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A NOTE ON THE FUNDAMENTAL IDENTITY OF SEQUENTIAL ANALYSIS

By G. E. ALBERT
U. 8. Naval Ordnance Plant, Indianapolis

1. Introduction. Let {z;}, ¢ = 1,2, 3, --+), be a sequence of real valued
random variables identically distributed according to the cumulative distribution
function F(z). Define the sums Zy = 2; + 2, + --- + zy for every positiwe
integer N. Choose two positive constants a and b and define the random vari-

able n as the smallest integer N for which one of the inequalities Zy = a or-

Zy < —bholds. The notations P(u | F) and E(u | F) will denote the probability
of u and its expectation respectively assuming that F is the distribution of the z;.

Wald [1] has established the results contained in the following lemmas.

Lemma 1. If the variance of F(z) is positive, P(n < o | F) equals one.

LemMma 2. If there exists a positive number & such that P(e* <1 — §|F) > 0
and P(e* > 1 + 8 | F) > 0 and if the moment generating function ¢(f) = E(e* | F)
exists for all real values of t, then o(t) has one and only one minimum at some finite
valuet = t,. Moreover, ¢”'(t) > 0 for all real values of t.

It is the purpose of this note to establish the following extension of the validity
of certain results given by Wald [1], [2].

TrreorEM." Under the conditions of Lemma 2 the identity

m Efe™e(] " | F} =

1Wald’s results show (1) to be valid for all complex ¢ in the domain over which | ¢(f) | Z 1
and the validity of the differentiation clause for all real ¢ in that domain. Thé import-
ance of the present éxtension arises from the fact that, if E(a:l F) 5 0, then 0 < o(t) <1
on a certain interval of the real axis.
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18 valid and may be differentiated with respect to ¢t under the expectation sign any
number of times for all real values of t.

Proor. The notation # will be used consistently to denote the ¢ value at which
¢(t) has its minimum.

The proof ‘of the theorem follows Wald’s methods quite closely and certain
of the results given in [1] and [2] will be used here without discussion.

Consider first the validity of (1). For an arbitrary positive integer N let Py
be the probability P(n < N | F) and let Ey(u | F) and E;(ul F) denote the
conditional expectations of u subject to the respective conditions n < N -and
n > N. Wald [1] has shown that for any finite real value of ¢

2 PyEx{e™ o)™ | F} + (1 — Py)le@) ™ Ex{e®™" | F} = 1.
Since lim PyEx{lp(t)]” "exp(Zat)} is the left member of the identity (1), it suffices

Nu=0o

to demonstrate that
@) lim (1 — Pw)le()] ™" Ex{e™ |F} = 0
N=0

£or all real values of &.
Since 1 — Py tends to zero with increasing N and the expected value Ey

involved in (3) is bounded independently of N for any fixed ¢, the only source of
difficulty in proving (3) lies in the fact that ¢(¢) may be less than unity on an
interval of the real axis. That difficulty is easily avoided by the following
device. Define the function
@ 6@ = @I [ _e™aF).
Obviously G(z) is a distribution function whose moment generating function
() exists for all real ¢£. Its mean is zero and its variance is positive as will be
seen from the equations E(x | @) = ¢'(t0) /e(k) and E(2’ | @) = ¢" () /e(ts). Tt
follows that () is never less than unity for real values of .

Let Q denote the space of all 2 ,-+ -« , zy and let Q(n > N) be that subset of @

on which n > N. One has
(1 — Py)lo®I™ Ey {™ | F)
f N AF () - - dF (23) f PN G2 - - -dG zw)
Q(n>N) Q(n>N)

f e"¥ dF(z)- - -dF (2y) f ¥ 4G (2) - - - dG(zx)
Q Q

= (1 — QY& ™ Ex{e™ | G}
where s =t — % and Qy = P(n < N|G). By Lemma 1, 1 — Qy tends to

zero as N is increased. Thus, since ¥(s) = 1 for all real ¢ and the expected value
E;{ez’” | @} is bounded independently of N for a fixed ¢, the equation (3) holds

for all real ¢.
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The differentiability clause of the theorem requires the following modification
of a very powerful theorem due to Charles Stein [3].

LemMA 3. Under the conditions of Lemma 2, if the mintmum o(ty) of ¢() is
less than unity, there exists a positive number &, such that

(5) E{exp [nt; — nlog o(t)] | F} < o.

Proor. If G is the distribution of the z;, by Stein’s theorem there exists a
positive number # such that E(e™' | G) is finite. Let Q(n = N) denote the
subset of @ on whichn = N. Then

Pn=N|Q) = [

Q(ne=N,

| 4G(z1) - - dG(ew)

= @I [ & ap)- +dF ()

(n=N)
= P(n = N|F) e;cp [min{aty, — bto} — N log o(to)].
It follows that
Efexp [nty — nlog o(t)] | F} < E{e™ | G} exp [— min{aty, — bt}]
and the lemma is proved.

To continue with the theorem, Wald’s proof [2] suffices for the case in which
o(t) = 1. Attention will be given only to the case ¢(f) < 1. As pointed out in
section 2 of [2], the differentiability clause of the theorem will be established if
it can be shown that for any finite interval I of the real axis and any pair of
integers 1 and 7, there exists a function D,,,,(Z,, n) such that for all ¢ in I
one has

(6) Dyry(Zn,m) Z | 0™ Z32" ()] " |
and ,
(7) E{Drlrz(zn ’ n) I F} < oo,

On referring to Wald’s proof and using the inequality —log ¢(t) = —log ¢(%) for
all ¢in I, it is seen that there exists a constant C' and a positive number # such

that the function
Dia(Zn , 1) = Ca"plt)] (e + 675

satisfies (6) for all ¢ in I. To establish (7) use the inequalities (2.4) and (2.6)
in Wald [2] to obtain

E{Drlrg (Zn, n) I F}
® = €3 Pl = NI DN @] Hu (¢ + 54 I}

< C{e2l(t) + ¢ 2 1(—1)} E{ exp [r logn — nloge(t)] | F}.
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That (7) is indeed satisfied now follows from (5) and the finiteness of the function
I(?) since for a large enough integer M one has

i P(n = N |F) exp [r1 log N — N log ¢(t)]

NemM

< ) P(n=N|F)exp [Nt — Nlogot)] < .

Neu= M

Thus the expected value on the extremerright in (8) is finite. This completes
the proof of the theorem.
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A SIGNIFICANCE TEST AND ESTIMATION IN THE CASE OF
EXPONENTIAL REGRESSION

By D. S. ViLLars!
United States Rubber Company, Passaic, N. J.

1. Introduction. The principal problem under consideration in this note
may be described as follows. Consider a variate, 2, whose distribution for &
given value of a fixed variate, ¢, is:

1 —(z—a+be—kt)2 /202

(L.1) 1l = e

where a, b, and k are real-valued parameters. The regression of z on ¢ is exponen-
tial, for it follows from (1.1) that the expected value of z, given i, is:

(1.2) B|) =a — be,

On the basis of a random sample Ox(21, t1; 22, & ; -+ ; 2x, tw) it is desired to
test whether £ = 0 or. . The problem of “fitting”’ a curve, z = a — be™™,
to the sample (3. e. of estimating a, b, and k from the sample) will also be treated.

As an illustration of how the statistical problems described above arise in
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