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That (7) is indeed satisfied now follows from (5) and the finiteness of the function
1(?) since for a large enough integer M one has

i P(n = N |F) exp [r1 log N — N log ¢(t)]

NemM

< Y P(n=N|F)exp [Nty — Nlogo(t)] < .

Neu= M

Thus the expected value on the extreme'right in (8) is finite. This completes
the proof of the theorem.
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A SIGNIFICANCE TEST AND ESTIMATION IN THE CASE OF
EXPONENTIAL REGRESSION

By D. 8. ViLLars!
United States Rubber Company, Passaic, N. J.

1. Introduction. The principal problem under consideration in this note
may be described as follows. Consider a variate, 2, whose distribution for &
given value of a fixed variate, ¢, is:

1 -
= _—(z—atbe~kt)2|242
@) fely = = 7me
where a, b, and k are real-valued parameters. The regression of z on ¢ is exponen-
tial, for it follows from (1.1) that the expected value of z, given i, is:

(1.2) EG¢|) = a — be™,

On the basis of a random sample Oy(21, t1; 22, b ; -+ - ; 2x, L) it is desired to
test whether & = O or. . The problem of “fitting” a curve,z = a — be™™,
to the sample (3. e. of estimating a, b, and k from the sample) will also be treated.

As an illustration of how the statistical problems described above arise in
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practice, let us consider a typical situation in industrial chemistry. Let the
quantity, 2, be a property of a latex and let the quantity, ¢, be time. Suppose,
furthermore, that measurement of ¢ is without error but that measurement of z
is subject to error; let it be assumed that the observed value in a measurement of
z is a variate having a normal (Gaussian) distribution about the “true value,”
E(z). On basis of N independent measurements, 2, 22, - - - , 25 of 2 at times,
t,%, -, ty, respectively, the experimenter may wish to test the hypothesis
that ¥ = 0 or . If this hypothesis is true the suspected exponential relation
between 2z and ¢ does not hold; in this case E(z) is a constant (a — b, or @) and
estimation of the constant from the data is quite straightforward. If the data
conflict with the hypothesis that £ = 0 or «, the experimenter may wish to
estimate the parameters, a, b, and k (4. e., “fit” the curve,z = a — be™, to the
data).

The problems considered in this note will be treated only for the case where N
is an even integer (> 6) and the times 41, &, - - - , {¥ at which measurements of
2 are made are such that

(1.3) ba — ba1 = A, a constant, (@ = 1,2, -+- ,n = N/2).
The odd time intervals, &3 —~ &, & — &, ete. do not have to be equal.

2. Test of the hypothesis that k = 0 or . The space, say @, of admissible
values of the parameters in (1.1) is: "> 0,—w <a,b k< +o. Under the
null hypothesis the admissible values of the parameters lie in a subspace of Q,
say , specified as follows: >0, —o <a,b<—4ow,k=0,or ®.

Let y; = zoand @5 = 24, (@ = 1, -+-,n = N/2). From (1.1) and (1.3)
it follows that the n pairs z; , ¥; are normally and independently distributed with

common variance, ¢°, that z; and y; are independent (j = 1, 2, ---, n), and
that
2.1) vi = h -+ mp;

where »; = E(y,), u; = E(x;), h = a(1 — ¢™**), and m = ¢**. The space,

¢/, of admissible values of the parameters in the joint distribution of z;, y;,
G=1,--- ,n),is:0” >0, pi=h+mpj,—0 <h<+wo, —wo <u;,r<
4+ 0;0 <m < . Thesubspace of @, say o', associated with the null hypoth-
esis is: ® > 0, »; = uj = ¢, where ¢ = a — b or a according as k = 0 or .
In &, the expected values of  and y lie on a line; in ’ they lie in a single point.
It is clear that by transforming the original sample Ox(21, t1, ---, 25, tx) to a
sample 04(21, ¥1; *** ; Tn, Yn) We have reduced the original problem.to the
familiar problem of linear regression in which there is “error in both variates”.

The slope of the “line of best fit”’ to the sample points (21, ¥1; -+ ; T, ¥n)
is [1]: ‘
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where
8oz = Z (xi - 3-7)2
1

r

8oy =22 (2 — D)(y; — ¥)

1

Sy = ; (y; — g)s
= 21: z;j/n

7= i

(71 is an estimate of m in (2.1)). Since m = ¢ ** (where & and A are real), it is
intuitively clear that when m is non-positive the sample 0, does not conflict
with the null hypothesis. The null hypothesis can be tested by means of the
statistic [2, 144]

_ 8ux + 2m8S,, + M S,

T m2S. — 2mSy + Sy

The null hypothesis is rejected if 7 is positive and F’ is large. Percentage points
of the distribution of F’ are given in [2, 146] for n = 3 (1) 15 (5) 30, 40, 60, 120.
and for significance levels, 0.001, .01, .05, .10, and .20. These significance
levels, however, were computed for use in cases where the sign of m was irrele-
vant. It happens that to test the null hypothesis under consideration in this
problem at a significance level « we should use a critical value of F’ (given in
[2]) corresponding to a significance level 2 «. The reason for this is that when
the null hypothesis is true the quantities m and F’ are independent and the
probability that 7 is positive is +—thus the chanee of rejecting the null hypoth-
esis is 1(2a) = a.

2.3) F'

3. Estimation of a, b, and k. If the data do not support the hypothesis that

= 0 or «, the experimenter may wish to estimate @, b, and k. General alter-
native methods of estimating these parameters will now be considéred.

(1) Estimate a, b, and % from Oy by the method of least squares; <.e., solve
the simultaneous equations 8S/da = 0, S/0b = 0, and a8/d8k = O for a, b,
and %, where

(3.1) S =2 (2: — a + be*4)%
=1

The value of & obtained by this method of estimation will not in general be the

same as that computable from 7 in (2.2) and used for the significance testing.
(2) Estimate k& by means of (2.2) and the relation m = ¢, then substitute

this estimate into S of (3.1) and estimate ¢ and b by means of least squares.
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(3) Estimate & as in (2) and choose, as an estimate of a, the intercept of the
“line of best fit” for 0,-. Then substitute these estimages of @ and & into (3.1)
and estimate b by means of least squares. In this case the estimate of b comes
out to be:

II

N - N »
(32) > Ha =z /5
1 1

where 4 and £ are the estimates of a and %.

If the values, &, , * -+ , tvaresuch thattiy — 6= A, (6 = 1,2, .-+ , N — 1),
the following estimation procedure might be used.

(4) Let

#
€=12-.:--,N— 1),

Ys = Zin1
T =2

and treat the (N — 1) pairs of values (z1, %1; - ; T¥—1, Yn—1) as a sample of
size (N — 1). Using this sample, estimate &, @, and b in a manner similar to
that in (2) or (3). It should be noted that this sample is not a random sample
owing to the dependence among the (N — 1) elements.

The procedure in alternative (1) is very laborious and time-consuming. The
procedure in (2) and (3) can be carried out quickly and easily. In (1) the
method of least squares yields the same results as would be obtained from appli-
cation of the method of maximum likelihood. Examples of estimation by proce-
dures (3) and (4) are given in the next section.

4. Example. The accompanying table lists experimentally observed values
of a property of a latex obtained at biweekly intervals. Using the first, third,
efc., quantities as z; and the remaining ones as y; , the sums of squares and prod-
ucts of deviations are found to be:

8., = 035510 r' % = 09195
Sy = 025645
8, = 023414 g = .9365.

Substituting these values in equation (2.2) and computing the other constants
from equation (2.1) we get: m = 0.791596, a = 1.0009, and k¥ = 0.1168. The
F’ ratio is (2.3) 17.03. Entering Table I of [2], we find that for eight point pairs
a value of F/ = 16.5 may be expected only one time in one hundred. On ex-
cluding the poss1b111ty of negative values of m, this corresponds to the 0.5%
significance level. The exponential relationship is thus concluded to be highly
significant.

Evaluation of b by equation (3.2), method 3, gives 0.2560, if all 16 values are
used. The equation calculated from the data is thus:

4.1) z = 1.0009 — 0.2560 ¢ "%,
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The alternative procedure, method 4, would be to use all the z; points for the
estimation of ¢ and k. This leads to the following values of the computation
quantities:

16

&f=§d—¢a=a%%m; £ = 0.9223
15

Sy = g} Titipn = 036924
16

Sy = Z;x% — 2} = .035436; 7. = .9381.

Note that the difference S,y — S.- used in the formula for m cancels out all inter-
vening squares between the first and last.

2 2
Sw - Szz = X1 — Zie.

TABLE I
R4 t t t
weeks “ . weeks “ weeks # weeks' “
1 776 9 .939 17 .942 25 .955
3 -.8562 1 .904 19 .938 27 .993
5 .850 13 .930 21 .979 29 .985
7 .869 15 .948 23 | .975 31 1.013

However, the data excluded thereby are in effect included in the new Sy .
The final values obtained by the fourth procedure are: m = 0.796596, a =
1.0000, and & = 0.1137. The writer does not know whether the peculiar trans-
ference of data from §,, — S to Sx characteristic of procedure 4 improves the
accuracy of the fit or hurts it. It is his personal preference to use procedure 3.
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gratitude to Drs. T. W. Anderson, Jr. and David F. Votaw, Jr. for many sug-
gestions and discussions concerning this problem and for much help in clarifying
the presentation of the concepts.
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