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Thus,
) =2[1 — P(Z, = t)]

(= b T VO e+ 0 -}

and in view of the identity

Zz (=1 (Z) (w — K" = nl
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this becomes

rizzo=2 = or(P)[pe+rn -k = w0

n! (n/2)(1+1) <ksn

for 0 = ¢t £ 1. The random variable i—) is obviously more peaked about zero

than Z. Since f—: and Z fulfil the assumptions of Theorem 1, it follows that

%’ is more peaked about zero than Z,, , that is
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Setting at = y, one obtains (4.1).
For n — o« the function ¥,(t) approaches asymptotically the probability
P(| X | = tv/3n) for the normalized normal random variable X.! For n = 8
one obtains the following values which indicate a good approximation:

zt)_s_P(lZﬂl = 1) = W,() for ¢t = 0.

t 3998 5254 6711
P(X|=2tv/24) .05 01 .001
Ws(?) 049 0092  .0005.

For smaller values of n, ¥,(f) can be easily computed.

e

A METHOD FOR OBTAINING RANDOM NUMBERS

By H. Burke Horron

Interstate Commerce Commission

The need for large quantities of random numbers to be used in sample design,
subsampling, and other statistical problems is well known. Tippett’s [1] num-
bers have been widely used for these purposes, despite criticism directed at
their lack of randomness. The following procedure may be of interest to those

¢ Cramér, op. cit., p. 245.
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82 H. BURKE HORTON

who wish to develop their own random series. The method described below will
ultimately be used to record extensive tables of random numbers for general use.

Current methods of producing random numbers usually depend upon single
operations of mechanical or electronic devices. These may be described as
“single-stage” random number processes. The numerical results are biased to
the same extent as the devices from which they are taken.

At this point it is desirable to describe a process which may be called “com-
pound” randomization. Assume two roulette wheels arranged in series so that
the first controls the arrangement of symbols on the second wheel, while a turn
of the second wheel determines which of its positions is to be observed. If the
decimal system is used, the first wheel would have 10! “equally likely”’ positions,
and the second would have 10 “equally likely” positions. If three such wheels
were to be chained, the first would require (10!)! positions, the second 10! posi-
tions, and the third 10 positions. In general, if n wheels were to be chained,
the first would require 10(!)"™* “equally likely” positions. It is not practical
to design such a machine.!

One method of surmounting these difficulties is to shift to the binary system
in order to take advantage of the fact that 2! = 2; or, in general, 2()" = 2.
This property makes feasible the chaining of any number of machines in series;
and, furthermore, the machines can be of the same design. If desired, the re-
sults taken from a single machine may be chained. Another important feature
is the ease of handling binary chains by electronic systems.

The words “equally likely”” have been placed in quotation marks thus far to
indicate that the probabilities are as nearly equal as manufacturing precision
permits. Any simple single-stage device will have some bias, and it is this very
lack of true equality that the chaining process is designed to meet. For con-
venience we may take as our binary symbols +1 and —1 rather than the custom-
ary 1 and 0. We adhere to the usual rules regarding the sign of a product.

Let p: be the probability of obtaining 41 in the ¢ trial (or in the ¢** machine
of a chain of machines). 0 < p; < 1. ¢; = 1 — p, represents the probability
of obtaining —1 in the " trial.

Let P; be the probability of obtaining +1 as the product of 7 trials. Q; =
1 — P;is the probability of obtaining —1 as the product of ¢ trials. The follow-
ing relationships can be set down immediately:

P,=p QA =aq
Py = Pr-pe + Q1-¢qe « Q= Pioqe + Q1
P; = P-ps + @-gs Q= P2rqs + Qa-ps

P; = Pi1pi + Qiy-q; Q: = Pia-qi + Qiaepi

1 It has been pointed out by Dr. George W. Brown that a practical solution is possible
using any number base, n, by addition of random digits (0,1, 2, --+ n — 1) modulo n.
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We may calculate the bias, Py — 3, for a chain of k trials:
Py — 3 =3P — Qv

= 3(Pi1- Pk + Que1-Gk — Pro1-@x — Qi—1-Dx)
Factoring, we have
Py — 3 = 3(Pir — Q) (pr — @)
Substituting for Pi—; — Qi—1 and factoring again,
1

P.— 3= %(Pk—z - Qk—2)(pk—1 - Qk-l)(pk - Qk)

Contipuing the process of substituting and factoring, we obtain

Pr—53=53p1— )P — @) - (pr — qw)

(1) k k
Pr—3 =31 i— = 31l @ - D).
a1 (£

We may write the general formula for Py :

1 k
@ Pe=3[1+1en-n]
In the special case where all the p; are equal to a constant, p,
3) Pe= 31+ (20 — DY

This can also be derived directly by expansion of (p — ¢)*.

If any machine, 7, in the chain has no bias (p, = 3, exactly), the chain itself
has no bias, since 2p, — 1 = 0. Note also that if for all 2, 0 < p; < 1, the bias
of the complete chain is less than the bias of any component (single or multiple)
taken from the chain, because | 2p; — 1) | < 1. Or stated another way, the
results taken from any machine, no matter how nearly perfect, can be improved
by chaining with another machine, no matter how biased the latter. Even in
the limiting case, p = 1 (or 0), the magnitude of the bias remains unchanged;
in all other cases it is reduced. The bias of final results can be made as small as
desired by increasing the length of the chain. Compound randomization can be
regarded as an attrition process which may be used to reduce final bias below
any preassigned quantity. If the observations taken from two machines in the
chain should be perfectly correlated, the only effect is to shorten the chain by
two.

In shifting from the binary system to the decimal system, symbol bias will be
introduced. In general, symbol bias will be introduced in passing from a given
positional system to any other positional system, unless one of the number bases
is a rational power of the other.

To illustrate, let us assume that we have a random binary series and wish to
obtain a random one-digit decimal series. It will be necessary to tabulate the
binary series in blocks of four symbols. The quantities will range from 0000
(binary) to 1111 (binary), or from 00 (decimal) to 15 (decimal), with equal
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probabilities. There would be no predominance of either ones or zeros in the
overall binary tabulation, as illustrated in the table below.

Binary System Decimal System
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
Tabulation to this point 25 zeros One of each symbol
15 ones
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15
(Right digit only)
Overall tabulation 32 zeros 0-5, 2 each
32 ones 6-9, 1 each

However, if we look at the right digit of the decimal tabulation, it is clear that the
symbols 0 to 5, inclusive, will occur twice as often as the symbols 6 to 9, inclusive.
The easiest way of correcting for this bias is simply to reject all two-digit decimal
numbers which occur, thereby giving equal probabilities to the ten decimal sym-
bols. The rejection could be accomplished most easily by electronic devices
operating on the binary numbers. All numbers greater than 1001 (binary)
would be excluded through the operation of a simple four-stage electronic
counter.

This simple illustration also demonstrates the inefficiency of converting ran-
dom four-digit binary numbers to random one-digit decimal numbers. 37.5%,
of the data are lost in the process of removing bias. A more efficient procedure
would be to tabulate the random binary series in blocks of ten digits. The
largest number that could occur would be 1 111 111 111 (binary), or 1,023 (deci-
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mal). The numbers would have equal probabilities insofar as this is attainable
by chaining. To obtain a random three-digit decimal series it would be neces-
sary to reject the numbers above 999 (decimal). This would amount to only
2.34% of the available data. As before, rejection could be accomplished easily
in the binary series by use of a ten-stage electronic counter.

Several promising devices are being considered for tabulating random numbers
in accordance with the principles discussed herein. Electronic or electrical
systems actuated by cosmic rays seem to be the most desirable. Tabulating
equipment may be wired to turn out random numbers, possibly as a by-product
of other card runs.

If only a few random numbers are needed, they can be obtained by much
simpler methods. For example, a coin may be tossed, letting heads and tails
represent +1 and —1, respectively The product of k successive tosses would
be tabulated a$ the random binary variable. Products equal to 41 and —1
would be coded as 1 and 0, respectively. Blocks of binary symbols would then
be converted to the decimal system as described above.
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NOTE ON THE ERROR IN INTERPOLATION OF A FUNCTION OF TWO
INDEPENDENT VARIABLES

By W. M. Kincaip
University of Michigan

Suppose that g is a functon of one real variable x and & is an interpolation func-
tion such that g(x) = h(z) for z = 21, 22, -+, z,. Let f(z) = g(x) — h(z)

d» Lo .
and suppose that a f(x) exists in an interval containing the pointsxe, 3, + - -,
Z,. Then the error in interpolation may be estimated from the well-known

relation

— 2)(T — x2) -+ (20 — ),

(1) f(xo) =

F@ ()
] (o

n

where £ is some point in the smallest interval containing zo, 21, -+ , 2, .

In the most usual case, where h(z) is a polynomial of degree less than n, we
have f™(8) = g™(p).

It is natural to consider the corresponding situation for functions of two inde-
pendent real variables z and y. Let g and h be two functions such that g(z, y) =
h(z,y) fornpointsz = z; ,y = y:(d = 1,2, --- ,n). Setting f(z,y) = g(z,y) —
h(z, y) as before, we have f(z;,y:) = 0fori = 1,2,---,n. Then if (z, yo)



