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It can then be shown4 that
lim = Z A= 21r/ B*(u) du = f o’ (r) dr

T —0 T —00
and

ll_I’rexo TZ A = (21r)2/ B¥(w) du.

It follows now by standard methods that the characteristic function of
1 f T
11 — x2 dt — T

approaches, as T — o,
2
exp (— 5 ?) ,

o = fw p’(7) dr.

where

Thus, as T — o, the distribution of (11) becomes normal with mean 0 and
variance o’
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APPROXIMATE FORMULAS FOR THE RADII OF CIRCLES
WHICH INCLUDE A SPECIFIED FRACTION OF A
NORMAL BIVARIATE DISTRIBUTION
By E. N. OBgré
Unaversity of Iowa
1. Introduction. Given the normal bivariate error distribution
M) 8@, v) = (1/2rosq,)é D)
The purpose of this paper is to present certain approximate formulas for the

radii of circles whose centers are at the origin, which include a prescribed pro-
portion, p, of errors. The formulas are, for given ¢, oy, and p,
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APPROXIMATE FORMULAS 443

) Ri = V20,0, In (1/[1 — p))

3) Ry = V(2 + o) In (1/1 — p))
and

4) Ry = (o: + 0,)v/(1/2) In (1/[1 — pI).

In section 3 we present tables of p’, the true proportion of errors contained in
circles whose radii are given by the above formulas. These tables reflect the
goodness of approximation of each formula to the true radius, R, for 0.1 < p <
0.9and 0.5 = o,/0y = 0.9. Also, a brief statement is included for the same range

of p but with 0.1 =< o,/0, < - 4.

2. The derivation of the formulas. The proportion p of errors that fall
within an area A on the zy-plane is given by

() p= fA<p(w, y) dA.

If the area is bounded by any member of the family of elipses
£/ 4/ = Y,
the above integral may be evaluated directly. The result is
—\2/2

p=1—e¢"",

whence
A = 2In(1/[1 — p)).

Thus the ellipse with semi-axes
(6) o:V/2In (1/[1 — pl), oV2In (1/[1 — pI),

measured from the origin along the x and y axes respectively, will include ex-
actly the prescribed proportion of errors.

Frequently, however, it is desired to know which circles rather than which
ellipses include a certain proportion of the errors. In this case it becomes
difficult to obtain a formula for the true radius from (5) unless ¢, = o, in which
case R is given by either one of the formulas in (6), However, a natural ap-
proximation to make is to equate the area of a circle of radius, say R, to the area
of the ellipse whose semi-axes are given in (6). This gives formula (2),

Ri = /20,0, In (1/[1 — p)),

which can be expected to give a fairly close approximation to true R if ¢, is
close to o, . If o, # g, , it has been shown that this formula underestimates
true R which is undesirable in some applications [1]. That is, if R, is used to
estimate, say the radius of a circle to include 509, of the errors (p = .5), it will
give a value which includes less than the desired proportion. The first table in
the last section gives a numerical verification of this fact.
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To obtain formula (3) we consider formula (5) when A is a circle of radius E.

We have
R /RIS
p= 4£ fo o(x, y) dy dz.

By making the transformation z = o,r cos 0, y = \a,,r sin 6, and by carrying out
the integration with respect to r the above formula becomes

p=1—(2/r) f TR (ofmoDeosti] gy
0

We let
a=FR/i+a), B=I(d— o2)/lo+ dd),
and
osfoy = € gz < 0Oy .
Then

o =R/l +¢€),and 8 = (1 — €)/(1 + ¢), which is less than unity.
This substitution will be helpful later in preparing tables. The fact that o,
is taken less than o, places no limitation on the final results since we only have
to interchange axes in the other case. The above integral may now be written

as .
/2

1 — (2/7._)‘[ e—aﬁ/(l—ﬂcos20) d0
0

=
It

(7) 2
=1 — (2 o f —afcos20/(1—Bcos26) .
@/me™ | e de

The integrand, say F(), in the last integral of (7) can be shown to be monotone
increasing from e~ **""* to ¢**"*? as g variesfrom Otor/2. Furthermore, it crosses
the line F(8) = 1 somewhere in this interval and differs but little from it any-
where if the ratio ¢,/0y is close to 1, since 8 is then close to zero. If, therefore,
we replace the integrand by F(0) = 1, we have’'p = 1 — ¢ “. Hence, if a is
replaced by R’/(s2 + ¢5) and the result solved for R, we have formula (3),

Ry = vV (ot + o2) In (1/[1 — p)).
Finally, formula (4),
Ry = (0o + o)V (3) In (1/[1 — pl),

is obtained by taking the root-mean-square of the former two. This formula
has certain advantages over the other two, the most obvious being that ¢, and
o, enter linearly so that it is simple to evaluate for given o, , ¢, , and p. Sec-
ondly it will be seen by the tables and additional comments made in the last
section that when p = 0.5, R; overestimates true R by a slight amount for all

1This particular value of p gives the circular probable error. In this case R; =
0.5887(cz + oy).
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values of ¢,/0y, and it gives a fairly close approximation to true R for all p
when o/, = 0.5.

We close this section by making a few brief comments. In the first place,
if any of the above formulas is to be computed from a sample of data, we take
VZ22/(n — 1) and \/Zy%/(n — 1) as estimates of o, and o, respectively. Fur-
thermore, we test the significance of these statistics by known formulas [2].

Finally, ¢, and o, may be replaced by 1/5 D, and ,‘/ g D,, where D, is the

population mean deviation. Thus, for example,
R = (: + D) 4/ 5 (111 = p)-

3. Tables. The first formula in (7) is useful in testing by means of numerical
integration the goodness of approximation of the formulas R;, R, , and R; to

TABLE I
p’ computed by means of formula Ry

\1:
N 1| 2| 25| 3| 4| 5| 6| 7| .5 8| .9
0'::/"1/\
AN
.5 .0988|.1951|.2425(.2893|.3815.4720|.5615|.6508| .6960|.7422| .8408
.6 .0944/.1974/.2459|.2942|.3899|.4846|.5786|.6726|.7198|.7676|.8668
7 .0997].1987/.2480|.2972|.3950|.4924|.5894/|.6864|.7350|.7838|.8835
.8 .0999(.1995/.2492|.2989|.3981|.4970|.5958| .6946|.7440|.7936/.8935
.9 .1000].1999|.2498|.2997|.3996|.4993|.5991|.6988|.7483|.7986/.8985
1.0 .1000}.2000].2500|.3000(.4000{.5000{.6000|.7000|.7500|.80600|.9000

the true value of . We construct the tables by replacing E in o by one of these
formulas, say formula R;. This gives & = [2€ /(1 + )][1/(1 — p)]. Since
g = (1 —é)/(1 + ¢), the right hand side of the formula in (7) may then be
evaluated for a choice of € and p giving a value we denote by p’. This is the
actual proportion of errors that is included in the circle whose radius is E; .
If R; gave true R, then p’ would be equal to p, so we may regard the difference
of p and p’ as a measure of the error arising when R; is used to estimate E.

In the following tables the chosen values of p and € = ¢,/0, are listed in the
first row and column respectively. The remainder of the tables include the
corresponding values of p’.

We also have computed tables for 0.1 < o,/0, = 0.4 which we have not in-
cluded in this paper since for this range of values of ¢,/a, , all of the formulas
give approximations that depart considerably from true R except R; when p =
0.5. For this case, p’ = .4776, .5004, .5109, and .5120 when o,/c, = 0.1, 0.2,
0.3, and 0.4 respectively.
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The difference between an entry in a column and the corresponding value
of p at the head of the column reflects the error in estimating true R by means of
Ri, R;, and R;. TFor example, if p is chosen as .5 and ¢,/0, = .7 then Rj
gives the radius of a circle which includes 50.13%, of the errors. Thus R;
overestimates true R by including .13%, more of the errors.

By examining the tables it is seen that when 0.1 < p =< 0.3, R, gives the best
approximation to the true value of R, while R, gives the poorest. If0.4 = p =

TABLE II
p’ computed by means of formula R.

5 .1215|.2363|.2912|.3446/|.4467|.5432|.6346|.7217|.7641|.8060|.8907
6 .1116/.2202(.2732/.3255(.4274|.5261|.6218|.7146|.7600|.8050| . 8949
7 .1057.2100|.2616/.3127|.4140|.5136|.6116|.7081|.7558|.8032|.8976
.8 .1022(.2039|.2546/.3051|.4056|.5055|. 6048 . 7034|.7525|.£014].8991
9 .1005/.2009|.2509|.3012(.4013|.5012/.6011|.7008|.7506|.8003 .8999
0 .1000/.2000|.2500/ . 3000} .4000| . 5000/ . 6000|. 7000/ . 7500|. 8000 . 9000

TABLE III
p’ computed by means of formula Rs

Vz/”ﬂ\
N

.1102|.2161|.2674|.3176|.4152|.5092.6001|.6887|.7327|.7768 . 8694
.1056/.2089|.2597.3100|.4090|.5059|.6009|.6944|.7408|.7872 .8817
.1027|.2044/.2548|.3050|.4046|.5031|.6007|.6974|.7456|.7937|.8908
.1011{.2017.2519|.3020(.4018|.5013|.6003|.6991|.7483|.7976|.8963
.1003|.2004/.2504(.3004|.4004{.5003|.6001|.6998|.7496|.7995/.8992
.1000/{.2000/.2500|.3000/|.4000|.5000| .6000|.7000|.7500/.8000| .9000

S ©wN>w;m

1.

0.75, Rs gives the best and R, the poorest; and if 0.8 < p < 0.9 R; gives the best
and R; the poorest. Thus formula R; for general use gives the best overall
approximation. It may be remarked at this point that bounds for the true
value of R can be found by applying two of the formulas, one of which over-
estimates while the other underestimates E. From the tables it is apparent that
this can be done for values of p < 0.8.

Finally, these formulas may be used to test roughly the normality of the data.
For example, if proper estimates’ of o, and o, are made from the data, and the

2 See section 2.
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corresponding value of R; computed for a chosen p, then approximately, the
proportion p’ of plotted errors should fall within the circle of radius R; .

REFERENCES

[1) Henry Scuerrk, Armor and Ordinance Report No. A-224, OSRD No. 1918, Div. 2,

pp. 60-61.
[2] S. 8. WiLks, Mathematical Statistics, Princeton Univ. Press, 1943, p. 131.

A NOTE ON THE EFFICIENCY OF THE WALD SEQUENTIAL TEST
By Epwarp PauLson
Institute of Statistics, University of North Carolina

The sequential likelihood ratio test of Wald for testing the hypothesis H,
that the probability density function is f(X, 6,) against the one-sided alternative
H, that the function is f(X, 6;) has been shown [1] to have the optimum property
of minimizing the expected number of observations at the two points § = 6,
and § = 6,. Tables showing the actual magnitude of the percentage saving
of this sequential procedure compared with the classical ‘“best’’ non-sequential
test have been calculated (see [1], page 147) for the normal case when

1 . - 2
S50 = 5= exp _Qiz_ﬂ .

In this note we will show that when 6, is close to 6, , the percentage saving is
independent of the particular function f(X, 6) and the particular values 6,
and 6,, so that the tables mentioned above can be used to show the percentage
saving for any one-sided sequential test involving a single parameter, provided
f(X, ) satisfies some weak restrictions.

Let f(X, 6) be the probability density function of a random variable. Let
E;(n) denote the expected value (when 6 = 6;) of the number of independent
observations required by the Wald sequential procedure to test the hypothesis
H, that 6§ = 6, against 6 = 6; = 6, + A with probabilities « of rejecting H,
when 6 = 6, and B of accepting H, when 6 = 6;. Let N be the number of in-
dependent observations required to achieve the same probabilities o and g
for testing the hypothesis § = 6, against § = 6, by the most powerful non-
sequential test. Let U, and Up be defined by the relations

1 e £\
¢ = Vo f exp {‘ 3 @
and

1 0 t2
g = e /;]Bexp {-— 5} dt.



