.

n—0

C. When P(lim z, = z) = 1, we shall say that 2, converges with probability

one, or converges almost certainly to x.

With respect to the last definition, we may remark that the set defined by
the relation lim x, = z is always a Borel set in the space of our random sequence,
so that the probability of this relation is well defined. In fact, this probability
is given by the expression

lim lim 1imP<|x,, —z| <r—}2 for v=nn+1---,n +p)

Mm-—0 n—00 pP—ro
where the limit process applies to a probability attached to a Borel set in a finite
number of dimensions. The case of almost certain convergence is precisely
the case when this expression takes the value 1.

Convergence in the mean of any positive order, as well as almost certain
convergence, both imply convergence in probability, which may be written
symbolically B — 4 and C — A. Between B and C, there is no simple relation
of this kind. Further, A and B both imply almost certain convergence for any
partial sequence ., , &,,, --- such that the subscripts n; increase sufficiently
rapidly with k.

‘II. PROBLEMS CONNECTED WITH THE ADDITION OF
INDEPENDENT VARIABLES

7. During the early development of the theory of probability, the majority
of problems considered were connected with gambling. The gain of a player
in a certain game may be regarded as a random variable, and his total gain in a

1 As I have already stated in a paper published in 1938, there is an error in the state-
ment of this theorem given in my Cambridge Tract [9] Random Variables and Probability
Distributions. For the truth of the theorem, it is essential that ¢, () should be supposed
to converge to ¢(t) for every real t. However, in the particular case when the limit ¢(¢)
is analytic and regular in the vicinity of ¢ = 0, it can be proved that it is sufficient to assume
convergence in some interval | ¢ | < a.



170 HARALD CRAMER

sequence of repetitions of the game is the sum of a number of independent
variables, each of which represents the gain in a single performance of the game.
Accordingly a great amount of work was devoted to the study of the probability
distributions of such sums. A little later, problems of a similar type appeared
in connection with the theory of errors of observation, when the total error was
considered as the sum of a certain number of partial errors due to mutually
independent causes. At first only particular cases were considered, but gradu-
ally general types of problems began to arise, and in the classical work of Laplace
several results are given concerning the general problem to study the distribution
of a sum

2o =T+ o+ T

of independent variables, when the distributions of the z; are given. This
problem may be regarded as the very starting point of a large number of those
investigations by which the modern Theory of Probability was created. The
efforts to prove certain statements of Laplace, and to extend his results further
in various directions, have largely contributed to the introduction of rigorous
foundations of the subject, and to the development of the analytical methods.
At the same time, more general types of problems have developed from the
original problem, and the number and importance of practical applications
have been steadily increasing.

8. Composition of distributions. Let z; and zz be two independent variables,
with the d.f.’s F; and F, , and the c.f.’s ¢; and ¢, , and let the sum x; + z, have
the d.f. F and the c.f. ¢. Then

e = [ R~ ai) = [ B - 9) dRG).

We shallsay that F is the composition of Fy and F , and write this as a symbolical
multiplication:

P = FyxFy = FyF,.

To this symbolical multiplication of the d.f:s corresponds a real multiplication
of the c.f.s:
o(2) = p1(@)es(2).

The operation of composition is both commutative and associative, so that
any symbolical product F = F; * F, - - - * F, is uniquely defined and independent
of the order of the components. When at least one of the components is con-
tinuous (absolutely continuous), the same holds for the composite, and in
many cases it is true that the composite is at least as regular as the most regular
of the components (Lévy, [58], [63], etc.). However, this general statement
does not hold generally, as is shown by an interesting example due to Raikov,
[77], where F: and F, are integral analytic functions, while the composite F =

F1xF, is not regular at the origin.
It seems to be an important unsolved problem to find convenient restrictions
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ensuring the validity of the above statements of the “smoothing effect” of
the operation of composition.

When F = Fy « F,, we may say that F is “divisible” by each component F,
and F,, and it seems natural to try to develop a theory of symbolical factoriza-
tion for d.f.’s. In this connection, it is important to note that symbolical divi-
sion is not unique. In fact, Khintchine has shown by an example that it is
possible to find the d.f.’s F, Fy, F,, and Fs such that

F=F1*F2=F1*F3,

while F; # F3. Another fundamental problem belonging to this order of ideas
is to decide whether a given d.f. F is decomposable or not. F is called decom-
posable, if there is at least one representation of the form F = F; * F,, where
each component F, has more than one point of increase. So far, this problem
has only been solved in very special cases, and the general problem still re-
mains open for research. A particular case of some interest would be to know
if there exists an absolutely continuous and indecomposable d.f., such that
F(a) = 0 and F(b) = 1 for some finite a and b.

As soon as we restrict ourselves to certain special classes of distributions,
it is possible to reach results of a more definite character concerning the factori-
zation problems. Some results of this type will be considered below.

9. Closed families of distributions. The fact that certain families of dis-
tributions are closed with respect to the operation of composition has played
an important part in many applications. If F; and F, belong to a family of
this character, so does the symbolical product F = F, % F,. We first give some
simple examples of such families.

The normal distribution. The d.f. F has the form F = ¢(x ; m> , Where
¢ > 0, and )

1 z
o(x) = \/—5; [n e—(z2/2) dt.

miz—4o222

The c.f. corresponding to F is ¢ , and it follows that for any real m, ,

me and any positive o1 , o2 we have
T —m T — me z —
o (75) = (5 = o (5,
g1 g2 ag

2 2 2
m = m + mg, o =901+ o2.

The Poisson distribution. Here the d.f. is F = F(x; A\, m, a) where A > 0,

where

a # 0, and F is a step-function with a jump equal to )i' ¢ in the point z =
V.

m -+ va, where » = 0, 1, ---. The corresponding c.f. is e™*™“*** and it
follows that for any fixed a we have

Flx; M, m, a) * F(z; M, me, 0) = F(@; M + Ny, ma + ma, a).
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by x
The Pearson Type TIT distribution. F = F(z; a, \) = %\—) f Plemet gy,
0

L\ =\
(x > 0). The corresponding c.f. is (1 — z_z) , and for any fixed @ > 0 and any
a

positive A; and A, we have
F(II, a, )\1) * F(Z, a, )\2) = F(x, a, M + )\2)

Stable distributions. We shall say that a closed family is stable, when all
its members are of the form F(ax + b), where F is a d.f., while @ > 0 and b are
constants. Obviously the normal family is an example of a stable family. It
has been shown by Lévy and Khintchine [49], that a d.f. F{x) generates a stable
family when and only when the logarithm of its c.f. is of the form

(9.1) log o(2) = Biz — v | 2" (1 + ial—z-l w),
where o, 8, v, § are real constants such that
0<a=2 v >0, |é| =1,
while
tg%” for a#1
w =

gloglzl for a« = 1.
T

For a = 2 we obtain the normal family.

A more general and very important closed family is the family I of infinstely
dimsible distributions. A d.f. F belongs to I if to every n = 1, 2, --- there
exists a d.f. @ such that F = G™ where G™ denotes the symbolical nth power
of G. Obviously the family I is a closed family which contains all the families
mentioned above. Lévy [60], [63], has shown that F is infinitely divisible when
and only when the logarithm of its c.f. is of the form

— s 2 0 izu 12U >
log o(2) = piz — v + [ (¢ =1 - 1 2) am

2 e 12U
+fo (e —1——1+u2>dN(u),

where 8 and ¥ > 0 are real constants, while M (u) and N(u) are non-decreasing
functions such that

(9.2)

M(=w) = N(+=) = 0,
fou2dM(u) < o and j:usz(u) <

for any finite @ > 0. When M and N reduce to zero, we obtain the normal
family. When v = 0 and one of the functions M and N reduces to zero, while
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the other is a step-function with a single jump equal to X at the point 2 = a,
we obtain a Poisson family. Generally, it follows from (9.2) that any infinitely
divisible distribution may be regarded as a product of a normal distribution
and a finite, enumerable or continuous set of Poisson distributions.

The representation of log ¢(2) in the form (9.2) is unique. It follows that
the problem of finding all possible factorizations of an infinitely divisible d.f. 7'
can be completely solved, as long as we restrict ourselves to factors which are
themselves infinitely divisible. In fact, in order that A

F = FI*F27

where all three d.f.’s belong to I, it is necessary and sufficient that the logarithms
of the corresponding c.f.’s should be of the form (9.2), with

B =pH + 8, Y =7+ v,
M=M1+M2, N=N1+N2.

In the two simple cases of the normal and the Poisson distributions, the
decompositions obtained in this way remain the only possible, even if we remove
the restriction that the factors should belong to I. Thus in any factorization
of a normal distribution, all factors are normal (Cramér, [8]), while in any fac-
torization of a Poisson distribution, all factors belong to the Poisson family
(Raikov, [75]). For the type III distribution, and the non-normal stable dis-
tributions, however, the corresponding property does not hold.

In some cases, an infinitely divisible distribution may be represented as a
product of indecomposable distributions, or as a product of an indecomposable
distribution and another infinitely divisible distribution. The results so far
obtained in this direction (Lévy, [63], [64], Khintchine, [46], [47]; Raikov, [76])
are all concerned with more or less particular cases, and the general factoriza-
tion problem for infinitely divisible distributions still remains unsolved. A
particular case of some interest would be the case when the functions M and N
are both absolutely continuous. There does not seem to have been given any
example of this type, where a factor not belonging to I may occur.’

Finally we mention a general theorem due to Khintchine, [46], which asserts
that an arbitrary d.f. F may be represented in one of the forms

F =d, F=HorF =(G=xH,

where @ is infinitely divisible, while H is a finite or infinite product of inde-
composable factors. This seems to be practically the only result so far known
concerning the factorization of a general distribution.

A certain number of the results mentioned above have been generalized to
multi-dimensional distributions.

2While the present paper was being printed, I have proved that such factors do occur,
as soon as at least one of the derivatives M’ and N’ is bounded away from zero in some
interval (—a, 0) or (0, a).
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10. The Laws of large numbers. In modern terminology, the classical
Bernoulli theorem may be expressed in the following way. Let «;, 22, -+ be
a sequence of independent variables, such that each z, may only assume the
values 1 and 0, the corresponding probabilities being p and ¢ = 1 — p. Then
the arithmetic mean
Zn _ Tt o A Ta

(10.1) - -

converges in probability to p, as n — .

Both classical and modern authors have laid down much work on the gen-
eralization of this simple result in various directions. Generally, we shall say
that a sequence of random variables z;, 2, - - - satisfies the Weak Law of Large
Numbers if there exist two sequences of constants a;, az, --- and by, be, ---,
such that a, > 0, and

Zn —ba _ Tt s - Th — b
Qn Qan

converges in probability to zero.

Let z,, 2, - -- be independent variables, such that z, has the d.f. F,(z).
It has been shown by Feller [27] that for any given sequence a1, az, -+ , the
conditions

ZLmjmw=mx

ve=1

(10.2) )
> [ Sar@ = o),
|z] <an

ye=1

are sufficient for the validity of the weak law of large numbers, and that the
corresponding sequence by, bs, - -+ can be defined by

b= f © dF,(@).
|z] <an

ye=1
When there ts a constant ¢ > 0 such that for all v
(10.3) F,(+0) > ¢, F,(-0) <1 — ¢,

the conditions are also necessary. This theorem contains as particular cases
all previously known results in this direction. A simple NS condition for the
existence of at least one sequence a; , @z, - - - such that 10.2 holds does not seem
to be known.

When the weak law is satisfied, this means that, for any given ¢ > 0 and for
any fixed large n, there is a probability very near to 1 that the sum 2z, = =z, +
.+ + z, will fall between the limits b, = ea, . The more stringent condition
that, with a probability tending to 1 as n — <, 2, will fall between the limits

Zn — bn

con-

b, = ea, for all values of v = n is equivalent to the condition that

Qn
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verges almost certainly to zero. When this holds, we shall say that the variables
z, satisfy the Strong Law of Large Numbers. The most important result so far
known in this connection is concerned with the case a, = 7, and is expressed
by the following theorem (Kolmogoroff, [52], [55]):

When the z, are independent and (10.3) holds, a sufficient condition for the valid-
ity of the strong law with a, = n consists in the simultaneous convergence of the
two series

[ @ wd 35 [ R,
lz]>» N Jlz| < n
Some improved conditions of this type have been given by Marcinkicwicz
and Zygmund, [73], but the problem of finding a NS condition for the strong
law is still unsolved, even in the case a, = n.
Important generalizations of the laws of large numbers to cases when the
z, are not assumed to be independent have been given i.a. by Khintchine [44],
Lévy [62], [63] and Logve [67].

11. The central limit theorem and allied theorems. It was already known
to De Moivre that; in the case 10.1 of the Bernoulli distribution, the d.f. of
the normalized sum

Tt + T —np
V'npg

tends, as n — «, to the normal d.f. ¢(x). Considerably more general results
in this direction were stated by Laplace. After a long series of more or less
suceessful attempts, a rigorous proof of the main statements of Laplace was
given in 1901 by Liapouncff, [65]. More general cases were later considered i.a.
by Lindeberg [66], Lévy [61], [63], Khintchine [43] and Feller, [25]. The follow-
ing final form of the Central Limit Theorem is due to Feller.

Consider the expression

zn—bn_x1+"'+xn_bn
- )

Qn Qn

(11.1) Up =

where the z, are independent variables. We shall say that the z, obey the
central limit law, if the sequences {a,} and {b,} can be found such that the
df. of u, tends to ¢(x) as n — . In order to avoid unnecessary comphca-
tions, we shall restrict ourselves to sequences {a,} such that

A1
ay — + o, — =1,

ay

and we shall assume that the conditions (10.3) are satisfied. Then Feller’s
theorem runs as follows:
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The independent variables xy , xp , - - - obey the central limit law if, and only if,
there exists a sequence g, — « such that simultaneously

n

% ~/;=|>q” dFy(@) =0,

v=1

(11.2) -
—15 Z[ 22 dF,(x) — .
|| <an

n V=1
When these conditions are satisfied, explicit expressions for the a, and b, can be
obtained.

Feller’s theorem gives a complete solution of the problem. However, we
might still try to express in a more direct way the condition that the g, should
exist. We may also ask what happens when the conditions (11.2) are not
satisfied. Some particular cases of the latter question will be considered below.
However, very few general results are known in this direction.

The' central limit theorem has been extended in various directions. Bern-
stein [3], Lévy [62], [63], Logve [67] and others have considered cases where the
z, are not assumed to be independent. Important results have been reached
but still much remains to be done.

On the other hand, several authors have considered symmetrical functions,
other than sums, of n independent random variables. The problem of investi-
gating the asymptotic behaviour of the distributions of such functions, as n
tends to infinity, is of great importance in the theory of statistical sampling
distributions. It is known (c.f. e.g. Cramér, [15]) that under certain general
regularity conditions there exists a normal limiting distribution. However, it
is also known that it is possible to give examples of particular functions (such
as e.g. the function which is equal to the largest of the n variables), where there
exist limiting distributions which are non-normal. The conditions under
which this phenomenon may occur seem to deserve further study.

A further problem belonging to the same order of ideas is to find a closer
asymptotic representation of the d.f. of the standardized sum z, than that pro-
vided by the normal function ¢(x). Consider e.g. the simple case when the z,
are independent variables all having the same d.f. F(x) with a finite mean m, a
finite variance ¢°, and finite moments up to a certain order & = 3. Let G,(x)
be the d.f. of the variable

2+ +x, —nm
oV/n '
It then follows from a theorem of Cramér [5], [9] that, as soon as the d.f. F(z)
contains an absolutely continuous component, there is an asymptotic expansion

(11.3) Gu(e) = o(2) + ’i &) motin gm0y,

nv/ 2

where the constant implied by the O is independent of n» and x. Cramér has
also given similar expansions in more general cases, and his results have been



PROBLEMS IN PROBABILITY THEORY 177

further extended by P. L. Hsu [39], who deduces analogous expansions also for
other functions than sums. The most general conditions under which expansions
of this type exist are still unknown.

It follows from (11.3) that the difference G.(x) — ¢(z) is, for any fixed z,
of the order n? as n — . It is often important to know the asymptotic
behaviour of G,.(x) when n and z increase simultaneously, and in that case (11.3)
yields only a trivial result. This case has been investigated by Cramér [10],
and Feller [29], and the results so far obtained permit important applications to
the so called law of the iterated logarithm (cf. below). However, it seems likely
that similar results may be obtained in considerably more general cases than those
hitherto investigated. )

A further interesting type of problems belonging to this order of ideas may
be approached in the following way. Consider the variables (11.1) in the par-
ticular case when z,, #,, --- are independent variables all having the same
d.f. F(z). When the a, and b, can be found such that the d.f. of the normalized
sum u, tends to ¢(x), we shall say that F belongs to the domain of attraction of
the normal law. Feller’s theorem gives a NS condition that this should be so.
Now when this condition is not satisfied, it may still occur that the a, and b,
can be so chosen that the d.f. of u, tends to a limiting d.f. ¥(z), which is neces-
sarily different from ¢(zx). Then it is easily seen that ¥(x) must be a stable
distribution, with its c.f. defined by (9.1), and it is natural to say that F belongs
to the domain of attraction of ¥. NS and sufficient conditions that this should
hold have been given by Doeblin [16], and Gnedenko [34]. When the a, and
b, cannot be found such that the d.f. of the normal sum , converges to a limit,
it may still be possible to obtain a limiting d.f. by considering only a partial
Sequence Un, , Un,, * . Khintchine [47] has proved the interesting theorem
that the totality of limiting d.f.’s that may be obtained in this way coincides
with the class of infinitely divisible d.f.’s defined by (9.2). There are also
further results in the same direction given by Bawly [2], Khintchine [44], Lévy,
[61]-[63], and Gnedenko, [35].

12. The law of the iterated logarithm. Consider a sequence of independent
variables z; , ¥, - - - , such that the mean Ez, = 0 for all n, while the variances
Ex® = o° are finite. Put s’ = o] + -+ + o* , and suppose that the variables
obey the central limit law with a, = s., b, = 0. (In particular this will be
the case when all z, have the same distribution.) For any function ¢(n) tending
to infinity with n we then have

(12.1) lim P(] 2z, | > s.¢(n)) = 0.

On the other hand, if ¥(n) tends to a finite limit > 0, the same probability
has a positive limit.

It seems natural to consider thé relation within the brackets in (12.1) not
only for a single large value of n, but to require the probability that this relation
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holds simultaneously for an infinite number of values of n. The development
of this problem has led to the so called law of the iterated logarithm.

We shall in this respect use the following terminology due to Lévy. A non-
decreasing positive function ¢(n) will be said to belong to the lower class with
respect to the variables z, if, with a probability equal to one, there are infinitely
many n such that

| 2a| > s,.glx(n).

On the other hand, ¥(n) will be said to belong to the upper class if the prob-
ability of the same property is equal to zero.

Every y(n) belongs to one of these two classes. This is a special case of the
so called null-or-one law: if S is a Borel set in the space of the independent random
variables x;, 23, - - - , such that any two points differing at most in a finite num-
ber of coordinates either both belong to S or both belong to the complementary
set, then P(S) can only assume the values 0 or 1.

It was proved by Kolmogoroff [51] that, subject to certain restrictions, the
function

¥(n) = A/clog log s.

belongs to the lower class for any ¢ < 2, and to the upper class for any ¢ > 2,
which may be expressed by the relation

12.1 P(lim sup ———22 = 1> =1.
(12.1) ps,. \/210glogs,.

More general results were proved by Feller [30], who proved i.a. that, subject to
certain restrictions, ¥(n) belongs to the lower or upper class according as

2
(12.2) 25 Yme VO

n

is divergent or convergent (in certain special cases, this had been previously
found by Kolmogoroff and Erdos [24]. Feller also proved a more compli-
cated result, which contains the above as a particular case, and from which
it follows that the simple criterion (12.2) no longer holds when the restrictions
imposed in its proof are removed.

13. Convergence of series. For any sequence of random variables z,, the
probability

P (E Ty (wnverges)
1

has a uniquely determined value. When the z, are independent, it follows from
the null-or-one law that this probability is either 0 or 1. By a theorem of
Khintchine and Kolmogoroff [48], the value 1 is assumed when and only when
the three series
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are convergent, where

z, when |z,| = 1.
Yn =
0 when |z.|> 1.
For the case when the z, are not assumed to be independent, various results
have been given by Lévy [63] and others, but our knowledge of the properties
of these series is still not very advanced.

14. Generalizations. In several instances it has been pointed out above
that the results concerning sums of independent variables may, to a certain
extent, be extended to cases when the variables are not independent. Generally
the independence condition has then to be replaced by scme condition restricting
the degree of dependence. Results of this type were first give by Bernstein
[3], and then in more general cases by Lévy [62], [63], and Loéve [67]. However,
this field has so far only been very incompletely explored.

Similar remarks apply to the generalization of the various theorems quoted
above to cases of variables and distributions in more than one dimension.

III. STOCHASTIC PROCESSES

16. The theory of random variables in a finite number of dimensions is able
to deal adequately with practically all problems considered in classical prob-
ability theory. However, during the early years of the present century, there
appeared in the applications various problems, where it proved necessary to
consider probability relations bearing on infinite sequences of numbers, or even
on functions of a continuous variable.

The mathematical set-up required for the study of such problems involves
the introduction of probability distributions in spaces of random sequences or
random functions (cf. 5 above). Generally, any process in nature which can be
analyzed in terms of probability distributions in spaces of these types will be
called a stochastic process. It is convenient to apply this name also to the prob-
ability distribution used for the study of the precess. We shall thus say, e.g.,
that a certain random function z(¢) is attached to the stochastic process which
is defined by the probability distribution of z(f). In the majority of applica-
tions, the variable ¢ will represent the time, and we shall often use a terminology
directly referring to this case. However, there are also other types of problems
in the applications (¢ may e.g. be a spatial variable in an arbitrary number of
dimensions), and it is obvious that the purely mathematical problems connected
with these classes of probability distributions will have to be considered quite
independently of any concrete interpretation of the variable ¢or the funcion xz(f).

A well-known example of this type of problems is afforded by the Brownian
movement. Let 2(f) be the abscissa at the time ¢ of a small particle immersed
in a liquid, and subject to molecular impacts. In every instant, the quantity
x(f) receives a random impulse, and the problem arises to study the behaviour
of z(f). According as we are content to consider z(t) for a discrete sequence
of t-points, say for ¢t =0,1,2, - - -, or we wish to consider all positive values of ¢,



180 HARALD CRAMER

we shall then have to introduce a probability distribution in the space of the
random sequence z(0), x(1), ---, or in the space of the random function z(%),
where ¢ > 0. We may then discuss such questions as the distribution of z(¢)
for a given value of ¢, the joint and conditional distributions of x(¢) for two cr
more values of ¢, and, in the case of a continuous variable ¢, continuity, differen-
tiability and other similar properties of the random function x(¢).

Wiener [82], [83] (cf. also Paley and Wiener [74]) was the first to give a rigorous
treatment of this process. He proved in 1923 that it is possible to define a
probability distribution in a suitably restricted functional space, such that the
increment Ax(f) = z(t + Af) — z(¢) is independent of z(f) for any At > 0.
With a probability equal to 1, the function x(f) is continuous for all ¢ > 0, and
for any fixed ¢ > 0, the random variable () is normally distributed.

Another example of stochastic processes studied at this stage occurs in the
theory of risk of an insurance company. Let z(f) denote the total amount
of claims up to the time ¢ in a certain insurance company. As in the case of
the Brownian movement, it may seem natural to assume that the increment
Az(?) is independent of z(f). On the other hand, x(¢) is in this case an essen-
tially discontinuous function, which is never decreasing, and increases only by
jumps of varying magnitudes occurring for certain discrete values of ¢, which are
not a priori known. Processes of this type were studied by F. Lundberg [69],
[70], H. Cramér [6] and others.

Further examples of particular processes were discussed in connection with
various applications, but no general theory of the subject existed until 1931,
when Kolmogoroff published a basic paper [563] dealing with the class of stochastic
processes which will here be denoted as Markoff processes (Kolmogoroff uses the
term ‘‘stochastically definite processes’”), of which the two examples mentioned
above form particular cases. The theory of this class of processes was further
developed by Feller [26], [28]. In 1934, Khintchine [42] introduced another
important class of processes known as stationary processes. From 1937, the
general theory of the subject was subjected to a penetrating analysis in a series’
of important works by Doob [18]-[22].2

16. Probability distributions in functional spaces. We have seen in 5
above how a probability distribution in the space of all functions x(f) may be
defined, when ¢ varies in an arbitrary space T. Generally, we shall here con-
tent ourselves to consider the cases when T is the set of all real numbers, or the
set of all non-negative real numbers. Most results obtained for these cases
will be readily generalized to cases when ¢ varies in a Euclidean space of a finite
number of dimensions. On the other hand, when T is enumerable, say consist-
ing of the points ¢ = 0, =1, 2, - - -, so that we are concerned with a random
sequence z(0), z(%1), - , the results for the continuous case will generally
hold and assume a simpler form which will not be particularly stated here.

3 A further interesting paper by Doob has appeared while the present paper was being
printed: “Probability in function space”, Bull. Amer. Math. Soc., Vol. 53 (1947), pp. 15-30:
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The case when T is a space of an infinite number of dimensions does not seem
to have been considered so far.

In the present paragraph, it will be convenient to assume the function ()
to be real-valued, but the generalization to a complex-valued z(f) requires
only obvious modifications. In the sequel we shall sometimes consider the
real-valued and sometimes the complex-valued case, according as the occasion
requires.

Let now X be the space of all real-valued functions z(¢) of the real variable
t, where — o < ¢t < «. According to 5, a probability measure P(S) is uniquely
defined for all Borel sets S in X by means of the family of joint distributions
of all finite sequences z(t), - -+ , (f,). In fact, P(S) can be defined for a more
general class of sets than the Borel sets. For any set S in X, we may define
an outer P-measure P(S) as the lower bound of P(Z) for all sums Z of finite or
enumerable sequences of intervals, such that 8 C Z. Further, the inner P-
measure P(S)is defined by the relation P(S) = 1 — P(X — S). When the
outer and inner measures are equal, S is called P-measurable, and P(S) is defined
as their common value. Any P-measurable set differs from a Borelset by a
set of P-measure zero.

In many cases, this definition will be sufficient for an adequate treatment
of the problems that we wish to consider. However, in other cases we encounter
certain characteristic difficulties, which make it desirable to consider the pos-
sibility of amending the basic definition. Thus it often occurs that we are
interested in the probability that the random function z(f) satisfies certain
regularity conditions in a non-enumerable set of points ¢. We may, e.g., wish
to consider the probability that z(¢) is continuous for all ¢, that z(¢) should
be Lebesque-measurable for all ¢, that 2(f) < k for all ¢, etc. Let S denote the
set of all functions satisfying a condition of this type. It can then be shown
that the inner measure P(S) is always equal to zero so that S is never measur-
able, except in the (usually trivial) case when P(S) = 0.

Consequently many interesting probabilities are left undetermined by the
general definition of a probability distribution in X given above. The pos-
sibility of modifying the definition so as to enable us to study probabilities of
this type has been thoroughly investigated by Doob [18]. He considers a
subspace X, of the general functional space X, where X, is chosen so as to
contain only, or almost only, “desirable” functions, i.e. functions satisfying
such regularity conditions as seem natural with respect to the problem under
investigation. We start from a given probability measure P(S) in X, and ask
if it is possible to define a probability measure in the restricted space X, , which
corresponds in some natural way to the given distribution in X. Let Sy be
a set in X, , and suppose that it is possible to find a P-measurable set S in X
such that SX, = S,. According to Doob, a probability measure P, in X,
is then uniquely defined by the relation

Po(8) = P(8)
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if and only if the condition
P (Xo) =

is satisfied.

The problem is thus reduced to finding a subspace X, of outer P-measure 1,
such that X, contains only functions of sufficiently regular behaviour. When
this can be done, we can restrict ourselves to consider only functions z(£) be-
longing to X, , the probability distribution in this space being defined by the
measure Py. We shall then say that 2(¢) is a random function, attached to a
stochastic process with the restricted space X,. Doob has obtained a great
number of interesting results in this connection, e.g. with respect to the problem
of choosing X, such that it contains almost only Lebesque-measurable functions,
or such that the probability of the relation 2(f) < ‘k has a well-defined value for
all k. In particular he has shown that the last problem can be solved for
any given P-measure. However, our knowledge of the various possibilities
which exist with respect to the choice of X is still very incomplete, and it seems
likely that further important results may be reached along this line of research.

An alternative method of introducing probability distributions in functional
spaces has been used by Wiener [82], [83], (cf. also Paley and Wiener, [74]).
Consider a given probability measure I in an arbitrary space @, defined for all
sets 2 of an additive class C. Let (¢, w) denote a function (real- or complex-
valued, as the case may be) of the arguments ¢ (real) and w (point in ), such that
z(t, w) for every fixed ¢ becomes a C-measurable function of w. On the other
hand, when  is fixed, (¢, ) = z(¢) reduces to a function of the real variable ¢.
Let X, denote the set of all functions xz(¢) corresponding in this way to points of
Q. Further, let S, = SX,, where S is a Borel set in X, and let = denote the set
of all points w such that z(¢, w) < S,. Then = belongs to C, and a probability
measure Py in the functional space X, is uniquely deﬁned by the relation

(16.1) Py(Sy) = TI(Z).

The relations between the two modes of definition have been discussed by
Doob and Ambrose [23] who have shown that they are largely equivalent.
However, it seems likely that in particular problems the ane or the other pro-
cedure may sometimes be the more advantageous, and further investigations
on this subject seem desirable.

17. Processes with a finite mean square. Consider a stochastic process
defined by a probability measure P(S) in the space X of all complex-valued
functions z(¢) of the real variable ¢{. For any fixed # , the random variable
z(t) is then a complex-valued function of the variable point z(¢) in the space
X, i.e. a point Q,, in the space @ of all complex-valued functions defined on X.
When #, varies, the point Q,, describes a “curve” in Q, which then corresponds
to our stochastic process.
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Suppose, in particular, that the mean square
Elz@) [ = [ o) P
X

is finite for any fixed value of ¢. This implies that for fixed ¢ the function
z(t) belongs to L, over X, relative to the probability measure P. The random
variable z(¢) may then be regarded as an element of the Hilbert space H of all
complex-valued functions f belonging to L, over X, the inner product (f, g) of
two elements f and g being defined by the relation

0 = [9aP = EG).

The stochastic process to which x(#) is attached then corresponds to a ‘“curve”
in H (Kolmogoroff, [56], [57]), so that the well-known theory of Hilbert space is
available for the study of the process. In particular, convergence in the usual
metric of Hilbert space is equivalent to convergence in the mean of order 2 for
random variables.

Let H, be the smallest closed linear subspace of H which contains all elements
of the form ax(t) + -+ + a.x(t,). If the covariance function

rit,u) = (@), z(w) = E@@®)z(w)

is continuous for all real values of ¢ and u, then x(f) — z(f) in the mean, as
¢t — &, , and we shall say that the process z(t) is continuous. For any continuous
process, H., is separable. When g(¢) is a continuous non-random function of ¢,
and z(¢) is attached to a continuous stochastic process, the Riemann-Darboux
sums formally associated with the integral

fa " o(0(t) dt

are easily shown to tend to a limit y, which is an element of H,, i.e. a random
variable. By definition, we may identify the integral with this variable y,
and this integral will possess the essential properties of the ordinary Riemann
integral (Cramér, [12]).

The application of the theory of Hilbert space to stochastic processes seems
to open very interesting possibilities. Some applications to particular classes
of stochastic processes will be mentioned below. Futher important results be-
longing to this order of ideas will be given in a work by K. Karhunen [40], which
is in course of publication.

18. Relations to ergodic theory. There is a close connection between the
theory of stochastic processes and ergodic theory. In ergodic theory, as sum-
marized e.g. in the treatise of E. Hopf [38], we consider an arbitrary space €,
and a probability measure II, defined for all sets = belonging to the additive
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class C. We further consider a one-parameter group of one-one transformations
of Q into itself (a “flow” in Q) such that the transformation corresponding to
the parameter value ¢ takes the point w = w, into w,, while (w)y, = wiyu. Let
f(w) be a given function, defined throughout 2, and such that f(w,) is C-measur-
able for every'fixed ¢. The well-known ergodic theorems due to von Neumann,
Birkhoff, Khintchine and others are then concerned with the asymptotic
behaviours of mean values, which in the classical cases are of the types

f(wo) + f(wl) '+4 R f(wn—l)

n

or
1 T
T ‘/‘; f(“’t) dty

as n or T tends to infinity. (In the case of the latter expression, it is necessary
to introduce some additional condition implying measurability in ¢.)

Writing z(Z, w) = f(w,), it is seen that to a given transformation group w — w,
and a given function f(w), there corresponds a stochastic process in the sense of
Wiener’s definition (cf. 16). The space X, of this process consists of all functions
x(f) representable in the form z(f) = f(w:), when w = w, varies over 2. The
corresponding probability measure P, is defined by (16.1).

Thus any of the above-mentioned ergodic theorems may be expressed as a
theorem concerning “‘temporal’”’ mean values of the types

z(0) + z(1) +--- + 2(n — 1)

n

%, fo "0 dt.

If, according to some reasonable convergence definition, we may assign a limit
to either of these expressions, as n or T tends to infinity, this limit will be a
random variable, and it is important to find conditions which imply that this
variable has a constant value for “almost all” functions z(¢), i.e. for all z(¢)
except at most a set of Py,-measure zero.

In the particular case when z(0), x(1), --- are independent variables all
having the same distribution, the classical ergodic theorems yield simple cases
of the laws of large numbers (cf. 10). The mean ergodic theorem of von Neu-
mann gives the weak law, while the Birkhoff-Khintchine theorem gives the
strong law. Some more general results belonging to this order of ideas will be
mentioned in the sequel.

It will be seen that the two theories are largely equivalent, and it seems
likely that further comparative studies of the methods will be of great value to
both sides.

or

19. Markoff processes. Consider now a stochastic process, defined by a
probability measure P(S) in the space X of all real-valued functions z(¢) of the
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real variable . For any #; < #, there is a certain conditional probability
P(x(t) € S|z(#) = a1) of the relation z(;) C S, relative to the hypothesis
that 2(4) assumes the given value a; . Suppose now that this conditional prob-
ability is independent of any additional hypothesis concerning the behaviour of
z(t) for ¢t < &, so that we have e.g. for any ¢, < # < & and for any ay

P@(t) <€ S|z(t) = a) = P(t) € S|z(h) = a1, z(t) = ao).

In this case the process is called a Markoff process.

The general theory of this type of processes, which forms a natural gen-
eralization of the classical concept of Markoff chains, has been studied in basic
works by Kolmogoroff [53] and Feller [26], [28]. Writing

P(.’l?(t) é Elx(to) = ao) = F(E) t: Qo , tﬂ))

where t < ¢, F will be the distribution function of the random variable z(?),
relative to the hypothesis z({) = ay. Then F satisfies the Chapman-Kol-
mogoroff equation

(191) F(E>t’ Qo , tﬂ) = j; F(E,t, 7, tl) dﬂF(‘”) tl) Qo , tﬂ))

which expresses that, starting from the state x(fy) = ao, the state z(f) < &
must be reached by passing through some intermediate state z(#;) = 7, where
to < t < t. Subject to certain general conditions, it is possible to show that
any solution of this equation satisfies certain integro-differential equations,
which in some important cases reduce to partial differential equations of para-
bolic type, and that the d.f. F is uniquely determined by these equations. How-
ever, the general conditions mentioned above are in many cases difficult to apply
to particular classes of processes, and it would be important to have further
investigations concerning these questions. i

Markoff processes (not belonging to the subclass of differential processes,
which will be considered in the following paragraph) appear in several important
applications, e.g. in the theory of cosmic radiation, in certain genetical problems,
in the theory of insurance risk etc. In these cases, we are often concerned with
the class of purely discontinuous Markoff processes, where the function z(f)
only changes its value by jumps. If, in addition, there are only a finite or
enumerable set of possible values for z(f), the Chapman-Kolmogoroff equation
(19.1) reduces to
(19.2) mir(lo , £) = 72 mii(lo, t)mir(ty, 1),
where 74(t , t) denotes the “transition probability”, i.e. the probability that
z(¢) will be in the kth state at the time ¢, when it is known to have been in the
ith state at the time {, . In matrix form, this equation may be written

(19.3) Ot , t) = Mt , )4, 1),

where II denotes the matrix of the =y .
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When only a sequence of discrete values of ¢ are considered, we have here
the classical case of Markoff chains, which has received a detailed treatment
in the well-known book by Fréchet [32] (cf. also Doob, [19]). The, case when ¢
is a continuous variable has been treated by Feller [28], O. Lundberg [71],
Arley [1], and other authors. Some of the most important problems of this
branch of the subject are concerned with the existence of a unique system of
solutions of (19.2) or (19.3), and with the asymptotic behaviour of the solu-
tions for large values of ¢ — f, . Though important results have been reached,
there still remains much to be done here, and the same thing holds a fortiori
with respect to the analogous problems for general Markoff processes.

20. Differential processes. A particularly interesting case of a Markoff
process arises when, for any At > 0, the increment Axz(f) = 2(t + Af) — z(t)
is independent of z(r) for r < t. The process is then called a differential process.
Some of the earliest studied stochastic processes belong to this class, which
contains in particular the two.examples discussed above in 15. Further cases
of such processes arise e.g. in the theory of radioactive disintegration and in
telephone technique.

Let us suppose that x(0) is identically equal to zero, and that the process is
uniformly continuous in probability in every finite interval 0 < t = T,1ie.
that for any fixed positive e

P(lz@t+ A) —z(®) | > & —0

as At — 0, uniformly for 0 < ¢t < T. Then it follows from the works of Lévy,
[60], [63], Khintchine [47] and Kolmogoroff [54] that, for any ¢ > 0, the random
variable z(¢) has an infinitely divisible distribution, with a characteristic func-
tion ¢(z; {) given by (9.2), where 8, v, M (u) and N(u) may depend on ¢.

In the particularly important case when the distribution of the increment
z(t + Af) = z(f) does not involve ¢, but only depends on the length At of the
interval, we say that the process is temporally homogeneous, and in this case
we have

log o(z; ) = tlog o(z; 1),

50 that we obtain the general formula for ¢(z; ) simply by replacing in (9.2)
B, v, M(u) and N(u) by 8, tv, tM(w) and tN(u) respectively.

When ¢ — «, or t — 0, the appropriately normalized distribution of x(¢)
tends, under certain conditions, to a stable distribution (Cramér [7], Gne-
denko [36]). When this limiting distribution is normal, there are sometimes
even asymptotic expansions analogous to (11.3). Still, the problem of the
asymptotic behaviour of the distribution for large ¢ does not seem to be definitely
cleared up.

Khintchine [41] and Gnedenko [37] have given interesting generalizations
of the law of the iterated logarithm (cf. 12) to processes of the type considered
here.
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The continuous process discussed in 15 in connection with the Brownian
movement corresponds to the temporally homogeneous case when 8, M(u) and
N (u) all reduce to zero, so that

oe) = e,
which shows that the distribution of x(f) is normal, with mean zero and vari-
ance 2vt.

On the other hand, in the applications to the theory of insurance risk, v is
zero, while M(u) and N(u) are connected with the distribution of the various
magnitudes of claims. In this type of applications, it is often very important
to find the probability that z(#) satisfies an inequality of the form

z(t) < a + bt

for all values of ¢. It follows from the discussion in 16 that the definiticn of
a probability of this type is somewhat delicate. The problem, which can be
regarded as an extended form of the classical problem of “‘the gambler’s ruin,”
has been solved in certain particular cases. It leads to integral equations,
which in the simplest case are of the Volterra, in other cases of -the Wiener-
Hopf type (Cramér [6], [13], Segerdahl [79], Ticklind [81]).

21. Orthogonal processes. Consider now the case of a complex-valued
z(t), and suppose that E | z(f) | is finite for all 2. Without restricting the gen-
erality, we may assume that Ex(f) = O for all ¢.

Suppose now that instead of requiring, as in the case of a differential process,
that the variables z(7) and Az(¢) should be independent when r < t, we only
lay down the less stringent condition that these variables should be non-cor-
related, i.e. that

E(@(9)Az(®) = 0.-

We then obtain a process which is no longer necessarily of the Markoff type.
The condition implies that, for any two disjoint intervals (4, %) and (&3, ),
we have

Bl(z(t) — z(t)(@(t) — z(t)] = 0,

so that the “chords” corresponding to two disjoint ‘“arcs’” of the curve in
Hilbert space representing the process are always orthogenal (Kolmogoroff
[56], [67]). A process of this type may accordingly be called an orthogonal
process.

For a process of this type we have, writing E | z(t) |° = F(f), F(t + Al) —
F@) = E|z(t + Af) — z(?) ', so that F(t) is a never decreasingfunctionof?.
If F(¢) is bounded for all ¢, we shall say that the orthogonal process is bounded.
For a bounded orthogonal process, the Stieltjes integral

[Low @,
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where ¢(f) is bounded and continuous, may be defined as the limit in the mean
of sums of the form

Z,: 9(&) (%) — 2(ta)).

22. Stationary processes. When we are concerned with a process representing
the temporal development of a system governed by laws which are invariant
under a translation in time, it seems natural to assume that the joint distri-
bution of any group of variables of the form

(22.1) z + 1), 0, 2t + 1)

is independent of 7. A process satisfying this condition will be called a sta-
tionary process. If a stochastic process is defined by means of a “flow” v — w;
in a space @ (cf. 18), the process will be stationary when and only when the
corresponding flow is measure-preserving, i.e. if the transformation w — w;
changes any C-measurable set S into a set S; of the same measure.

Under appropriate conditions with respect to the measurability of xz(z), the
Birkhoff-Khintchine ergodic theorem holds for a stationary process, i.e. there
exists a random variable y such that we have

(22.2) P, (lim %, fo " o) dt = y) =1,

T—r0

where P, is the probability measure in a suitably restricted space in the sense
of Doob. Further work seems to be required here, in order to make the situa-
tion quite clear, also with regard to metric transitivity.

For a stationary process, any finite moment of the joint distribution of the
variables (22.1) is obviously independent of 7. Suppose now that we only re-
quire that this invariance under translations in time should hold for moments
of the first and second order of the joint distributions, which are assumed to
be finite. The wider class of processes obtained in this way may be called
stationary of the second order. Processes of this type have been studied for the
first time by Khintchine [42]. We shall assume that z(¢) is complex-valued.
Without restricting the generality, we may further assume that Ex(f) = 0 for
all ¢. The product moment E(z(t)z(u)) will then be a function of the difference
t — u:

(22.3) E(x()z(u) = R(t — ).

Assuming, in addition, that R(¢) is continuous at ¢ = 0, it follows that R(¢)
is continuous for all £, and the process is continuous in the sense of 17. It was
shown by Khintchine that a NS condition that a given function R(f) should
be associated with a second order stationary and continuous process by means of
the relation (22.3) is that we should have

(22.4) R(t) = [ " 6 R ()

0
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for all ¢, where the spectral function F(x) is real, never decreasing and bounded.
In particular, we have

F(+®) — F(—») = R0) = E |z | = o

Khintchine’s condition for R(f) was generalized by Cramér to the case of an
arbitrary number of processes z:1(f), - - - , Z.(¢), such that the product moments
E(z:(8)x;(u)) are functions of the difference ¢ — u. The corresponding spectral
functions F;;(x) are in general complex-valued and of bounded variation. Fur-
ther, the expression (Cramér, [12])

Z 2 2j AF, 7y

3y j=1
where AF;; = F;;(b) — F;j(a) is, for any a < b, a non-negative Hermite form in
the variables z;. This result is closely connected with a theorem on Hilbert
space considered by Kolmogoroff and Julia. It is further shown that, to any
given functions F;;(x), (¢, 7 = 1, -+ , n), satisfying these conditions, we can
always find 7 processes z;(¢), - - - , z.(£) such that the joint distribution of any set
of variables z;(¢;) is always normal, while the covariance functions R;;(t — u) =
E(z:()x;(u)) are given by the expression

Rit) = [ ¢ aFi(o).
For a process-z({) which is continuous and stationary of the second order,
with Ez(¢) = 0 for all ¢, we have the mean ergodic theorem

T

(22.5) 1’:-{2 ng /_‘Te_)‘“x(t) dt = y

for any real A. The random variable y has the mean 0 and the variance F(\ + 0)
— F(\ — 0), where F is the spectral function appearing in (22.4). If A\ is a
point of continuity for F, it thus follows that y = 0 with a probability equal
to 1. On the other hand, if A is a discontinuity, ¥ has a positive variance. Let
A, A2, -+ be all the discontinuities of F(x), and let o1, o3, --- be the cor-
responding saltuses, while y; , ¥z, - -+ are the limits in the mean obtained from
(22.5) for A = M, N, ---. Then two different y; are always orthogonal:
E(yzjr) = 0 for j ## k, and we have

(22.6) z(t) = }; ¥ + £,
where E£(f) = 0 and
E]E(t)|2= az—zaﬁ.

If F(z) is a step-function, we have ¢ = Y, o5, and it follows that £(f) = 0
with a probability equal to 1, so that (22.6) gives a “stochastic Fourier expan-
sion” of z(¢) (Slutsky, [80]).
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Even when F(z) is arbitrary, we can obtain a spectral representation of z(f)
generalizing (22.6). In fact, it can be shown (Cramér, [14]) that x(f) can always
be represented by a Fourier-Stieltjes integral

(22.7) o) = f ¢ da(u),
where z(u) is a random function attached to a bounded orthogonal process
(cf. 21), such that

E|2(u + Au) — 2(w) | = F(u + Auw) — F(u).

Conversely, we have
© e—-it(u+Au) . —itu

(22.8) 2(u + Au) — z(u) = — f z(?) dt,

—00 21!' 'lt
so that there is a one-one correspondence between z(¢) and Az(u). The integrals
(22.7) and (22.8) are defined as limits in the mean, as shown above in 17 and 21.
These results are in close correspondence with generalized harmonic analysis for
an arbitrary function, as developed by Wiener [83] and Bochner [4]. The spec-
tral representation of a stochastic process has important applications, some of
which will be considered in a forthcoming paper by Karhunen [40]. An exten-
sion of the spectral representation to a more general class of processes has been
given by Lo&ve [68].

When, in particular, the x(¢) process is such that the joint distribution of any
group of variables z(#), - - , 2(t.) is normal, it follows that any increment
Az(w) is normally distributed. Since two uncorrelated normally distributed
variables are always independent, it follows that in this case the z(u) process
is a differential process with normally distributed increments. Important
results for this case have recently been given by Doob [22].

The properties of continuity, differentiability etc. for processes of the type
here considered are still incompletely known, and further work is required.
A further group of important unsolved problems are connected with an inter-
esting decomposition theorem by Wold [84], which holds for processes with
a discrete time variable. The generalization of this theorem to the continuous
case does not seem to have so far been given in a final form.
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