A k-SAMPLE SLIPPAGE TEST FOR AN EXTREME POPULATION
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1. Summary. A test is proposed for deciding whether one of % populations
has slipped to the right of the rest, under the null hypothesis that all populations
are continuous and identical. The procedure is to pick the sample with the larg-
est observation, and to count the number of observations r in it which exceed all
observations of all other samples. If all samples are of the same size n, n large,
the probability of getting r or more such observations, when the null hypothesis
is true, is about £*".

Some remarks are made about kinds of errors in testing hypotheses.

2. Introduction. The purpose of this paper is to describe a significance test
connected with a statistical question called by the present author “the problem
of the greatest one.” Suppose there are several continuous populations f(z — ay),
f@ — @), -+, flx — &), which are identical except for rigid translations or
slippages. Suppose further that the form of the populations and the values of
the a; are unknown. Then on the basis of samples frcm the k populations we
may wish to test the hypothesis that some population has slipped further to the
right, say, than any other. In other words, we may ask whether there exists an
a; > max (@1,@, -, Qi—1, Qit1, -, ar). From the point of view of testing
hypotheses, the existence of such an a; is taken to be the alternative hypothesis.
A significance test will depend also on the null hypothesis. We shall take as the
null hypothesis the assumption that all the a’s are equal: a; = a = --- = a5 .

Using these assumptions it is possible to obtain parameter-free significance
tests that some population has a larger location parameter (mean, median, quan-
tile, say) than any of the other populations.

The problem of the greatest one is of considerable practical importance.
Among several processes, techniques, or therapies of approximately equal cost,
we often wish to pick out the best one as measured by some characteristic.
Furthermore, we often wish to make a test of the significance of one of the
methods against the others after noticing that on the basis of the sample values,
a particular method seems to be best. The test provided in this paper allows
an opportunity for inspection of the data before applying the test of significance.

The proposed test has the advantage of being rapid and easy to apply. How-
ever, the test is probably not very powerful, and in the form presented here, the
test depends on having samples of the same size from each of the several popula-
tions. The equal-sample restriction is not essential to the technique, but since
no very useful way of computing the significance levels for the unequal-sample
case is known to the author, it does not seem worthwhile to give the formulas.
They are easy to write down.
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3. The test. Suppose we have k samples of size n each. It is desired to
test the alternative hypothesis that one of the populations, from which the
samples were drawn, has been rigidly translated to the right relative to the re-
maining populations. The null hypothesis is that all the populations have the
same location parameter.

The test consists in arranging the observations in all the samples from greatest
to least, and observing for the sample with the largest observation, the number
of observations r which exceed all the observations in the & — 1 other samples.
If r > ro we accept the hypothesis that the population whose sample contains the
largest observation has slipped to the right of the rest and reject the null hypoth-
esis that all the populations are identical; instead we accept the hypothesis
that the sample with the largest observation came from the population with the
rightmost location parameter. If r < 7, we accept the null hypothesis.

The statements just made are not quite usual for accepting and rejecting
hypotheses. Classically one would merely accept or reject the hypothesis that
the a; are all equal. The statements just made seem preferable for the present
purpose.

Ezample. The following data arranged from least to greatest indicate the
difference in log reaction times of an individual and a control group to three
types of words on a word-association test. The differences in log reaction
times have been multiplied by 100 for convenience. Longer reaction times for
the individual are positive, shorter ones are negative. Does one type of word
require a shorter reaction time for the individual relative to the control group
than any other?

Concrete Abstract Emotional
—6 —16 —6
—6 —11 -5
-5 -3 -3
) -2 -2
—4 —2 —1
-3 —1 0
-1 -1 1

0 1 3
0 1 5
3 1 12
9 8 13
11 10 13
12 16 15
29 20 28

Here we have k = 3 samples of size n = 14 each! We note that the Abstract
column has the most negative deviation, —16, and that there are two observa-
tions in that column which are less than all the observations in the other col-
umns. Consequently r = 2. Under the null hypothesis the probability of ob-
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taining 2 or more observations in one column less than all the observations in
the others is about .33, so the null hypothesis is not rejected.

4. Derivation of test. Suppose we have k samples of size 7, all drawn from
the same continuous distribution function f(x). Arranging observations within
samples in order of magnitude the samples O; are: Oy : 1, %12, -+, T1n; O; ¢
Tor, Xoz,y oo s Xan iy cr 3 Okt Taa, Thoy vt 5 Thn -

If we consider some one sample O;, separately, we can inquire about the
probability that exactly r of its observations are greater than the greatest ob-
servation in the other & — 1 samples.

The total number of arrangements of the kn observations is

(kn)!
1) T = mhE
The number of ways of getting all n observations of O; to be greater than all
observations in the remaining samples is

_ (6 — Da!

The number of ways of getting exactly n — 1 observations of O; greater than
all observations in the remaining samples is

[((k — Dn 4+ 1)1 [(k = Dn]!
(nl)k11! (n))*-10! °

3) Nin—1) =

More generally, the number of ways of getting exactly r = n — u of O; to be
greater than all other observations in the remaining samples is

_ k= Dn+ul! _ [(k— Dn+u—1J!

4) N(n — u) (n)E1y] (n)1(u — 1)!

Therefore the number .of ways of getting a run of r = n — u or more observations
in O; greater than the rest is just

_ 3 _ Ik = Dn + u]!
(5) Stn—w) = X N@) = Al
However we do not choose our sample O; at random or preassign it, as the
demonstration has thus far supposed. Instead we choose that O; which has
the greatest observation in all the samples. This condition requires us to mul-
tiply S(n — u) by the factor'k. Consequently the probability that the sample
with the largest observation has r = n — u or more observations which exceed
all observations in the other £ — 1 samples is given by

_ k8(r) _ k(n) (kn — n)!

) PO == — g i =m1-
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As an incidental check we note in passing that

Gm)! (n — )1 kn
We note that equation (6) may be rewritten as
(7) P(r) = kC35T/CY,
which is a useful form for some computations.
Table 1 gives the probability of observing r or more observations in the
sample with the largest observation, among k samples of size n, which are more

extreme in a preassigned direction than any of the observations in the remaining
k — 1 samples.

b. Approximations. If we -use Stirling’s formula and approximations for
(1 + )", for small values of a and r, we can write an approximation for equation
(6) for large values of n with r and k fixed as follows

R _r@r =Dk -1)
®) P(r) = (1 Zin .
For very large n equation (8) yields

1
9) P(r) ~ =y

which is the value given in Table I forn = « For many purposes the result
given by equation (9) is quite adequate, as a glance at Table I will indicate.

6. Kinds of errors. In tests such as the one being considered here the classical
two kinds of errors are not quite adequate to describe the situation.
As usual we may make the errors of
I) rejecting the null hypothesis when it is true,
II) accepting the null hypothesis when it is false.
But there is a third kind of error which is of interest because the present test of
significance is tied up closely with the idea of making a correct decision about
which distribution function has slipped furthest to the right. We may make
the error of
III) correctly rejecting the null hypothesis for the wrong reason.
In other words it is possible for the null hypothesis to be false. It is also pos-
sible to reject the null hypothesis because some sample O; has too many ob-
servations which are greater than all observations in the other samples. But
the population from which some other sample say O; is drawn is in fact the right-
most population. In this case we have committed an error of the third kind.
When we come to the power of the test under consideration we shall compute
the probability that we reject the null hypothesis because the rightmost popula-
tion yields a sample with too many large observations. Thus by the power of
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TABLE I

Probability of one of k samples of size n each having r or more observations larger
than those of the other k — 1 samples

k=2 k=3
N N\ 7
AN 2 3 4 5 6 AN 2 3 4 5 6
n O\ n N\
3 [.400 |.100 3 1.250 |.036
5 |[.444 |.167 |.048 |.008 5 |.286 |.066 |.011 |.001
7 |.462 (.192 |.070 |.021 |.005 7 1.300 [.079 |.018 |.003 |.0004
10 |.474 |.211 |.087 |.033 |.011 10 |.310 {.089 |.023 [.005 |.0011
15 |[.483 |.224 |.100 [.042 1.017 15 |.318 |.096 {.027 [.007 {.0018
20 |.487 [.231 |.106 |.047 {.020 20 |.322 |.100 |.030 |.009 [.0023
25 1.490 |.235 |.110 {.050 [.022 25 |[.324 |.102 |.031 |.009 |.0026
o [.500 [.250 |.125 |.062 1.031 o 1.333 |.111 |.037 [.012 |.0041
k=4 k=35
N7 N7
AN 2 3 4 5 6 \ 2 3 4 5
n N\ n
3 |.182 |.018 3 |.143 |.011
5 |.211 {.035 |.004 |.0003 5 |.167 |.022 |.0020/.0001
7 [.222 |.043 |.007 |.0009|.0001 7 |.177 |.027 |.0033(.0003
10 |.231 |.049 |.009 |.0015;.0002 10 |.184 |.031 |.0046/.0006
15 [.237 |.0537(.011 |.0022!.0004 15 |.189 |.034 |.0056|.0008
20 |.241 |.056 |{.012 |.0026|.0005 20 |.192 1.035 |.0062|.0010
25 |.242 |.057 |.013 |.0028|.0006 25 1.194 |.036 |.0065/.0011
o 1.250 |.062 |.016 |.0039;.0010 o 1.200 |.040 |.0080|.0016
k=6
;
\ 2 3 4 5
n N\
3 |.118 |.007
5 |.138 |.015 |.0011!.0000
7 1.146 |.018 |.0019|.0001
10 |.152 |.021 |.0026,.0003
15 |.157 |.023 |.0032:.0004
20 |.160 {.024 |.0035;.0005
25 |[.161 |.025 |.0037|.0005
o |.167 |.028 |.0046 .0008
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this test we shall mean the probability of both correct rejection and correct
choice of rightmost population, when it exists.

Errors of the third kind happen in conventional tests of differences of means,
but they are usually not considered although their existence is probably recog-
nized. It seems to the author that there may be several reasons for this among
which are 1) a preoccupation on the part of mathematical statisticians with the
formal questions of acceptance and rejection of null hypotheses without ade-
quate consideration of the implications of the error of the third kind for the
practical experimenter, 2) the rarity with which an error of the third kind arises
in the usual tests of significance.

In passing we note further that it is possible in the present problem for both
the null hypothesis and the alternative hypothesis to be false when k£ > 2. This
may happen when there are, say, two identical rightmost populations, and the
remaining populations are shifted to the left. An examination of Table I will
give us an idea of what will happen in such a case. If k = 4, weuser = 3 as
about the .05 level. If two of the populations are slipped very far to the left,
while the rightmost two populations are identical, in effect k¥ = 2. In this case
the probability of rejecting the null hypothesis is around .2. Consequently we
accept the null hypothesis about 80 per cent of the time, and reject it 20 per cent
of the time under these conditions. But neither hypothesis was true.

If we carry the discussion to its ultimate conclusion we would need a fourth
kind of error for these troublesome situations. There are still other kinds of
errors which will not be considered here.

7. The power of the test. It is difficult to discuss the power of a non-para-
metric test, but in the present case it may be worthwhile to give an example or
two. The reader will understand that although the test is called non-parametric,
its power does depend on the distribution function.

In the case of k samples there are two extremes which might be considered for
any particular form of distribution function. In Case 1, we suppose that
when the alternative hypothesis is true, & — 1 of the populations are identical
with distribution function f(x), while the remaining distribution function is
f(x — a), @ > 0. Case 1 may be regarded as a lower bound to the power of the
test because for any fixed distance @ between the location parameters of the
rightmost population and the next rightmost population, Case 1 gives the least
chance of detecting the falsity of the null hypothesis.

In Case 2, we suppose that the rightmost population is f(x — a), a > 0 as
before, that the next rightmost population is f(x), and that the other & -2
populations have slipped so far to the left that they make no contribution to
problem of the power. This is an optimistic approach to the power because it
gives an upper bound to the power. When k = 2, Case 1 and Case 2 are identical,
and the power is exactly the power of the test for the particular distribution func-
tion under consideration.

Case 3 which we shall not consider deals with the situation where there is more
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than one rightmost population, but the null hypothesis is false. It is connected
with the fourth kind of error mentioned at the end of section 6.

Table II gives the upper and lower bound of the power of the test for & = 3,
r = 3,n = 3, when the distribution is uniform and of length unity. The parame-
ter a is the distance between the location parameter of the rightmost distribu-
tion and that of the next rightmost distribution.

In Table III we give some points on the upper and lower bounds of the power
of the test for the normal distribution with unit standard deviation. The param-
eter a is the distance between the mean of the rightmost normal distribution and
the next rightmost, measured in standard: deviations. Again we use the case
k=3r=3n = 3.

TABLE II

Power p of the test for the uniform distribution when k = 3,r = 3, n = 3. The
distance between the midpoints of the two rightmost distributions is a

\ 0 1 ]' 3 | 5 | 7 | .9 | 100
|
i
Upper bound p, .05 .09 r .23 .46 .73 l .96 | 1.00
Lower bound p, .01 | .03 | .11 .29 .59 | .93 11.00
TABLE III

Power p of the test for the unit normal when k = 3,r = 3, n = 8. The distance
between the means of the two rightmost distributions, measured in standard
deviations, 1s a

\ 0 .5 1.0

Upper bound p. .05 .13 .26
Lower bound p; .01 .04 .14

1.5 ’ 2.0 2.5 3.0

.42 | .58 | .71 .87
.27 | .43 .60 .80

The power of the test has been defined as the probability of correctly rejecting
the null hypothesis and finding the sample from the rightmost population to be
the extreme one. This raises a question about the meaning of the entries in
Tables II and III under a = 0. When a = 0 there is no way to reject the null
hypothesis correctly. The probabilities given are the probabilities that a
randomly chosen sample will force a rejection of the null hypothesis. They
represent the limit of the power function as a tends to zero. If we think of ear-
marking the sample from the rightmost population and of computing the prob-
ability repeatedly that that sample will have three observations larger than all the
observations in the other sample, and then we let a tend to zero, this is the result
we get. These values are not the significance levels. The significance level is

.036.
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8. Discussion. The reader may rightly feel that the solution here presented
to the problem of the greatest one depends on a trick. That is, it depends
intimately on the choice of the null hypothesis. Furthermore the reader may
feel that the choice of a; = a2 = --- = a; is neither an interesting null hypoth-
esis nor one which is likely to arise in a practical situation. The author has
no quarrel with this attitude. This means that there are many other approaches
to this problem which are worth trying. The equal-location-parameter case is
one which yields easily to non-parametric methods.

It will be noted that a useful technique has been indicated which allows one
to examine the data before making the significance test. In general one may
wish to set up a test function, decide which of several samples provides the ex-
treme value of the function, and then test significance given that we have chosen
that sample which maximizes the function among the & samples under con-
sideration.

9. Conclusion. There is a large class of problems grouped around “the prob-
lem of the greatest one”. First it would be useful to have a more powerful test
than the one here proposed. Second, there is the problem of deciding on the
basis of samples whether we have successfully predicted the order of the location
parameters of several populations. Third, there is the general problem of what
alternatives, what null hypotheses, and what test functions to use in treating
samples from more than two populations. It is to be hoped that more material
on these problems will appear, because answers to these questions are urgently
needed in practical problems.



