NONPARAMETRIC ESTIMATION, III. STATISTICALLY EQUIVALENT
BLOCKS AND MULTIVARIATE TOLERANCE
REGIONS—THE DISCONTINUOUS CASE

By Joun W. Tuxkey
Princeton University

1. Summary. In Paper II of this series [2, 1947] it was shown that if n
functions and a sample of n were used to divide the population space into n + 1
blocks in a particular way, and if the joint cumulative of the functions were contin-
uous, then the n + 1 fractions of the population, corresponding to the n + 1
blocks, were distributed symmetrically and simply.

In Paper I of this series [1, 1945] it was shown that the one-dimensional theory
of tolerance regions could be extended to the discontinuous case, if equalities were
replaced by inequalities.

In this paper the results of Paper II will be extended to the discontinuous case
with the same weakening of the conclusion. The devices involved are more com-
plex, but the nature of the results is the same (See Section 5).

As a tool, it is shown that any n-variate distribution can be represented in
terms of an n-variate distribution with a continuous joint cumulative (in fact,
with uniform univariate marginals), where each variate of the given distribution
is a different mornotone function of the corresponding variate from the continuous
distribution.

2. Introduction. The importance of extending the simple results of the
continuous case to the more complex results of the discontinuous case may not
be clear at first thought. Yet all the data with which the statistician actually
works comes from discontinuous distributions. Often these distributions are very
fine-grained—the distributions of the number of eggs laid by codfish and of the
measured wavelengths of a spectral line (measured in 0.000001 f&) do not have
large concentrated probabilities, but all their probability ¢s concentrated at dis-
crete points. Insofar as the considerations of the theoretical statistician apply
to the data as received rather than to the ‘“data’ of a more or less imaginary
model, these considerations apply to data with a discrete distribution. When
his theories are erected on a basis of a probability density function, or even a
continuous cumulative, there is a definite extrapolation from theory to practice.
It is, ultimately, a responsibility of the mathematical statistician to study dis-
crete models and find out the dangerous large effects and the pleasant small
effects which go with such extrapolation. We all deal with discrete data, and must
sooner or later face this fact.

In order to deal with the discontinuous case, we must face two problems: (we
assume that the reader is familiar with Paper II [2])

(1) What to do about ‘‘ties’?
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(2) Finite probabilities associated with cuts.

The first of these is peculiar to the multivariate situation and can be easily ex-
plained by an example. Consider the three points in the plane with coordinates
(1,9), (3,9) and (2, 6). Let the first two functions be y and z, then the pro-
cedure of Section 4 of Paper II [2] is not unique—two possibilities arise:

Alternative A. (1,9) is selected as having the largest y, and (3, 9) as having the
largest  among the remaining (two) points, hence S; = {(z,y)ly > 9}, S; =
{(xyy)ly < 9,27 > 3}) S2l4 = {(x,?/)ly < 9,1!? < 3}’

Alternative B. (3, 9) is selected as having the largest z, and (2, 6) as having the
largest 2 among the remaining (two) points, hence S; = {(z, y)ly > 9}, Sz =
(@l <9,z > 2}, 8= {(z,9ly <9,z <2
Notice that S; % S;. The procedure is not unique. In the continuous case,
ties happen with probability zero, hence their consequences could be neglected.
This is now no longer the case.

This difficulty is solved by using more functions and the idea of lexicographical
(like a dictionary!) ordering. In the simplest case, we add no new functions and
proceed as follows: If there is a unique ¢ for which ¢i(w;) is maximal, select it.
Otherwise look among the w; for which ¢1(w;) is maximal—look at the values of
@o(w;). If there is a unique such ¢ for which ¢,(w;) is maximal, select it. If not,

go on to ¢3(w;) - -+ . This procedure leads to a specific ¢ unless ¢r(w;) = ¢n(ws)
for h and some j % k. But in this case it does not matter whether j or & is
selected, the set of m-tuples (¢1(ws), @2(ws), <+, ¢m(w;)) remaining will be the

same, although the indices 7 will not. But the indices play no role in the actual
construction.

As an example, consider the following 20 four-letter words as a sample and let
there be four functions—¢; being the negative of the position in the alphabet of
the ¢-th letter of the word. (Thusa > b >¢ > --- > z.)

Sample: meet, west, made, gone, come, back, said, that, maid, well, with, with,
just, week, very, near, edge, this, last, have. (The Law of the Three Just Men,
Edgar Wallace, pp. 159-160).

Selections: back, made, near, (gone, come, edge, have. The fourth selection to
be made at random among these four.) The inferences which can be made about
the four-letter words in Edgar Wallace’s writing vocabulary are left to the reader.

We have just given one rule for breaking ties, one which chooses Alternative B
in our example. But we might prefer a rule which chooses Alternative A. To
get more generality, we have only to take M functions, M/ > m, and let ¢,q, ,
lep@, > @pm , (Where we may suppose p(1) = 1 without loss of generality)
play the role just taken by ¢1,¢2, - -+ ,¢m . Thus if the maximum of ¢;(w) is not
unique proceed to ¢z(w), thence to ¢3(w), - - - , thence to pm(w). For the second
block, start with ¢, , then op@)41, ep@42, - > em. And so on. The choice

Q’l(x) y) =Y,

ez, y) = —r,
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es(x, y) = ze,
ez, y) = z,
es(z,y) = o,

with p(1) = 1 and p(2) = 4, leads to Alternative A above. (Note that ¢;is a
dummy in the sense that it is never used.) The problem of ties, which was a
problem in uniqueness of construction, is thus dealt with.

Next we must deal with the cuts. When we made S;, S;and Sz|4in Alternative
A, we omitted some points, namely

T1={(x)y)|y=9}7 and T2={(x,y)|y<9,x=2}

In the continuous case this did not matter, since these sets had probability zero
and could be avoided. Here they cannot, and we shall have to consider a family
of blocks (in the wide sense) as consisting of the blocks S and the cuts T. The
solution of the univariate case in Paper I [1] shows us that what we must expect
is that:

Pr { coverage S: + Timy + T: > ¢} > Pr { coverage of one
continuous-case block > ¢} > Pr { coverage S; > t].

That is, if we want a certain set of blocks to cover (together) at least a certain
amount with a certain probability we must add the adjoining cuts; and if we
want a certain set of blocks to cover at most a certain amount with a certain prob-
ability we may add only these cuts which do not adjoin blocks not in our set.
By introducing the cuts explicitly, we solve the second problem.

In order to reduce the size of the cuts, our detailed definitions will .differ in
detail from those which we have used so far. In the example, where the functions
leading to Alternative A are used; we place in S; not only the points with y > 9,
but also those with y = 9and —z > —1; we place in S; not only the points with
y < 9and z > 3 and the points with y < 9,z = 3, y* > 49, but also those with
y = 9and —z < —1. Proceeding in this way, we reduce T to the point z = 1,
y = 9 and T; to the point = 3,y = 9. This reduction can only diminish the
probability associated with the cuts, but we cannot be sure that it will reduce it
to zero.

Only in the quasi-trivial case, where the probability that all functions shall tie
together is zero, do we return to the simplicity of the continuous case. This case
is quasi-trivial because it does not arise with discrete probabilities, and real ob-
servations always involve discrete probabilities.

Having discussed the results, we should now briefly touch on the methods.
The proof of the main theorems depends on two facts:

(1) a representation theorem, (5.3), and

(2) a lemma, (6.1) which shows that m functions would be enough if (i) the
distribution were fixed, and (ii) cases of probability zero were neglected. The
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representation theorem has been outlined in the summary. It is analogous
to, but a definite extension of the one used in Paper I [1]. It seems to be new in
statement, though not in thought—it will surprise few probability theorists. The
novel element is the monotonicity of the functions, which is utterly essential for
our purposes.

The lemma allows us to reduce the general case to the case of no extra func-
tions, where the reduction must be made differently for each underlying distri-
bution. The reduced functions are then represented by the representation
theorem and the results of Paper II [2] are taken over. The results are stated
in a form independent of the underlying distribution and the particular repre-
sentation, hence they apply in general.

The last paragraph stresses the principle common to Paper I [1] and this paper.
It is natural to call it the ““iceberg principle,” and to sketch it as follows: “We
have some information about the visible one-ninth of the iceberg, and we want
to conclude something about this visible part. If we can imagine another eight-
ninths, consistent with the part we know, and if using that we can prove some-
thing expressed solely in terms of the visible part, then this is the required proof.
(The only essential is to be able to match every visible part.)”” Both the reduced
functions (which depend on the underlying distribution) and the uniform vari-
ables used to represent them are part of the invisible eight-ninths which ‘“could
be there.”

3. Terminology and Notation. In general we use the terminology and nota-
tion of Paper II [2], and we shall continue to assume that all functions concerned
in the argument are measurable.

Given two finite sequences of the same length, we write (a1, @z, -+, @m) >
(by, b, -+, bw) if any of the following hold:

a;>b1,
ay = by, and az > b,

a1=b1,a2=b2,anda3>b3,

se s

a; = b;forz < m, and @n > bn..

This is the lexicographical order referred to above. (We interpret (a1, as, -,
an) < (by, bz, -+ ,bm) tomean (by,be; -+ ,bm) > (a1,0, -+, as) and = to
mean identity.)

3.1 DerFmNiTION: Given a sequence of real-valued functions ¢1,¢2, -+ 0 and a
sequence of starting indices p(1), p(2), - -, p(m), (which we shall often refer to,
briefly, as an m-system of functions, ¢1, ¢z, - -+ , ¢ , without explicitly mention-
ing the starting indices), the functions &, &, , 3, « -+ , m are defined as follows:

3.2) Br(w) = {eomy(W), Pomy+1(w), -+« , ou(w)},
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the values of ®; being sequences of M — p(k) + 1numbers. (In these terms, the rule
for tie-breaking already explained becomes ‘“‘select an 4 for which &(w;) is max-
imal (in the sense of lexicographical ordering)”.)

4. The blocks and cuts determined by n points. 4. DEFINITION: Given
an m-system of functions g1, ¢z, + -+ , u ANd N POINLS W1, Wy, +++ , Wa, (M < n)
the corresponding blocks and cuts are given by the following procedure: (the ®’s are
defined in 3.1) First (1) is selected to maximize ®;(w;), when

S = {w|®w) > &i(winy)},
Ty = {w|®&w) = di(wip)}-
Next, 1(2) is selected 5= i(1) and to maximize ®(w;) among such , when
Se = {w | ®1(w) < B1(wiqy), Po(w) > &y(wi) },
T, = {w|di(w) < Bi(wiq), P(w) = B2(win)}.

--------- (the construction is perfectly analo-
gous to I1-4.1)

Sming1 = {0 | B (w) < Bp(wigy), b = 1,2, -+ ,m}.

4.2 DEFINITION: If m = n, then Spjns1 18 also denoted by Sny1.

If m > n, then only &1, &z, - - - , P, are used and Sujni1 18 also denoted by b,.,

We denote by X a subset (p0551b1y none, p0551bly all) of the indices 1, 2,

m and m|n + 1 or, in case m > n of the indices 1, 2, --- ,n + 1.

4.3 DermNiTION: The block-group By consists of the union of all S; with © tn N
and all T; with both i and i + 1 in X(m + 1 means m |n + 1).

The closed block-group By consists of the union of all S; with ¢ in X\ and all T\
with etther t or ¢ + 1 in \.

Given any set we define its coverage as the proportion of the population falling
into it (here the underlying probability distribution appears for the first time in
this section), and we use

4.4 DeFINITION: The coverage of By is denoted by C(\) and that of By by C().

Thus, given a family of functions ¢ and n points w, the space of the w is divided
into blocks and cuts, these are joined together into block-groups, and these
block-groups have coverages. Thus, if the family of functions is fixed, the n
points determine these coverages, and, if the points are chance points, the cover-
ages are chance numbers.

5. Statement of results. Having discussed the construction, we can now

state the results.

(5.1) THEOREM A:,,.+1 . Letei,¢n, -+ ,ou be any m-system of functions and
let Wy, Wo,---, , where m < n, be a sample from any distribution, let the
blocks, cuts, block- groups and coverages be formed, as described above, using the
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same (unknown) distribution for forming the coverages. Then, if ay, oz, -+ , ap
are any set of N’s (each \ is a set of indices!),

Pr {C(al) < th,C(Olz) <ag, - - ,C(ak) > a, "':6(0‘11) > a'p}
ZPI’ {t(al) <a1,t(az) <a,- - ;t(ak) > Gy ’t(ap) > ap})

where t(\) = Ztifor i in N, tmjas1 = bmi1+ 0 + tavi,and b, b, + -+, tay1 have
a uniform distribution on the barycentric simplex. (Compare Theorem A,jn41 of
Paper II [2].)

In particular,
Pr{C() <a} > I(l,n) 2 Pr{Ct) <a}, i=1,2,---,m,

where I,(1, n) is the incomplete Beta-function.
(5.2) THEOREM Br1. Let ¢y, @2, -+, ou be any n-system of functions and
let Wy, Wa, -+, W, be a sample from any distribution. Then

PI‘{C(O{I) < a,C(an) <0/1,"’,C'(ak) > Ak, o ,6(‘%) > ap)
_>_Pr{t(a1) <al,t(a2) <G, 7t(aﬁ) >ak,°°'1t(ap) >aP}’

where t\) = Zt;foriin N and ty, t2, -+, tus1 have a uniform distribution on the
barycentric simplex. In particular,

Pr{CG) <a} > I(l,n) > Pr{C(t) <a}, ¢=1,2,+---,n+ 1.

For convenience of reference, we also state the representation theorem as:

(5.3) TueoreEM C. Let X, X,, --- ,X, have any joint n-variate distribution.
Then there exist (real) functions g1, g2, -+, g and a joint distribution for
Ui, U, -+, Uy such that,

(i) the marginal distribution of each U; 1s uniform on [0, 1],

(ii) each function g is non-decreasing,

(iii) the distribution of gi(Uv), g2(Us), « -+ , g.(U,) s tdentical with that of
X1,X2, 0, Xn.

6. The functions ¢. The aim of this section is to prove

(6.1) LEMMa. Given any m-system of functions o1, @2, -+, ou, there exist
real functions Y1, Ya, +++ , Yu such that, if Wy, Wa, ---, W, are a sample from
the distribution concerned:
(62) Pr {l]/,(W,) = \1/,'(Wk)1 but I,I/i.;_h(Wj) # 'Pg'-{-h(Wk) fOT some h > 0} = 0.
(6.3) Pr {®:(W ;) has a different relation to®:(Wy) than that of (W ;) toy:(Wx)} =0,
where by relation is meant >, =, or <.

The y; will depend on the underlying probability distribution. Thus they are
useful in the proof, but could not replace the ®; in the statement of the theorems.

(6.4) LEMMA. Let ®(w) have its values in a totally ordered set, (i.e. always either
& < Py, P = Dy0r P > o) and let W have a distribution. Consider the function
L ) ,
y(w) = Pr {&(W) < &(w)}.
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Let Wy, We, -+, Wabe a sample from the same distribution, then, with probability
one, the relation (<, =, or >) between ®(W;) and ®(W}) is the same as that be-
tween (W ;) and ¢(Wh).

If ®(w;) < ®(ws), then Y(w;) < Y(ww), if Y(w,) < Y(w), then d(w;) < d(wy).
These follow directly from the definition. To prove the lemma, then, we must
show that

() ¢(w;) = Y(wi) but ®(w;) < ®(wy) occurs with probability zero.

We may clearly assume that the totally ordered set is complete, and that, in
particular, it contains the symbols — « and 4 «. Consider the real function of
an abstract variable,

F(s) = Pr {®(W) < s}.

It is a monotone function, with F(— ) = 0 and F(4+ ) = 1. We can there-
fore, given ¢t > 0, select elements — o = 5 < §; < 53 < --- <8 = -+ o such
that

0 < F(siy) — F(si +0) <ee.

If (¢) occurs, then ®(w;) and ®(w;) belong either to the same open interval
(s1, siz1) or one belongs to an open interval and the other is its upper endpoint.
The probability of either of these happening is at most

n(n 2— 1) {F(8i+1) - F(S{‘*‘O)}z +n{F(s.-+1) — F(s; +O)} {F(s¢31+0) — F(s.-+1)}.

Summing this over all intervals yields an estimate of

nn — 1)
2

Since this goes to zero, the lemma is established.

We turn now to the proof of (6.1). The system of functions ¢1, ¢z, -+, ¢n
define the ®,, ®,, ---, ®, according to Section 3. These define ¥y, y2, -,
¥m according to lemma (6.4) just proved. Applying this m times proves (6.3).
Recalling that ®;(w;) = ®;(wx) implies ®;4n(w;) = Pipn(wi), we see that (6.3)
implies (6.2).

Max (Flsi) — Flsi + 0)) = 20— D

7. The notation F(xz + A-0). All practitioners of analysis are familiar with
F(z 4+ 0) and F(z — 0), defined by

F(x +0) = lim F(z & h).
R0

‘We now generalize this formal notation to
1+
2

where we will, in our immediate applications, need only A’s between —1 and +1

7.1) F(z + \-0) = F(z + 0) + 1—;“ Fz — 0),
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(although the definition applies in general). Notice, for example, that
Fix —0) < Flz+ X0 <Fx+0), for—1<2x<1,
that if F is continuous at z,
F(x + \-0) = F(x = 0) = F(z),
that the condition for F to be normalized is
F(z + 0-0) = F(z).

A similar definition is made for functions of two variables, namely

Fle+ 20,y + w0 = L5 E P+ 20,5 +0) + L ¥ Flz + 20,y — 0)
=L e 4 0,y + w0 + 15 P - 0,y + 400),

where the two right-hand sides are equal if, as is the case for cumulatives, all

doubly one-sided limits exist.
If F(x,, 2,) is the joint cumulative of two variates, then, when all ordinates
and abscissas involved are ordinates and abseissas of continuity,

Pria<z<bc<y<d} =F@b,d — Fboc — F(a,d) + F(a,c) > 0.

Passing to the limit in assorted ways, and taking linear combinations gives

Fb+ p-0,d+ p-0) — Fb+ g:0,¢c+ »:0)

7.2
( ) - F(a + )\'07 d + PO) + F(a + )\0, b + V'O) > 0,

for —o» < a,b,¢,d < 4+ and —1 <\ g, v,p < 1. This will be of use
shortly.

8. The representation theorem. It was shown in Paper I [1] of this series,
that the uniform distribution on [0,1] could serve as the prototype of any variate
—that is, that given a distribution, there is a monotone function g, so that g(U)
has the given distribution, where U has the uniform distribution on [0, 1].
(In Paper I, U was denoted by X*).

In the notation of the last section, there is a function N (u), with | X (w) | £ 1,
so that

8.1) F(g(u) + NMu)-0) = u,

for all u. (We may, and shall, require that g(u) = — =, for v < 0, and g(u)
= 4o for u > 1). It is easy to see that g(u) is unique except on a set of
probability zero and that () is unique (and in fact linear) on each open interval
which contains no value of F(z).

Each cumulative F(z), then serves to define g(u) and A(u) by the equation
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(8.1). Two or more independent variates can be thrown back on a set of inde-
pendent uniform variates by applying this process to their cumulatives separately.

Our present problem is to prove Theorem C (5.3), which applies to variates
X,, Xz, ---, X, which need not be independent. Let Fi(z;) be the (marginal
cumulative of X;, and use (8.1) to define g:(u;) and A\;(u;). Then define the
joint distribution of Uy, U,, -+, U, by

Gur, U, -+ Us) = Fgr(u)) + Mw1)-0, -+, gatta) + Aalua)-0),

where F(z;,22, -+ - , Z,) is the joint cumulative of the X; , X, - -+ , X .

We shall verify that this is the desired distribution in the case n = 2, leaving
the general case to the reader. Consider G(u;, + ) = G(uy, 1) = F(gi(uy)
+ A, ()0, + ). This is a cumulative, and so is G(+ o, u,). In fact,
using (8.1) they are each the uniform cumulative

(0,u <0,
G(u)={u,0$u$l,
1,1 < u

By (7.2) all second differences are positive, and hence G(u; , us) is a Jomt cumu-
lative. Since its marginals are uniform, it is continuous.
Finally,

Prigi(Uy) < s1,0:(Us) < 82} = G(F(s; — 0, 4 0), F(+ », 83 — 0))
= F(s —0,s — 0),

since g1(uw;) < s 1s equivalent to w; < F(s; — 0, + ) and g2(us) < s is equiva-
lent to uy < F(+ o, s; — 0). Thus ¢:(Uy) and ¢»(Us), have the given bivariate
distribution.

9. Proof of main theorems. We come now to the proof of Theorems A,,.,,.“
and B,,.H pand we begin with A,,.|,.+1 According to Lemma (6.1), the various
indices, #(1), #(2), ..., i(m) selected to determine the blocks will be the same,
excluding cases of probability zero, whether the ®; or the y; are used. Consider
the first block, which takes the forms:

Sil = (W | ®&(W) > &1(wiy)}.
St = (W | ¢u(W) > a(wiq)}-

Another application of Lemma (6.1) shows that these sets differ by a set of
probability zero, and hence their coverages are identical. It will thus suffice to
prove theorem Amins1 for a fixed underlying distribution and the corresponding
Vi, ¥z, ¥m.

According to Theorem C (5.3), the m-variate distribution of the ¥;(W) can be
represented in terms of uniformly distributed variates U, , - - - , Um and monotone
functions ¢;(Uy), -+, gm(Um). Now U, Us, ++, U have a continuous joint
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cumulative, so that theorem A, .1 applies to a sample of n drawn from this m-
variate population, with the coordinates themselves as the m functions. We shall
denote the coordinates of the 7-th element of this sample by ui(7), « -+, um (7).
Consider the first block,

Sl = {(Ul, tt Um) l Ul > ul(?’(l))}'

Its image, ¢(S) = {(g(Uy) , - -+ » Gm(Um)) | U, > w(i(1))}
contains

St = (U, -+, gm(Um) | g(Uy) > glun(G(1)))},

. . . . * *
and is contained in the union of S; and Ty, where

TY = (@0, -+, gu(Um) | g(UD) = glusG()))}.

Thus the conclusions of Theorem A:],.“ hold for S , Ty RN S , T , S:.‘,.“ .
Now while Theorem Aj..; mentions the underlying W’s implicitly, careful
study shows that they are not really involved; only the joint distribution of the
@i , which in our present case are the ¢, , matters. Since this is the same for the
¥:«(W) and the g:(U.), Theorem Ap.;; must hold for the ¢; and the theorem
is proved.
Theorem B, is again a special case of Theorem A:|,,+1 .
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