416 GOTTFRIED E. NOETHER

where ¢(2) is the ordinary m.g.f. of a non-negative random variable. Likewise a
necessary and sufficient condition for w(z) to be the f.m.g.f. of a generalized
Poisson distribution is that it be of the form

) w(2) = O, a >0,

where Q(z) is the f.m.g.f. of an arbitrary distribution function F(x). If we
choose ¢(2) = ¢*“*™ and Q(z) = e”, then wi(2) = ws(2), and the distribution
whose f.m.gf. is wi(2) (the Neyman contagious distribution of Type A) is simul-
taneously a compound and a generalized Poisson distribution (cf. Feller [2]).
We now show that there is an infinite class of distributions with this property.
First note that if ¢(z) is the m.gf. of an arbitrary distribution, then exp
{a(@(2) — 1)} is also the m.g.f. of a d.f., and in fact is the m.g.f. of the generalized
Poisson distribution associated with the distribution whose m.gf. is ¢(z). Now
let ¢(z) be the m.g.f. of an arbitrary non-negative random variable, and define
®3) w(z) = exp{a(d(z) — 1)} a>0.
Then w(2) is simultaneously of the forms (1) and (2), since ¢(z) is, by (1), also
the f.m.g.f. of a distribution function, i.e. the compound Poisson distribution
associated with the distribution whose m.g.f. is ¢(z). However, not every dis-
tribution which is both a compound and a generalized Poisson distribution can
be generated in this manner. For example, the Polya-Eggenberger distribution
is easily shown to be both a generalized and a compound Poisson distribution,

yet its f.m.g.f.
w(z) = (1 — dg)™¢, d>0,h>0,

h
manifestly is not of the form (3), since this would imply ¢(iz) = 1 — o log

(1 — diz) is a characteristic function. But | $(¢2) | is unbounded asz — =+ « and
thus is not the characteristic function of a distribution.
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ON CONFIDENCE LIMITS FOR QUANTILES

By Gorrrriep E. NOETHER
Columbia University

In finding confidence limits for quantiles it is usual to determine two order
statistics Z; and Z; which with a given probability contain the unknown quantile
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between them. The values of 7 and j corresponding to a given confidence coeffi-
cient can be determined with the help of the distribution laws of order statistics
as is shown, e.g., in Wilks [1]. The purpose of this note is to determine ¢ and j
with the help of a confidence band for the unknown cumulative distribution
function.

In what follows we shall always denote the cumulative distribution function
(cdf) by F(x), i.e., F(x) = P{X < z}. Then the quantile ¢, is determined by

1) F(g, — 0) < p < F(gy)
which reduces to
¢Y) F(g,) =p

if F(x) is continuous. Given a sample of size n we can construct the sample
cdf F,(x) defined by F.(x) = 1/n (number of observations < z). Confidence
coefficients will always be denoted by 1 — a.

Assume that we can construct two step functions L(x) and U(x) parallel to
F,(x) such that for any fixed value z

2 P{L@x) < Fx) < U@)} =1 — o

We do not require that the confidence band determined by L(z) and U(zx) cover
the graph of the unknown cdf F(x) with probability 1 — «, but only that for any
arbitrarily chosen value z (2) is true.
Let
L(z) = m, Ulx) = 6,

forzi < 2 <z, k = 0,1, ---, n where 2 is the value taken by the order
statistic Z: and 20 = — ®, 2,41 = + . Then if F(z) is continuous it follows
from (2) that a confidence interval with confidence coefficient 1 — « for g, is
given by

3 Z; L qp < Zj

where ¢ and j are determined by
@) 01 < p, 0;: > p
®) 751<D, M =P

It will be noted that (3) represents a half-open interval. However as long as
we only admit continuous cdf’s the confidence coefficient is not changed if we use

3" ‘ Z; < qp < Zj
or
@) Z;< < Z;

instead. This is no longer true if we also admit discontinuous cdf’s. Then the
confidence coefficient connected with (3’) is <1 — «, while that connected with
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3" is >1 — a, as follows immediately from consideration of the possible out-
comes when (1) is true. This is the same result as that obtained by Scheffé
and Tukey [2].

We shall now indicate how #: and 6 can be obtained and find their values in a
particular case. For any arbitrary value £ we can consider F,(z) as the sample
estimate of the unknown parameter p = F(x) of a binomial distribution. Clop-
per and Pearson [3] have discussed how confidence intervals for the unknown
parameter of a binomial variate can be found. Thus we can determine 7
and 6; correspondingly, but as is well known (2) cannot be achieved with prob-
ability exactly equal to 1 — a. We shall have to be satisfied with probability
>1 — a. Consequently the same will hold true for the confidence coefficient
connected with the confidence interval for g, .

In many cases central confidence intervals seem to be more desirable, at least
intuitively, than others. Our method produces such central confidence intervals
for the unknown quantile if we use central confidence intervals in the construc-
tion of the confidence band. In that case n: and 6; are determined by

(6) In(bym — k& + 1)

&
2
k=01---,n

(7) = Il-o;,(n - ky kE+ 1)’

LR

except that 70 = 0, 6, = 1 by definition, where
z 1
L(p,q) = f 70 - ) di/ f A (U ) Laal
0 0

is the incomplete beta function. Scheffé [4] has pointed out how the tables of
percentage points of the incomplete beta function by C. M. Thompson, etc.
[5] can be used to find 7 and 6y . .

We shall show now that in the case of the median M the solution based on
(3)—(7) leads to the same confidence interval as that suggested originally by W.
R. Thompson [6]. Thompson found that for k < n 4+ 3

8) PlZy < M < Zpin} =1-— 2Iin — k + 1, k)

provided the unknown distribution had a continuous cdf. (8) can be used to
maximize k under the condition that the righthand side is >1 — «.

We shall first show that our method leads to the same kind of a confidence
interval, i.e., one with¢ = I, j = n — I 4+ 1. This follows immediately from the
fact that by (6) and (7)

(9) 1 — 6= 1.
For let
(10) 0i1 < 3and 6, > 3,

then by (9) - < % and 7p—141 > 3.
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It remains to be shown that k as determined by (8) equals I. This will be so
if we can show that

(11) Lin —14+ 1,0 < g-< Lin — 1,1 + 1).

Remembering that I(p, ¢) is a monotonically increasing function of z we get
with the help of (7) and (10)

g =Tie n—14+1,0)>Iin—1+11)

and
§= Liogn — L1+1) <Iin—1,14 1)
which proves (11).

In conclusion it may be worth while pointing out that the formula

PlZ; < < Zj} = LG,n —i+ 1) — LGn—j+1)

given, e.g, in Wilks [1] for the continuous case can be obtained by a slight modi-
fication of (6).
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A LOWER BOUND FOR THE EXPECTED TRAVEL AMONG m RANDOM
POINTS
By Eur S. MARks
Bureau of the Census

In connection with cost determinations in sampling problems, it is frequently
necessary to determine the amount of travel among m random sample points in
an area. A lower bound for the expected value of this distance is found to be:
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