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where the summations include the terms E[z3] and E[2,_i41’], respectively. But
it is known [2] that the sample mean is the regular unbiased estimate of x with
minimum variance. Setting each w equal to 1/ and combining equivalent
terms yields

2> Elwia] + 3an = 0, i=12"--,n
=1

Summing from ¢ = 1 to 7 = n, and employing the relationships discussed in the
preceding paragraph, we obtain

n + in*\ = 0,
whence
A= —2/n,
and
2 Elziz] = 1, i=12 - ,n,

=1

where the summation includes the term E[z}]. This equation leads to the prop-
erties mentioned at the beginning of this paragraph. The same equation can
be used to evaluate E[z}] and E[z}] in samples of size 3 or 4 from the distribution
N(0, 1), after the product-moments have been found.
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NOTE ON AN ASYMPTOTIC EXPANSION OF THE nTH DIFFERENCE
OF ZERO

By L. C. Hsvu
National Tsing- Hua University, Peiping, China

This note gives an asymptotic expansion of the nth difference of zero. It is
known that the Stirling number S, of the second kind is defined by

ey n!8ny = A"0" = 2 (=1)" (Z> z
z=0

We shall first show that the Stirling number S, ..+ can be expanded in the
form

@ Spmre = [1 +A® +Jf*—g—f—) 4o 5B O(n"‘"l)], <k

2. k! n nt
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274 L. C. H3U

where f;, fa, -+, f. are polynomials in k¥ and whose coefficients can be found
by means of the following lemmas.

The first lemma is due to B. F. Kimball, [1, (5.3)].

Lemma 1. (Kimball) Let g be a real number such that n + q > 0, and let
f@) = 2™ Then we can write A™f(z) in the form

® o1 =+ 145 (1) (50) e,

where the value of W(m, n) is given by
4) W(m,n) = By (—3n)/Gn)™",

B (x) being a so-called Bernoulli polynomial of negative order which was first
defined by Nirlund [2].

LemMa 2. Let the sum of all <Z> products of k different numbers taken from
the set (1,2, - - - ,n) be denoted by Si(n). Then we can express it in the form
k
5 = —_ k+P (n + p)
®) Sim) = 25 (=D"AM 4 7 ),
where the coefficients N\i(k), No(k), - - - satisfy the recurrence relation
(6) (k + P))‘p—l(k) + P'Ap(k) = )‘p(k + 1)

with \p = O, A = 1land )\k+1(k) = 0.

Proor. Clearly, among all products of (¢ + 1) numbers out of

n
E+1
(1,2, - -- ,n),there are exactly (n ; 1) products containing the greatest factor n.

The sum of these products is therefore n-Six(n — 1). Repeating this reasoning,
we get

@) Skaam) =n-Sptn — 1)+ (n — 1)-Setn — 2) + -+ + (& + 1)- Si(k).

Evidently, (5) is true for k¥ = 1. Suppose now that it is true for ¥ = k. Then
the right-hand side of (7) can be written as

n—k—1 k ko n+p—,u—1
3 -k omam(t e e

S (—1)k+">\,,<k)[(k +ot 1)<Z iﬁ i ;) —F <k 1-:-7- 1)]

p=1

= 3 (DG 4 ) + p-xp(k)l(k 1-;-'; 1)‘

=1

The lemma thus follows by induction on k.
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The number Si(n) may be called a Stirling number of the first kind. By the
lemma, just proved, it is easy to find

o =s(t19-(1)
Si(n) = 15<"‘é‘3>_ 10<n-5!-2> n ;l- 1)

+
®) Sin) = 105(" ;”*) - 105("'7"3> +25<ng-2) _ (n -5|. 1)
_I_
9

()

We shall see that in order to compute the coefficients of fi(k), fa(k), - - - , it is
sufficient to compute the values of W(m, n), \i(m), Ae(m), - -+ ,(m = 1,2, --- , ¢).
Let f(z) = z"**. Then by lemma 1, we have

1! S =[0-l‘il;—,,f(x + %n)] [1 +3 ( )W(m, n)]

From the definition of Si(n) it is easily seen that
4+ En+k—1) - @+ 1) =n"4+ n"7"8i(k) + -+ + nSa(k) + Su(k)

Hence we may write

2"-k! n n? n

It is clear from Kimball’s paper [1] that

i (;:n)W(m, n) = i (2,;;) W(m, n) +0®n™™).

M=l n=1

Substituting, we obtain

Sumis = o [ 14 2 (o) W) + 0677 |

i[l + 350 4 oy |
o = n* . [1 + zt:l (2I:n> W(m, n) + O(n"'l)]

DB (1) o o],

M=l p==l (_1)’(—7‘)”
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The last expression shows that the asymptotic expansion (2) can be obtained
by computing the numbers \,(m), W(m, n) with 1 < p <m < ¢t. For example,
consider the case ¢ = 3 and notice that [1, (2.13)]

2 3
(=" =1 (-t =" - (=) =" :
By ( §>‘12’ Bi ( 2>_48 g B ( 2> 576 TO®),
and that \ = 1, 5(2) = 3, M(3) = 10, 04(3) = 15. Then by a straightforward
ca,lcula.tion of the right-hand side of (9) and by comparison with (2), we find

(k) = §<2k2 + k)
10) £k = o5 @K — ¥ — 3k)

fs(k) = (40k° — 60K — 2k* — 63K° + 133k* — 48k).

810
Finally, combining (2) with the well-known Stirling’s formula [3]

Ce o (M) (1 Lo 189 ~
an - n=v/2m <e) [1 t 12+ 3880 ~ s1sa0m TO® )]

and noting (1), we obtain

(121) anor = V2m <%2>’° (@) [1 +0® Lo®) L o® | o, _4)]

e

where g1(k), g2(k), ga(k) are polynomials in k, viz.

gik) = — <8A2 + 4k + 1).

PO 1 2474 —_ -
02(k) = oo (6G4k' — 40k + 1),
(12:2)

X o 6 _ 3
gs(k) = 51 8 0 2560k 3840k° + 832k* — 4032k

+ 8392k" — 3732k — 139).

The asymptotic formula of A"0""™ just derived is much better than a result
previously obtained [4]. Moreover, it may be noted that the asymptotic ex-
pansion of S,,..x may be made as sharp as desired, since in fact, for any pre-
seribed ¢ > 1, \,(m) and Bz, (—34n), (1 < m < t), may be easily computed by
(6) and Kimball’s [1, (2.12)] respectively.

n+k
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AN INEQUALITY FOR KURTOSIS

By Louis GUurTMAN

Cornell University

1. Summary. It is well known that, if the fourth moment about the mean
of a frequency distribution equals the square of the variance, then the frequencies
are piled up at exactly two points, namely, the two points that are one standard
deviation away from the mean. In this paper is developed a general inequality
which describes the piling up of frequency around these two points for the case
where the fourth moment exceeds the square of the variance. In a sense, it is
shown how “U-shaped’ a distribution must be according to its second and fourth
moments.

2. An inequality. Let z be a random variable whose distribution has the
following moments :

@) u=E@);d = E@— p’ (@ + 1) = E@x — w)'

o’ is non-negative for any distribution, and its positive square root will be denoted
by a. Let

() t= (x — p)/o.
It will be shown that, if A is an arbitrary positive number, then
3) Prob {1 —da<f =142} >1—-2"2

If A is chosen so as to make the left member in the braces positive, then & is
bounded away from zero, and (3) becomes:

4) Prob {v/1T —xa = |t]| S V1 + e} >1 -2 (Aa < 1).

For example, if « = .5 and A = /2, then (4) shows that the probability is
greater than .50 that ¢ is either between .54 and 1.30, or between —1.30 and —.54.
If « = .2.and A = 3, then (4) shows that the probability is greater than .88 that
t is either between .63 and 1.27, or between —1.27 and —.63. In general, the
smaller « is, the greater the probability that ¢ is in a small interval around +1 or
—1. In particular, if @ = 0, then A may be taken arbitrarily large, so that (4)
shows that the probability is unity that ¢ = =1; this is the well known case
referred to above.



