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1. Summary. Consider » boxes, each box having an associated probability,
Pi, (Z pi = 1), and an associated integer, k; . If balls are thrown one by one

into these boxes, the probability being p; that any one ball falls into the 7th box,
then the number of balls which must be thrown in order to obtain, for the first
time, at least k;, balls in the 7;th box, at least k;, balls in the 7;th box, - - - , and at
least k;, balls in the 7,;th box, is a random variable, N,[k:(p1), k2(p2), - - - , ka(pn)].
Here 4, %2, - -+ , %, represent the numbers of that set of s boxes, (1 < s < n),
which first satisfies the stated condition.

The distribution of N,[ki(p1), k2(ps), - - - , ka(ps)] can be written down for any
set of values assigned to n, s, the p;’s and the k;’s. However, for n greater than
2 the distribution assumes such an extremely complicated multinomial form
that except for certain special cases even the mean of the distribution cannot
be numerically evaluated without a prohibitive amount of labor.

This paper presents the exact moments of Ni[k:1(p1), k2(p2)] and No[k:(py), ke(p2)]
in forms that readily lend themselves to computation and shows how these
moments can be used to obtain approximate values for the mean and variance
for certain situations where n is greater than two. These approximation formu-
lae are given for

1. The mean and variance, for any » and any set of ks and p;’s when s = 1
or n.

2. The mean, for any n and 2 < s < n — 1, when p; = 1/n, ki = k,

G=1,2-",n).
Some indications are given concerning the error of the approximations, and the
circumstances which lead to a minimum (and maximum) error. Curves have
been prepared to show the mean for the two box case, the primary function
of these curves being to assist in the application of the approximation formulae.
Some problems where the results of this paper might be applicable are suggested
in the Introduction.

2. Introduction. A box problem is defined when one is given a fixed number
of boxes, a collection of balls (either finite or infinite), a set of rules governing
the throwing of the balls into the boxes and a statement of the conditions which
will bring the throwing to an end. The terminating conditions usually state
either that a fixed number of balls will be thrown or that balls will be thrown
until a particular distribution of balls in the boxes has been obtained. In the
first of these, interest is centered on the possible distributions which can be ob-
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tained, while in the latter the number of balls necessary to obtain a specified
distribution is of primary interest.

This paper will be concerned with certain problems falling in the latter cate-
gory. In the simplest case one is given two boxes with associated probabilities
p1 and p, and associated integers k; and k, . Balls are thrown one by one into
the two boxes, the probability being p; that any one ball goes in the first box and
P2 that it goes in the second box. This process is stopped when either k; balls
fall in box 1 or k, balls in box 2, whichever occurs first. One is interested in the
distribution of the number of balls necessary to terminate the throwing. This
problem was stated in essentially this form by Laplace [4], but he contented
himself with merely writing down the probability generating function.

Here the special case of two boxes will be treated in detail and the results
will then be generalized to the n-box case. In all of these instances it is pos-
sible to write down exact expressions for the mean and variance of the number of
balls required to achieve the stated distribution. However, in almost every
case the resulting expressions are too complicated to be of any use when a numer-
ical answer is desired. The principal portion of this paper will be devoted to
obtaining approximate formulae from which numerical answers can be obtained
for these problems. Some evaluation of the degree of approximation will be
given in section 5, while curves to facilitate the computation will be given in
section 6.

The statement of these problems in terms of boxes and balls may lead one to
the belief that they have no other interpretation. Actually this is not the case,
and a few illustrations of this point will now be given. For example, consider
the curtailed single sampling plan used in acceptance sampling. A buyer re-
ceives a lot of articles. This lot will contain a certain proportion of defective
items. The buyer wishes to determine gn the basis of sampling whether to
accept or reject the lot. His knowledge of his own situation will allow him to
specify the largest proportion of defectives which he is ordinarily willing to
accept and the risk he is willing to take of accepting a lot with a proportion de-
fective larger than this critical proportion. On the basis of these two values it
is possible to set up a sampling plan in which the buyer will take a sample of size
n out of the lot, inspect it, and reject it if there are k; or more defectives in the
sample. Of course once he has obtained k, defectives there is no need to inspect
the remainder of the sample. The lot will then be automatically rejected.
Similarly, once he has obtained n—k; non-defectives, he can accept the lot with-
out inspecting the remainder of the items. The average number of items which
he must inspect in order to reach a decision is given by the solution to the two
box problem stated above. Box 1 will receive the defective items, the asso-
ciated integer being k; and the associated probability being p; , the true propor-
tion of defectives in the lot. Box 2 will receive the non-defective items, the
associated integer being n—k; and the associated probability being p: , the true
proportion of non-defectives in the lot.

Laplace [4] considered problems of this type as applied to games of chance.
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Thus suppose there are two players A and B who participate in successive trials
of a given event, the probability being p, that A wins on any one trial and p.
that B wins. Then one can associate the integer k; with A and k, with B by
saying that A wins the match if he wins k; trials before B wins £, trials and con-
versely. The analysis is exactly the same as for the two box problem. It is
apparent that this same situation can be extended to any number of players.

Another possible interpretation is as a particular kind of random walk prob-
lem. Let a particle start at the origin of a system of rectangular coordinates
and suffer successive positive unit displacements, the probability being p; that
it moves one unit in the z-direction and p. that it moves one unit in the y-
direction. Furthermore assume that it is absorbed if it ever reaches the line
x = k; or the line y = ky. Then the analysis of the above two box problem
gives the mean number of displacements before it is absorbed. In the same
manner, such a random walk problem can be stated for n dimensions. For n
equal to three, there will be three planes and the particle will be absorbed when
it reaches any one of the three.

Certain problems in public opinion polling may fit into this category of box
problems, particularly if the above problem is rephrased so that one requires
the mean number of trials to obtain at least k; balls in the first box and at least
k. balls in the second box, for the first time. For example, suppose that one
desires to sample from a population composed of two types of individuals,
A and B. Let the population proportions of A and B be known and be de-
noted by p; and p, . Then if one wishes to obtain at least k; individuals of type
A and at least k. individuals of type B, the average number of persons who must
be chosen in order to fulfill this condition is given by the analysis of the cor-
responding box problem. This is rather artificial when there are only two cate-
gories and p; + p. = 1. However, these restrictions will be removed in the
course of the paper, and the problem will be considered for any number of types
of individuals.

As a final example, consider one of the many bombing problems which arose
during the course of war research. Suppose that a factory which is to be de-
molished has » vital units, the destruction of any one of which will destroy the
usefulness of the factory. Let the probability be p; of hitting the first unit with
a single bomb, p, the probability of hitting the second with a single bomb, etc.,
and assume that k; bomb hits will finish off the first unit, &, , the second, etec.
Then the mean number of bombs required will be given by the analysis for the
corresponding box problem.

Corresponding interpretations are possible for the other problems which are
to be considered in this paper. Some of these will be indicated as the analysis
proceeds and it is to be hoped that others will occur to the reader.

As previously noted, this paper will be concerned with the distribution of balls
necessary to terminate the throwing, assuming the p’s are known. Another
possible interpretation is to assume the p’s unknown and to estimate them with
the results of the ball throwing. Certain aspects of this problem for two boxes
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have been considered by J. B. S. Haldane [3] and Girshick, Mosteller and Savage
[2].

3. Solution for the two box case.

3.1. Distribution and moments of the number of trials necessary to obtain either
ki balls in the first box or ks balls in the second box. This problem may be stated
as follows: Suppose one is given two boxes with associated probabilities p1 and
P2, and associated integers k; and k; . For the present it will be assumed that
P1 + p2 = 1, although this restriction will be removed later. Now let balls be
thrown one by one into these two boxes, the probability being p; that a particular
ball will fall in the first box and p, that it will fall in the second box. This
process is stopped on the first ball which leaves either k; balls in the first box or
k. balls in the second box. The number of balls, z, which is required to accom-
plish this is a random variable and we desire the moments of z. The probability
that k; balls are obtained in the first box on the zth throw, by <z <k + ks — 1,
before k» balls are obtained in the second box, is immediately seen to be

— 1\ -1 o -1 -
3.1) I:<kal; B 1> :D’i' 1p2 kl:l Py = (,1:: _ 1) p’lcl pE ky

Similar reasoning gives the probability that k, balls are obtained in the second
box for the first time on the xth throw, ky < z < k; + k. — 1, as

-1 z— A
(3-2) (ka; . 1> pl k2 pl22 .
From (3.1) and (3.2), the hth moment of z, E(z"), is

ky+ka—1 z —1 B kytka—1 r —1 _
3.3) 2 (k 1> pitp ™t + 2 o (k' 1) Pt
z=ky 1 Py 2 —
However, it is inconvenient to._consider (3.3) directly. A much sirapler pro-
cedure is to determine the increasing factorial moments of z and then transform
these into the ordinary moments. Thus the Ath increasing factorial moment of
z, Fualki(p1), ka(p2)], is defined as E[z(x + 1) --- (x + h — 1)]. Then #,,] !
is equal to

P @+ h— DI 2= 1\ gy .

% e-Dr (ia - 1> gz
(34) : kr%—l (@ -+ h — ")2 ( 2 - J_) o by ks
+ a=ky (= D! \k — 1 b

(3.4) can be transformed by means of the relationship

3.5) > (’“ + j) pl=(—p)* L k+1,a+1),

om0 J
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where I.(p, q) is the Incomplete Beta-Function as tabulated by Karl Pearson
[6], and the result is obtained that

k(s +1) «oo (ki +h — 1
(ks )p’;(1+ )Ip,(k1+h,k2)

Folleo + 1) «vv (kg +h — 1
4 Falke 1) p’;( : ) gz + by k).
The ordinary hth moment of x may be written in terms of Fii[ 1, Fea[ ], ++-
Fri[ ] as

Fh.l[kl(pl)7 ko(po)] =
(3.6)

h Ai Oh .
3.7) E@) = 2 Ful 15 (=)™,
where A'0" represents a difference of zero. Tabular values of A’0"/i! are given
by Fisher and Yates [1].
In particular, the mean and variance of x, which will receive the special desig-
nations Eiki(py), k2(p2)] and oi[ki(py), ka(ps)] respectively, are

(38) -]ﬁ Ip;(kl -+ 1, ]{:2) + ’.C_Q I“(k2 + 1’ kl)

D y 2 -
and
3.9) . Iy + 2, ke) + . Loy (ks 4 2, k)

- E;[kl(pl), ]:‘»:(’7)2)] - iEﬂ/‘-l(PL), /\’2(7’:‘)]§2 .

In the event the p’s are equal and sum to one, E1[ki(py), ka(2) ] will be abbreviated
to Eyky , k], and finally, if both the p’s and k’s are equal, it will be written as
Ej[k*]. In this two box situation, the only other possibility is Ealk:(21), k2(p2)],
which will denote the expected number of balls requived to obtain at least Z;
in the first box and at least k» in the second box, for the first time. This problem
will be considered in section 3.2.

In order to facilitate the computation of mean values, both for the two box
problem itself and for its application to problems involving & larger number of
boxes, (3.8) has been graphed for various values of ki, k2, p. and pz. A dis-
cussion of this procedure and the results obtained will be {c:nd in section 6.

There is one further result which will later prove usefui. Consider the situa-
tion when there is only one box with p, and &y, p1 < 1. This is the same as
having two boxes where the k» corresponding to the second box is infinite. In
other words, one can terminate the throwing of balls ouly hecause of what hap-
pens to the first box, never because of anything that happens to the gecond box.
In this case one obtains

(3.10) Eilki(py), © (p2)] = i x (I\: : i) pirpi ™ = ey .

2=k P1
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Similarly,

3.1) (o), ()] = P2

pi

3.2. Distribution and moments of the number of throws necessary to obtain at
least ki balls in the first box and at least k, balls in the second box. This problem
may be stated as follows: Suppose there are two boxes with associated probabil-
ities p; and p,, and associated integers k; and k,. As in 3.1, p+ p = 1.
Let balls be thrown into the boxes one by one, the probability being p, that a
particular ball will fall in the first box and p, that it will fall in the second box.
This process is stopped on the first ball which leaves at least k; in the first box
and exactly k, in the second or at least k, in the second and exactly k, in the first.
Again z is the number of balls required to accomplish this. As explained in
3.1, the mean value in this case will be written as Es[ki(py), k2(p2)]. The analysis
follows through asin 3.1 and the mean number of trials is equal to

o - 2z~ -1 2
G12) > a( ST )i+ > 2T ) pragh.
kh—1 ks 1

Zemliy+kg k) +kg

Making use of (3.5), this can be written as

(3.13) ';—‘1[1 = Iy + 1, k)] + ’;_22[1 — Ipy(ka + 1, kD).
Referring to (3.8) it is evident that

3.14) Blla(p, ko] + Bilks), ka@d] = 2 + 2.

The hth increasing factorial moment in this problem, denoted by Faalk:(p1),
kz(Pz)], iS
ki(k 1) eee (b1 +h—1
i+ 1) pi'( 1t Y1 = LGy + 1y 1)
ko(ks + 1) «-o (k2 +h — 1)
+ P2

(3.15)

(1 — I, (ke + B, kD]

Comparison of (3.15) with (3.6) gives the relationship

(k1 oo (k h —1
Fosl ] 4 gl ] = "2fa T 1) p,l.(”L )

(3.16) ko(ks + 1) «oe (ks + h — 1)
: .

D2

+

The ordinary moments of = can be computed from (3.15) by the use of (3.7).
That is, formula (3.7) holds in this case if F»i[ ]is replaced by Frs[ .
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It can be easily shown by the use of the recursion relationship for the Incom-
plete Beta-Function,

L(p, @ =zl.(p — 1,¢9) + (1 — 2)L.(p,q — 1),
that Fi[ ] and Fuol ] satisfy the partial difference equation
Failla(p), ka(p2)] = hFss,ilkn(pr), Fa(po)]
(3.17) + piFasller — 1) (py), ka(p2)]
+ PoFnilki(py), (ke — 1)(p2)],

where ¢ = 1 or 2. This equation can be used as an alternative way of obtaining
many results, examples-of which are (3.10) and (3.11). Certain of these appli-
cations have been discussed by MecCarthy [5].

4. Solution for the n box case.

4.1. Preliminary discussion. The problems of this section, although direct
generalizations of the two box cases, can perhaps be most easily stated and
illustrated as applied to the behavior of a random particle. Suppose that
we have a random particle which starts at the origin of n-dimensional rectangular
coordinates and moves in unit steps along the positive coordinate axes. At
any given point the probability will be taken as p; that it moves in the z;-direc-
tion. Y p.is assumed to be one unless otherwise specified. Now consider the

=1

n hyperplanes, z; = k;, and assume that the particle will be absorbed if it passes
through a specified number, say s, of these hyperplanes. Notice that we are
interested only in the number of planes which it passes through, and not in the
particular ones. Foreachs, (s = 1,2, --- , n), the number of moves which the
particle makes before it is absorbed is a random variable, and in this section we
will be concerned with the distribution of this random variable. The cor-
responding interpretations for boxes and balls is immediately obvious.

These problems are seen to be generalizations of the two box cases considered
in section 3. Although it is always relatively easy to write down formal ex-
pressions for the quantities to be considered, the step from two boxes to three
or more boxes produces expressions which are extremely difficult, or even im-
possible, to evaluate. In this section we shall develop approximate solutions
which make use only of simple computations based on the solution for the two
box case.

As an introduction to the contents of this section, we shall discuss briefly a
box problem which is a special case of the general problem. Assume that there
are n boxes with a probability of 1/n that any one ball will be thrown into a
particular one of the » boxes. Then one can ask for the mean and variance of
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the number of trials required to obtain s occupied boxes (i.e. k1 = ks = -+ =
k., = 1). Making use of (3.10) and (3.11), we obtain
E1"] =1

n . n—1 1 n
A Y e

Bl =1+ —— +E1[1<";2>; o <i)

@4.1) ) =14 " 4+

n—1 n—2

8—1

_— S
B =1+ —g+ =+ gy =" &
and
oill" =0
R n—1 1 n
o§[1]=0+0'%[1< " >;°°<’r_b>:|=0+(n—1)2
2[17] n 2 n—2 0 2
a3[1]—0+(,7_:—1—)z+"1[1< n )’ <ﬁ>]
_ n 2n
@2) =0ta=m:tmoop

n 2n
=1 T m—2p

17 = 0 +

m—s+1r "Hh-o"
The solution for this problem for s = n is given in Uspensky [9], but a straight-
forward solution requires a great deal of formal manipulation. The step-by-
step procedure used here is somewhat indicative of the methods to be used in the
succeeding portions of this paper.

4.2. Mean and variance of the number of trials required to obtain either ki balls
in the first box, or ks in the second, - - - , or ka_y tn the (n — 1)st, the probability
associated with the nth box being non-zero. The mean number of trials in this

goeee (s — n "Zl 7
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particular problem is represented by Eilki(p1), « ¢ , bpe1(Pa-1), © (ps)]. The
formal expression for this quantity is

We o G-DU
ZZ’(k-—l)!g—k.-)zi”’:'

(7 = ko) ", orieare .
X 1, pTésighiti, o™
E 7.1 le o “Tia !7_._+1 le. e ! Y41 Pi-1 Dit1 Pn,

where the third sum is taken over all values of the 7’s such that
nt et riatrat oo fra=7—k
and
< ki, ey i <kbia,Tia <Kigay, oo e < Kot

This expression can be reduced by one dimension by the application of some of
the results for two boxes. Consider for the moment only those balls going into
the first (n — 1) boxes. Then the number of balls (conditional) which is neces-
sary to obtain either k; in the first box, or k. in the second, - - , or k,_1 in the
(n — 1)st box is a random variable X which takes on values

kl,k1+1)"'1k1+k2+"'+kn—l—(n—2)

with corresponding probabilities ; , where with no loss of generality it is as-
sumed that by < kp < --+ < kp—1. m;isgiven by a sum of (n — 1) multinomial

n—l1
expressions, the probability associated with the 7th box now being p; / <E p,-) ,
Tl

which will be designated by p’; .
Under these circumstances it is apparent that

(44) El[kl(pl)r' Tty kn—l(pn-—l), «© (pn)} = ]Z ‘”iEl[xJ'(pl + M + pn—l), «© (pn).L

However, (3.10) can be applied to each term in (4.4), leading to
1
e, DL LS

Now from the definition of 7; and z; we have

El[kl(pl), Ty kn—l(pn—l), «© (pn)]
(4.6) 1
TPt P
Similarly, the application of (3.11) gives the result that

Ug[kl(pl), T, .kn—l(Pn—l), «© (pn)]
4.7) _ Dn
T it pe At + e

4.5)

) E1[k1(17{), kz(p;), ey kn—l(p:l—l])-

1)2 El[kl(p{), ey, ,kn—1(p;-—1)]-
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These results are of immediate importance for two reasons:

1. They indicate that by combining boxes and introducing a new random
variable, certain problems can be simplified. This statement will be expanded
and the principle applied repeatedly in the later portions of this paper.

2. With respect to the section on two boxes, they mean that the restriction
p1 + p: = 11is not necessary for the solution of the problems. One can always
assume that ps(= 1 — p1 — p,) refers to a box which receives balls but which
otherwise has no effect on the outcome of an experiment. In this paper it has
been convenient to refer to such a box as having an infinite capacity.

4.3. The mean value and variance of the number of trials required in a two box
problem when one or both of the constants ki and k. are replaced by random variables.
The discussion in 4.2 has indicated that the idea of associating a random variable
with a box instead of a single integer may sometimes lead to simplification.
Here this procedure will be treated in more detail. Consider Ei[ki(p1), ka(p2']
and assume that %, is replaced by a random variable X which can take on values
%y, %, -+ , %, with corresponding probabilities wy, -+« , 7, -+, = . Under
these circumstances E;[ ] itself becomes the random variable Ei[X (p1), ka(p2)],
taking on values Eilz:(p1), ka(p2)], ¢ = 1, 2, - - - , 1), with corresponding prob-
abilities w; . The mean value of this new random variable can be formally
written down as

) EEX @), @) = 3 miBile(e), k(@)

This expression can always be calculated from the probabilities 7; and (3.8)
or from the curves given in section 6. However, in the applications which will
arise later in this paper, this computation would be very time consuming. In-
stead, an approximation to (4.8) will now be derived which will prove to yield
very good results, and which can be obtained by a simple reading on the above
mentioned curves.

If X is regarded as a continuous variable, then Ei[X(p1), ke(p2)] is a con-
tinuous function of X, and, in fact, can be represented by a single curve similar
to those appearing in section 6. Moreover, as is apparent from (3.8), repeated
differentiation of Ei[X (p1), k:(p.)] yields continuous derivatives. Consequently,
E\[X(p1), ka(p2)] can be expanded in Taylor series about a, wherea = Z Tilli .«

i=1
This procedure gives
¢

@9  EEXG), k@) = 5w Z ‘”* — 9 Blla(y, k),

where Ei[a(pi), ka(pz)] represents the jth denvatlve of E\[X(p1), ka(p2)] with
respect to X evaluated at a. Interchanging the order of summation one ob-
tains

3 7 t
4.10) ; E_lh_(m;___%_k___z(pz)] ;_:1 xi(z: — a)’.
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The final result then becomes

< Eila(py), &
(411 E(EyX (py), ka(po)]) = Z; ila ;P;).' 2(D2)] u
J= .
where p; is the jth moment of X about its mean, a. Thus to a first approxima-
tion

(4.12) E(E\[X(py), ks(p2)]) = Enla(py), ka(p2)].

It is of interest to note that if Ei[X(p1), k2(p.)] is linear in X then (4.12) is an
exact expression since all derivatives except the first are zero. Furthermore,
if Ei[X(p1), k2(p2)] is of the second degree in X, then only the second non-zero
term on the right hand side of (4.11) needs to be added to (4.12) in order to
make it exact. The former of these is the relation which gave an exact solution
in 4.2.

It is important to realize that this analysis for E(Ei[X(p1), ke(p2)]) can be
immediately applied to E(E.[X(p1), k:(p2)]). For, by the use of (3.14) and
(4.8), one obtains :

i

k
4.13) E@(X p), ko)) = = + 7% = EEIX 0, lapa))-
The same analysis can be applied to Fi,i[ ] and the general result obtained
that
(4.14) E(Fra[X(p1), ka(p2)]) = Frala(py), ka(p2)].

This immediately allows one to approximate the variance in the obvious manner.
It is of interest to consider briefly the situation when both k; and k. are re-
placed by random variables. Let k; be replaced by X, taking on values zy ,

Zi2, -+, T1. With probabilities w1, m2, -+« , m: and k, be replaced by X.
taking on values 2 , 22, * -+ , Z2s With probabilities ms , w2, +**, ms . Then
(4.15) E(EX:(py), Xo(p2)]) = 2 wumy Brlana(py), 224(p2)],

7

where ¢ = 1,2,---,tand j = 1, 2, ---, s. Again applying Taylor series
and expanding about @ = 2 mxy; and b = D, my2s; , the result is obtained
7 7

that

(4.16) BEX. (), Xo@) = >, Zi1ap), bp)]

o wlol M1y M2y
%, V= Ll

where Ei’[a(p1), b(pz)] is the uth partial derivative with respect to X; and
the vth partial derivative with respect to X, of Ei[Xi(p1), Xa(p.)] evaluated
at X1 = a, X, = b. This gives the approximate formula

(4.17) E(E\[X1(p1), X2o(p)]) =~ Ex[a(py), b(pa)].
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4.4. Mean and variance of the number of trials required to obtain either (at
least) ki balls in the first box, or (at least) k. balls in the second bozx, - - - , or (and
at least) k, balls in the nth box. In accordance with previous notation the mean
number of trials required is given by Ei[ki(p1), k2(p2), - -+ , ka(ps)]. The exact
value of this quantity can be written down and it would be a complicated multi-
nomial expression. The evaluation of such an expression would be extremely
difficult, if not impossible, especially for large values of ki, k2, - -+, kn. In
order to obtain an approximation to Ei[ ], repeated applications of (4.12) can
be made and the resulting expression can be evaluated by means of the curves
in section 6.

For convenience, consider Eil[ki(p1), ki(pz), ks(ps), ka(ps)]. The general
result will then be apparent. Assume that the first three boxes form a single
unit with probability (p1 + p2 + ps). Then the number of balls required to
obtain either k; in the first, k, in the second or k3 in the third, if all balls are going
in these three boxes, is a random variable X. Consequently,

(4.18) E\lky(p1), «++ , ka(ps)] = E(Eo[X (p1 + p2 + ps), ka(pd)]).
Applying (4.12),
El[kl(pl), R} k4(p4)] e

S 2 S . P . ___L
4.19) B, [E’ [kl <p1 + py + pa) ) i (m + p2 + pz)’ (zn + po + Pa)]

(P1 + p2 + vs), 704(294)]-
Applying (4.12) once again the final approximation is

Eki(py), -« -+, ka(ps)] >~

o e e T ! __ Pz Pt P2
(4.20) “ [El [ By [ kl (T'l -+ pz) > o (7’1 + P2>] (7)1 + p2 + ps) ’

(2 N\, "y
ks (Z)l T+ ’[)3)] ;1 + D2 + p3), Iv4(P4)]-

Expression (4.20) can be translated into a course of procedure. One considers
the first two boxes and computes

N /-—— pl - » ( p2
@ =B [kl (?'1 + Pz) > fe (101 + p2>] )

It is then assumed that a; is a new number associated with a box with probability
(p1 + p2) and

_E[a(Jﬁi&_)k(m_ﬁ _»]
e P+ v+ s/ C\pa b Pt s/t
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Repeating this procedure again, one computes as = Ei[as(p1 + p2 + s), ka(ps)],
and by (4.20) this is approximately equal to Ei[ki(py1), - - - , ka(ps)]. This method
of computation is seen to be completely general and one can apply it to any num-
ber of boxes. Each step consists of computing E;[ ] for two boxes and con-
sequently can be carried out with the curves of section 6. It is evident that
the order in which the boxes are taken may have an important effect on the size
of the error involved in using this step-by-step procedure. This problem will
be considered in section 5.

It is of interest to note that one can also obtain another approximation for
Eilki(p1), ko(p2), ks(ps), ka(ps)]. Suppose that the first two boxes are con-
sidered as one unit and the second two boxes as another unit. Then the num-
ber of balls which must fall in the first two boxes in order to obtain either %; in
the first box or k. in the second is a random variable X; . Similarly a random
variable X, can be associated with the last two boxes. Accordingly

(4.21) Eilky(py), -+, ka(ps)] = E(E[X1(p1 + Do), Xo(ps + pa)]).
By use of (4.17), (4.21) can be written as

Blk(p, - bl o | B b (pl B (2 p)] o1 + 2,

D3 D4
E, [763 (m + p4> s ks (pa T p4>:l (ps + P4] .

This same analysis applies directly to the factorial moments. In particulay
Foslki(py), -+, ka(pa)] = Fa,

P D1 D2 D1+ P2
i4.23} [ El!_' By [ ey (pl + p2> > e <P1 + pz)] (Pl + p: + Pa) ’

ks <pﬁh)] (P +‘ P2 + Ds), ka(ps)].
From (4.20) and (4.23) an approximate value for oi[ki(py), ka2(p2), ks(ps), ka(ps)]
can be obtained. This procedure is also perfectly general and so an estimate
of oi] ] can be obtained for any number of boxes.

This same method can be immediately applied to the approximation of
E.lki(py), - - -, ka(ps)]. One simply considers the boxes two at a time, comput-
ing E.[ ] at each stage instead of Ei[ ].

4.5. Solution for EJk"] and Eki™, k.. When s is different from 1 or n,
the complexities of the problem force one into the consideration of only the
quantities given in the title of this subsection. The corresponding problem
for three boxes, namely Es[ki(p1), k2(pe), ks(ps)], has been treated for general
k; and p; by McCarthy [5]. However, the resulting expression is so complicated
that it will not be given here.

The process to be used consists of reducing the subscript s by a series of steps

4.22)
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until the subscript 2 is reached. This expression can then be evaluated by the
use of the curves or by simple computation. For the sake of convenience, the
case E[k‘] will be considered in detail. It will then be possible to write down the
expression for general s and n.

As a starting point, look upon the first three boxes as a single unit. Then
there is a definite probability =, that one of these boxes will have & balls in it for
the first time on the z;th throw into these three boxes and that the other two
boxes of the unit will each have less than %k balls. Then if one of the other of
the three boxes has u balls (4 < k) the third box will have (z; — k — u) balls,
(x; — k — u < k). Meanwhile the fourth box will also have been receiving balls,
and the number in it at this time will be denoted by 5, j = 0, 1,2, -+, ).
For each z; there is a probability associated with «, namely P(u | «;), and another
probability associated with j, P(j| ;). For the moment, consider that box
1 has received. k balls, box 2 the (x; — k& — u) balls, box 3 the u balls and box 4
the 7 balls. This numbering is of course immaterial since the situation is sym-
metric with respect to the first three boxes.

Now if j > k, either (2k + u — z;) balls will be required in the second box or
(k — u) balls in the third box in order to obtain three properly occupied boxes.
On the other hand, if j < k, the specified number will be required in any two of
boxes two, three and four. Consequently, with this conditional description of
the situation, the required number of balls necessary to obtain three out of the
four boxes occupied in the proper manner is

(4.24) i + j + B2k + u — ), ¢k — w), (k — 5,

where (k' — j) will be taken as zero if j is greater than or equal to k. From this
description, it is evident that the desired mean value may be obtained by sum-
ming (4.24) over all possible values of z; , j and u. Therefore

Bk = Z i {x; + i{, P(j|x)
(4.25) ' =
. (j + ;P(u | ) Eol 2k + u — x5), (k — w), k —j)])} .

It is to be noticed that the probabilities inside the E;[ ] in (4.24) and (4.25)
do not add to one but only to 3/4. This can be easily remedied by the applica-
tion of a formula similar to (4.6) and the result is obtained that

Es[k4] = Z T {xi + 2 Py | xi)
(4.26) ' . :
. (j +4/3 20 P(u|z)Eo[2k + u — z), (k — w), (k — j)])},

where each probability inside E.[ ]is now 1/3.
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By simple considerations

(= B (qyuqyeees

wl(z; — !

@.27) P(u|x) = ( @ k)?) (g)"(,})""““
= wl(z; — k — w)!

where u and (z; — k — w) are both less than %, and

(«.28) PGlm) = SIS aray.

From (4.27) and (4.28)

(4.29) ;jP(jIx.-) = /3,

and

(4.30) ; uP(u k .

(4.25) can be written as
Esx[](f1 = ; mols -+ Z’: w3 ,ZJP(J | x)
4.31) 4
+g2m ; P(j| @) 20 Plu|s)Bal@k + u — 2, (k = w), (b = ).

Finally, making use of (4.29), (4.30), the definition of z; and =; and the procedure
of replacing random variables inside an E,[ ] by their mean values,

432) i o {El[kaj + B [( Elgc“]), <gk _Elékﬂ) , (k _ Elgcsl)]},

and this in turn can be written as

31\ 2 3
433) Bk~ ‘é {E‘["al 5 [(gk - E‘ly) ’ (’“ - Elgc ])]}

This method of analysis which has just been applied to Esk'] can be used
equally well for E,[k"]. Here one simply considers the first (n — 1) boxes and
proceeds as above. The final result is immediately apparent, namely that

n n n—1
EJK"]) >~ n—1 {El[k 1+

s[5 ) (-2

It will be noticed that in reducing (4.34) further it will be necessary to consider
expressions of the form E,[ki ™, ko). However, it will be seen from the foregoing

(4.34)
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analysis that no use was made of the fact that the integers attached to the first
(n — 1) boxes were the same. Accordingly,
n

{Elucf-‘] +
n—1

e[ 230 - ) (o 2],

Now, by the use of (4.34) and (4.35), it is possible to reduce s as much as may be
desired.

Bk ™, k] =~

(4.35)

5. Some considerations concerning the error of the approximations.

5.1. Preliminary remarks. This discussion of the errors of the approximations
given in the preceding sections has been left until now so that a broad perspec-
tive might be gained, and the errors seen in relationship to one another. Such
an arrangement is advantageous in this instance since both the analytical and
computational results bearing on the subject are scanty, and consequently,
any intelligent leads which their inter-relationships can give are most helpful.

The difficulty involved in obtaining exact values for the various quantities
considered in this paper has been pointed out quite frequently, and the approxi-
mations have been devised to overcome this very difficulty. The same com-
plexity which prevents the computation of many exact values also prevents any
effective analytic approach to the problem of evaluating the errors. For these
reasons the author has been unable to carry through any general analytic treat-
ment of the errors of the approximations. However, because the intelligent use
of approximations requires some knowledge of their accuracy, certain igolated
cases have been investigated by a combination of computational, graphical and
analytic methods. These investigations are detailed in the remainder of this
section, and conjectures concerning the general behavior of the errors are made
whenever possible. As has been stated earlier, no consideration will be given
to the approximation formulae for the variance. _

5.2. Errors of the approximations for Eilki(p1), - -+ , ka(ps)] and

En[kl(pl); T kn(pn)]-
Taking n equal to 3, we have from (4.11) that
| Evlky(p1), ke (p2), ka(ps)] — Eala(py + p2), Ks(ps)] |

R ARSNES,)
6.1) _2al[kl(l)1+p2 s e 1+ Pe

Max | EilX (p1 + p2), ks(ps)] |,

where Max | Ei[X(p1 + p2), ks(ps)] | is the maximum absolute value of the
second derivative of Ei[X(p1 + p2), ks(ps)] with respect to X, and a is equal to
E\lley(py/(p1 + p2)), ka(pe/(p1 + pe))]. Now an examination of the curves
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given in section 6 indicates that, for fixed ps and ks , the maximum curvature of
E\[X(p1 + p2), ks(ps)], considered as a function of X, is a monotone decreasing
function of k; . Since this curvature is negative, this geometric observation is
equivalent to

62 Max | Ei[X(p1 + p2), (ks + D(pa)]|
5.2
< Max | Ei[X(p1 + p2), ks(ps)] |,

although it is not necessarily true that

| B ai(pr + o), (ks + D(@2)] | < | Eilea(pr + ), ka(p)] | -
Moreover,

(53) Eq[ky(py), kz(ﬁbz), ks(ps)] < Eq[ky(py), ka(p2), (ks + 1) (ps)].

From (5.1), (5.2) and (5.3) one readily obtains that the absolute value of the
percentage error of the approximation to Ei[ki(p1), ka(p2), ks(ps)] is bounded by
a function, say Uilki(p1), k2(p2), ks(ps)], which is a monotone decreasing function
of ks as ks increases. It should be noticed that the results of 4.2 have already
shown not only that this upper bound for the percentage error approaches zero
as ks becomes infinite, but also that the absolute difference between the true and
approximate values approach zero as ks becomes infinite.

Computation of Uylki(p1), k2(ps), ks(ps)] is very time consuming because of the
difficulty in obtaining Max | Ei[X(p: + ps), ks(ps)] |, and because the direct
computation of Eilki(p1), ka(ps), ks(ps)] is laborious when any of ki, k, and ks
are much larger than 2 or 3. In order to surmount these difficulties and still
give some indication of the behavior of Uilki(p1), kx(p2), ks(ps)], the following
expedients were adopted:

1. The values of k; , k» and ks were each fixed at 5,

2. Max | E3[X(p1 + p2), ks(ps)] | was obtained by graphical means, namely
drawing the slopes of the appropriate curve in section 6, graphing these slopes
and then taking off the maximum slopes of these curves.

3. Eilky(p1), ka(ps), ks(ps)] was replaced by its approximation,

El[a(pl + 102); ks(ﬁl’a)],
in the computation of the percentage error. This new bound will be denoted
by UtTki(p1), ka(ps), ks(ps)].

4. Carefully chosen values of U [ki(py), ka(p2), ks(ps)] were plotted on trian-
gular coordinates, and contour lines interpolated and extrapolated to cover in
large part the range of p;, p. and ps .

The use of the third of the above listed assumptions is no detriment to the
usefulness of the results since

Ewl] — Bill )
E.l] — Eil] _ E[] < Us [k1(p1), ka(ps), ks(ps)] »
E|] _ Ewnl[] — E.[] ~— 100 — Uf[k1(p1), k2(p2); ka(ps)]’

! Ela[]
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where Ela[ | = Eila(pr + p2), ka(pa)] and Ei[ | = Eilky(p1), ka(ps), ks(ps)].
Since Ui[ ] is a monotone decrease function of /s , this new bound on the per-
centage error is also monotone decreasing for increasing k; . Absolute values
were not required in this derivation since Ei,[ ] is always greater than or equal
to Ey[ ], as is apparent from (5.1) and an examination of the curves of section
6. The contours of {U1 [5(py), 5(pe), 5(ps)] are shown in Fig. 1. The interpreta-
tion of this figure is very straightforward. For example, for p; < .5, the value

1 .9
s .2 .8 - %
3 <N\ 7
o4 o6 1,04

o5 5

06 04
07 03
8 2

09 01

01 02 03 04 .5 .6 07 .8 09

oJs s 2,06

F1. 1. Contours oF UF[5(p1), 5(ps), 5(ps)] CONSIDERED As A FuncTron
OF Pi1, P2 AND P3

of Ut [5(p1), 5(p2), 5(ps)] is less than 5.09,. Making use of the definition of
Uil ], and especially its monotone characteristic, one can then say: the ap-
proximation for Ei[5(p1), 5(p2), ks(ps)], where ks > 5, ps < .50 is in error by not
more- than 5.39,. Moreover, as has been already observed Eila(p: + p2),
ks(ps)] is always greater than or equal to Ei[ki(py), k2(p2), ks(ps)].

It will be noticed from Fig. 1 that Ui[ ]is increasing steadily as ps approaches
1. It has been demonstrated by McCarthy [5] that this behavior of the upper
bound does not mean that the percentage error itself becomes larger as p; ap-
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proaches 1. As a matter of fact, for fixed k;, k; and ks, the percentage error
approaches zero as p; approaches 1. However, this demonstration does not
furnish any reasonable bounds with which to fill in the lower left hand corner of
Fig. 1. This fact is not as serious as it may at first seem because there is nothing
to prevent one from reordering the boxes. For example, consider E;[5(.2),
5(.2), 5(.6)]. From Fig. 1, the error of the approximation for this quantity,
namely Ey[E;[5(.5), 5(.5)](.4), 5(.6)], is not more than approximately

7.5/(100 — 7.5) = 8.19%,.

On the other hand this same figure shows that E[E1[5(.25), 5(.75)](.80), 5(.20)],
which is also an approximation to Ei[5(.2), 5(.2), 5(.6)], is in error by not more
than approximately .8%. Consequently one would choose the second ordering.

The procedure which has been used to obtain an upper bound on the percent-
age. error of the approximation to Ei[k:(p1), k(p:), ks(ps)], b, and k. fixed and
ks greater than or equal to that integer at which the bound is evaluated, can also
be applied to Ej[ki(p1), k2(pe), ks(ps)]. All the assumptions remain the same
and in this case the bounds corresponding to U;[ ]and Uf[ ] are denoted by

Usl ]and U;[ ]. Asin the case of Uil ], we have
Es[] — Egl]
Bl — Exl] _ " Eull  _ Uslku(py), ke(ps), ks(ps)]
BT L E0- B0 100 '
Ey(]

Here the approximation, Es[b(p, 4 ps), ks(ps)], is always less than or equal to
the exact value, Eslki(p1), k2(ps2), ks(ps)]. The contours of Us [5(p1), 5(p2), 5(ps)]
are shown in Fig. 2. In using U;[5(py), 5(p2), 5(ps)] it is sometimes advan-
tageous to reorder the boxes. For example, consider E;[5(.2), 5(.2), 5(.6)].
Fig. 2 shows that, as an approximation, E.[E,[5(.5), 5(.5)](.4), 5(.6)] is in error
by not more than approximately 9%,. However, E.[E,[5(.25), 5(.75)](.80),
5(.20)], which is also an approximation for Es[5(.2), 5(.2), 5(.6)], is in error by
not more than about 7%,. There is a gain here, but it is not as great as the cor-
responding situation for E;[5(.2), 5(.2), 5(.6)].

As has already been stated, one may minimize the error by correctly choosing
the two boxes which are to be combined first. Some discussion will be given
here of a procedure for choosing these two boxes. Of course an experimental
scheme may be used which makes use of the fact that the approximation to
Er[ki(p1), ko(p2), ks(ps)] is always an overestimate. In other words, that grouping
s used which gives rise to the smallest value of the approximation. However,
this can be replaced by a few preliminary computations.

As can be seen from (5.1), the error of the approximation depends upon two
quantities, namely the variance of the two box situation obtained by combining
two of the boxes, and the maximum value of the second derivative of the curve
representing the function Ei[X(p, + p2), ks(ps)] over the proper range of X
vhlues. The error will be zero of Ei[X(p1 + p,), ks(ps)] is either a constant or
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linear in X over the range of X values in which one is interested, that is k; <
X < ki+ ks — 1,k < ko. If this is not possible, then one wishes to make it
as near so as possible, subject to the restriction that

U?[kl(pl/(pl + Pz)), ks(pe/ (p1 + p2))]

is not unnecessarily large.

ok i 6
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F16. 2. CoNTOURS OF U;'[S(px), 5(p2), 5(ps)] CoNSIDERED As A FuNcTIiON
OF Pi1, P2 AND P3

An indication of the relationship between the boxes for both linearity and con-
tribution to variance can be obtained from expressions (3.10) and (3.11). Thus
for each box one computes k;/p; and k(1 — p.)/p:. Then in order to most nearly
achieve linearity one orders the boxes in accordance with the increasing order of
k:/p: and combines them in that order. If there is a tie between two or more
boxes with respect to the k./p; ordering, then one orders these ‘“‘tied” boxes in
accordance with increasing k(1 — p))/p:.

Some computations have been carried out to illustrate these points and they
are given in Table 1. The notation ((2, 4), 6) means that one first combines the
boxes with integers 2 and 4, and then combines this result with the box with
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associated integer 6. All values in this table were obtained by direct computa-
tion. No use of the curves was made.

In these three situations, one obtains the values given in Table 2.

Thus in the first case there is nothing to choose with respect to k./p;, but
k(1 — p;)/p} indicates the ordering ((6, 4), 2). Actually the percentage error
in this instance is 1.0 as compared with 1.7 and 2.4 for the other two orderings.
In case two, ki/p; indicates the ordering ((2, 6), 4). Although this does not
turn out to be the best ordering, Table 1 shows that the ordering in this instance
makes little difference. In the last case, the indicated ordering is ((2, 4), 6)
and the percentage error for this is zero, as opposed to 1.3 and 1.6. Since at
any stage in the operation of combining boxes two at a time (4.13) holds, the

TABLE 1
Effect of Order of Combination on Error of Approximation

- P ?a % Error of Approximation
1{:1 %32 k/f Eulk1(p1), ka(pa), Ka(ps)] Order of Combination
((2,4),6) ((2,6),4) (4,6),2)
2 4 6 6.96 +1.7 +2.4 +1.0
4 6 2 3.92 +0.3 +0.5 +0.5
6 4 2 3.77 +0.0 +1.3 +1.6
TABLE 2

j 1/6 1/3 1/2 1/6 1/3 1/2 1/6 1/3 1/2
k; 2 4 6 4 6 2 6 4 2
ki/p: 12 12 12 24 18 4 36 12 4
k(1 — p)/p? 60 24 12 120 36 4 180 24 4

above procedure will also give the minimum error for the approximation to
E3[ki(p1), ka(ps), ks(ps)]. Moreover, the approximation for this quantity is always
an underestimate of the true value, and therefore that ordering should be taken which
guves the greatest value for the approximation.

When the error of the approximation to Ei[ki(py), - - - , ka(pa)] and

En[kl(pl), Tty kn(pn)],

for n greater than three, is considered, it is immediately obvious that the general
considerations already given in this section still apply. In addition to these
considerations, there is the difficulty that errors may cumulate. However, the
results already quoted for three boxes, in conjunction with those which are to
be given in 5.3, indicate that this cumulation is not serious. There are two
factors which eventually prevent (i.e. as more and more boxes are considered)
this percentage error from becoming unduly large, and, in fact, make it approach
zero. These are:

1. The value of ps; will, in most instances, be decreasing as more and more
boxes are considered (see Fig. 1), and
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2. The true value is usually becoming larger and larger as more and more boxes
are considered.

In order to minimize the error, the following precautions should be taken:

1. At each stage in the computation, try to avoid, as much as possible, making
readings where Ei[X(p: + pz), ks(ps)] is curving sharply. If all readings are
made where the curves are nearly linear, the percentage error will be very close
to zero. On the other hand, if many readings must be made where the slopes
of the curves are changing most sharply, larger errors must be expected.

2. Use that ordering of the boxes which provides the minimum value for the
approximation to E,[ ] or the maximum value for the approximation to E,[ ].

3. In order to approximate the ordering which (2) would give, compute
ki/p: and ki(1 — p;)/p> at each stage at which two boxes are to be combined
and use the rules of procedure already given for three boxes.

5.3. Error of the approximation for E k™). Repeated applications of the re-
duction formulae (4.34) and (4.35) allow one to evaluate E,[k"] by means of the
solution for the two box case, or more explicitly, by means of the curves given in
section 6. Here the error of this approximation will be discussed primarily from
a computational point of view.

E,[1"] can be treated in detail since it is possible to obtain exact values for this
expression by means of (4.1). This has been done by McCarthy [5], but the
details will not be repeated here because of lack of space. The results simply
add more credence to the conjectures which will soon be made.

When % is taken to be larger than one, the difficulty arises that it is almost im-
possible to compute the exact value of E,[k"] in a large number of cases. Con-
sequently it was necessary to devise an experimental model to estimate these
exact values so that the amount of error would be known within bounds. A
set of 10,000 punched cards' was obtained on which were recorded 100,000
random numbers drawn from a rectangular distribution. Thus if the cards are
ordered on a particular set of columns, and one reads off the digits 0-9 on another
specified column, one card at a time, it is equivalent to using a table of random
numbers such as those prepared by Tippett [7]. By the use of these cards, it
was possible to run off on an IBM Tabulator any desired number of experiments
in order to obtain an experimental distribution from which to calculate an es-
timate of E,[k"] and the variance of this estimate. For example, in determining
an estimate of E;[2°] one hundred experimental trials were made, as described
above, with the following results:

- Number of Trials

Required Frequency
2 23
3 32
4 31
5 11
6 3

1 These punched cards were prepared at the Mayo Clinic, Rochester, Minn., under the
direction of Doctor Joseph Berkson.



BOX PROBLEMS 371

From this distribution the estimate of E;[2°] is 3.39, with a variance computed
from the distribution of .011. The 959, symmetric confidence limits for the
mean, computed from the Student ¢-distribution, are 3.17 and 3.61. Such
estimates will be used in the remainder of this section. It should be pointed
out that in order to prevent a prohibitive amount of machine time, it was

TABLE 3
Percentage Errors for E, [k
sk n 3 4 5
1 1 - - -
2 + .7 + 2 - .3 ++13.6
5 + 1.1 - 3.1 +5.7 + .6 +410.7
10 - 2.9 +5.1
2 1 — 5.6 - 4 + 1.3
2 — 4.6 — 4.4 +4.4 + .6 +10.4
5 —4.6 +1.7 + 3.0 +49.3 + 7.9 +14.8
10 -3.7 +2.1 - .3 +5.5 + 4.3 +10.7
15 + 1.0 +47.2
20 -2.5 4+2.4
3 1 —18.2 —-12.7 - 3.1
2 — 6.3 —16.5 —7.3 -2.9 4+ 6.0
5 -9.7 —-2.2 —-10.7 —5.5 4+ .8 4+ 5.8
10 - 2.1 + 3.1
4 1 —12.0 —15.6
2 —13.6 6.1 —11.6 — 3.9
5 —-13.9 -—-7.2 - 9.9 —4.0
10 — 8.9 -—-2.6 - 6.4 — 1.2
5 1 —8.8
2 —18.1 — 6.0
5 —-12.5 — 5.6
10 — 89 —2.9

necessary to use many of the same runs to determine values of E.[k"] for different
values of s, k and n. This means that the errors are correlated to some slight
extent, but it would be extremely difficult to determine how much.

A summary of the computed percentage errors for various values of s, k and
n is given in Table 3. In the instances where there are two entries, they are
calculated on the basis of the 959, confidence limits for the experimental mean.
These confidence limits are symmetric and were determined by using the Student
t-distribution. For k equal to 2 and 5 the distribution contained 100 trials,
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while for & greater than 5, the distribution were made up of approximately 50
trials.

The computations given in this table show for various values of s, & and =,
the percentage error of the approximation for E,[k"]. In addition to showing
the values of these percentage errors, the computations lead one to conjecture
that

1. For fixed s and £, there exists an ny such that for n > n, the absolute value
of the percentage error of the approximation for E,[k"] is a monotone decreasing
function for increasing n. It was shown by MecCarthy [5] that this absolute
value approaches zero as n approaches infinity for E,[1"], and in fact, that the
difference between the true and approximate values approaches zero.

2. For fixed s and n, there exists a ko such that for & > k, , the absolute value
of the percentage error of the approximation for E,[k"] is a monotone decreasing
function for increasing k.

6. Computation.
6.1. Curves to aid in the computation of Eilki(p1), ka(p2)]. In 3.1 it was shown
that Eilki(py), k2(p2)] is equal to
ks

B g+ 1, k) + 2 Loy + 1, R,
D1 P2

where I.(p, ¢) is the Incomplete Beta-Function as tabled by Karl Pearson [6].
There are three principal difficulties connected with the use of these tables as
they apply to the approximations of this paper. These are:

1. The tables must be available,

2. The tables give directly only values for integer or half-integer values of
ki and k,, and

3. Since many different values of Ei[ki(p1), k2(p2)] are often required to obtain
a single approximation, the computational burden would be very heavy.
In order to surmount these difficulties, it seemed advisable to prepare curves
giving the values of Ei[ki(p1), ka(ps)] for various values of ki, k2, p1 and ps.
These curves would give values of Ei[ ] with sufficient accuracy for most prob-
lems not only for integer values of k; and k., but for all values over the range
considered.

Such curves have been prepared by computing Ei[k:(p1), ks(ps)] for integral
values of k; and %, (for fixed p; and p.) and then joining these points with a
smooth curve. A summary of the graphs prepared is as follows:

ky ko P1 Y23
Fig. 3 1,2,.--,25, o ,2,.--,35 .50 .50
Fig. 4 1,2, -+, 20, 1,2, ---,35 40 .60
Fig. 5 1,2,---,15, « 1,2 ---,85 20 80
Fig. 6 1,2, -, 10, o 1,2, --+,15 80 20
Fig. 7 1,2,.--, 7, » 1,2,---,15 .60 40
Fig. 8 1,2 -+, 8 o 1,2, --+,15 50 50
Fig. 9 1,2,--+, 6, 1,2, ---,15 40 .60
Fig. 10 1,2, , 5, » 1,2,---,15 .20 .80
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Figure 3
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Figures 8, 9, and 10 are simply portions of figures 3, 4 and 5 drawn on an ex-
panded scale in order to permit greater accuracy in reading the curves. Also
figures 6 and 10 and figures 7 and 9 form pairs in that a member of one pair can
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be obtained from the other member of the pair. Both members of the pair are
given on the expanded scale in order to facilitate interpolation. Values of the
mean for combinations of k; and k. not given directly can usually be obtained
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with sufficient accuracy with linear interpolation.

Interpolation for p, and p;

should be done graphically since in some instances linear interpolation would be

extremely poor.
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As an example, suppose one has two boxes with k1 = 2, k» = 5, p1 = 40 and
ps = .60. Consulting Fig. 9, one goes along the horizontal axis to &k, = 5.
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Following up the vertical line through this point to the curve k1 = 2, E1[2(.40),
5(.60)] is read as 4.25. The actually computed value to four decimals is 4.2224.
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It is immediately evident that Es[ki(pi), k2(p2)] can also be obtained from the
curves since
Eolki(py), ka(p2)] = (ko/p1) + (ko/p2) — Erlki(py), ka(p2)]-
6.2. Use of the curves to obtain exact values (i.e. subject only to the error of reading
the curves) for Eilki(pi), k:(p2), ks(ps)]. Referring back to (4.8), one obtains
that

(6.1) El[kl(Ih), kz(Pz), ks(pe)] = ; w; B (py + pz), ka(ps)];
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FIGURE 8
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where =; is the probability that either k; balls are obtained in the first box or k,
balls are obtained in the second box on the z; th throw for the first time, assuming
balls can go only in boxes one and two. z; takes on values

kl,k1+1)"';kl+kZ—1

when ki < k. Now m; can be easily computed and Ei[zi(pi + p.), ks(ps)]
can be obtained from the curves. The only difficulty in using this procedure
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arises when the range of z; is large. Then a large amount of computation is
involved.

In order to illustrate this computation, consider E:[2(.1), 3(.1), 5(.8)]. Here
x; takes on the values 2,3 and 4. Wehavez; = 2,1 = 2/8; 2, = 3, 7 = 3/8;
and z; = 4, =3 = 3/8. From Fig. 6

Ei[2(.2), 5(.8)] = 5.09
Ei[3(.2), 5(.8)] = 5.88
Ei[4(.2), 5(.8)] = 6.11.



380 PHILIP J. MCCARTHY

FIGURE |O
'l
E [K (20), K (.so)]
I ] 2 ECD 4
16 y
A
4 l‘
BRI NN RN { 1 TP iTT
INNEEEENEE NN I T [N
EEENEEEEEEREN! I T IHREREE 4
0T Tt TTT T T T1T T /

14 7 g
. N // K74,
iiiiiiiiiiiiiiiiii‘liiiiiiii’:iiiii!ii|lii/i/j/|i H A

'Z,lll| 117 111 T IRRR} T 17 RN Tt N4 11 117 Illl}
: N o / KIEJ

LA r//.
N
T
10
Vi
v/ L I
8 Cann
1
6 # .
A7 -
[ ' e
4 . ’// ,//_ }
v
w[

2

V.

o ! 2 3 4 5 6 7 8 9 1o 1l 12 13 14

Consequently, Ej[2(.1), 3(.1), 5(.8)] is equal to
(5.09)(2/8) + (5.88)(3/8) + (6.11)(3/8) = 5.77.

Using computed values for Ei[z:(.2), 5(.8)], Ei[2(.1), 3(.1), 5(.8)] is equal to
5.75. Thus the use of the curves has only led to an error of .3%,.
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6.3. Use of the curves in approximating Eilki(p1), <« , ka(pa)],
En[kl(pl)’ ) kn(p'n)]

and EJk™. In illustrating the application of the curves and the reduction
formulae (4.34) and (4.35), one example will be worked through in detail. This
example will provide illustrations of all the details involved in such problems.
Consider E45°]. Applying formula (4.34) :

62) E5 ~ 5/4 {E1[54] + B, [(§-5 - E‘é54]>3, (5 - E‘fﬂ)]}.

Consequently, the first step must be to compute Ei[5*]. Using the principles of
4.4

(6.3) Ei[5*] ~ E\[E[5%](.50), 5(.25), 5(.25)].

From Fig. 8, Ey[5°] = 7.55. Therefore E[5"] is approximately equal to
Ei[7.55(.50), 5(.25), 5(.25)].

Now applying the same principle again,

(6.4) E\[5'] ~ E\[E\[7.55(3), 5(3)1(.75), 5(.25)].

By the use of figures 7, 8, 9 and 10, graphical interpolation may be applied to
find that E\[7.55(%), 5(3)] is equal to 9.84. The approximation procedure now
says that

(6.5) E\[5'] ~ E;[9.84(.75), 5(.25)].
Again applying the curves and using graphical interpolation for p; and p.,
E\[5'] =~ 11.88.
Substituting this value in 6.2), ‘
(6.6) E5Y) ~ % {11.88 + Hy(2.71, 2.71, 271, 2.03]}.
Now formula (4.35) must be applied to Es[2.71, 2.71, 2.71, 2.03], i.e.
Es[2.71,2.71, 271, 203] =~
(6.7 %{El[(z.n)”] + E[(g 271 — @@%@)2 (2.03 - Mﬂ}

E:1[(2.71)%] can be evaluated by the same method used for Ey[5%]. This leads to
the result

(6.8) E3[2.71. 2.71, 2.71, 2.03] ~ % {4.40 + E,[1.86, 1.86, .56]}.
Once more applying (4.35)
E,[1.86, 1.86, .56] =

g{E‘[(l'%)z] + Bi[2-1.86 — Ei[(1.86)%), (-56 - M)]}

(6.9)
2
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E\[1.86, 1.86] is equal, by the curves, to 2.25. Therefore
(6.10) E.[1.86, 1.86, .56] o~ § {2.25 + Ei[1.47, — .56]}.

However, since the convention is observed that a negative quantity is replaced
by zero,

(6.11) E\[1.47, — .56] = Ey[1.47,0] = 0.
Now working back through these various expressions,
(6.12) E5°] ~ £ [11.88 + % [4.40 + §[2.25 + 0]]] = 27.81.

From, Table 2 it can be seen that the percentage errors for this approximation
to E4[5°], corresponding to the 959, confidence limits for this quantity, are —4.0%,
and —9.9%,.

This example has illustrated most of the situations which will arise in the use
of the approximations of this paper.

6.4. Miscellaneous approximation formulae useful for computation. There
exists a relatively simple approximation to Ei[k:i(p1), k2(p2)], 1 + p2 = 1, when
p. is near one. Using (3.8) and making some obvious simplifications, one ob-
tains

_ kz 1 . (k‘] + k‘z)' l_ i k1~1 . f\ke—ley
Eilki(p), k2(po)] = e + N CE DY) A = )™ — py) dt.

Since p; is near zero, (1 — #) can be replaced by one, and the result is obtained
that

~k 1 & (ky + ko) !
E\ki(py), ka(p2)] = 22 P p1' (key + Di(ke — DU

An approximation to the Incomplete Beta-Function, given by Tukey and
Scheffé [8], may also prove useful at times. The expression, changed slightly
by those authors since publication, is

Lin—r+1,7r)~1— 1 Z‘f'_le-“””d“’
b ! 2I‘(7‘)fo 2 X

;4 1
[(1 —b)njz_lil
2
Xa = 21 = + 2r.
‘ Vb
The right hand side of the first expression will be recognized as the x” distribu-
tion with 2r degrees of freedom. In the event that the tables of x* are not ade-
quate for the application of these expressions, the approximation of Wilson and
Hilferty [10] should be used. This approximation states that (x°/ »Y where
v is the number of degrees of freedom, is approximately normally distributed
with mean 1 — 2/(9») and variance 2/(9»), for large ».

where
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