MOST POWERFUL TESTS OF COMPOSITE HYPOTHESES. 1. NORMAL
DISTRIBUTIONS

By E. L. LeamManN anp C. STEIN
University of California, Berkeley

Summary. For testing a composite hypothesis, critical regions are deter-
mined which are most. powerful against a particular alternative at a given level
of significance. Here a region is said to have level of significance e if the proba-
bility of the region under the hypothesis tested is bounded above by e. These
problems have been considered by Neyman, Pearson and others, subject to the
condition that the critical region be similar. In testing the hypothesis specify-
ing the value of the variance of a normal distribution with unknown mean against
an alternative with larger variance, and in some other problems, the best similar
region is also most powerful in the sense of this paper. However, in the analo-
gous problem when the variance under the alternative hypothesis is less than
that under the hypothesis tested, in the case of Student’s hypothesis when the
level of significance is less than }, and in some other cases, the best similar region
is not most powerful in the sense of this paper. There exist most powerful tests
which are quite good against certain alternatives in some cases where no proper
similar region exists. These results indicate that in some practical cases the
standard test is not best if the class of alternatives is sufficiently restricted.

1. Introduction. The problem to be discussed in this paper is that of testing
a composite hypothesis against a simple alternative. More specifically let F =
{f} be a family of probability density functions defined over a Euclidean space R,
and let ¢ be a probability density function not in F. We wish to test the hypoth-
esis Hy that the random variable X = (Xy, ---, X,) is distributed according
to a density f of F against the alternative H; that X is distributed according to
g. By a test we mean a region of rejection, w in R, .

Neyman and Pearson, in the fundamental paper [1] which laid the groundwork
of the theory of optimum tests, restricted their considerations to similar regions.
They considered a region (set) w to be optimum for the given level of significance
e if it maximizes the power

(1) [ o@)dz
w
subject to the restriction
@) f f@)de = ¢ forall finF.

As Neyman, Wald and others have pointed out, it is more natural to replace
the condition of similarity (2) by the weaker restriction

(3) f f(z)dz < ¢ forall fin .
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496 E. L. LEHMANN AND C. STEIN

A region w maximizing (1) subject to (3) is called most powerful against the alter-
native g at the level of significance. Here and throughout the paper, all func-
tions and sets are assumed to be Borel measurable.

In the present paper we shall consider certain composite hypotheses, and derive
tests for them which are most powerful against a simple alternative. For the
cases in which these tests coincide with the standard similar regions it will thus
be established that no further increase in power is possible with tests of fixed
sample sizes. In the more usual situation where the most powerful test depends
strongly on the specific alternative chosen, no such absolute justification of the
standard test is possible. In these cases, any justification must take account
of the fact that it is desired to obtain good power against a large class of alterna-
tives. This can be done, for instance, by using Wald’s definition of a most strin-
gent test [2] or his concept of minimizing the maximum risk.! If, on the other
hand, the class of alternatives is sufficiently restricted, the results of the present
paper indicate that for small samples there may exist a test which is appreciably
better than the standard test.

Frequently the probability of an error of the first kind is an analytic function
of a nuisance parameter for every choice of critical region. Hence, if it is known
that some nuisance parameter 6 lies, say in a certain finite interval I, then any
test which is similar for 6 in I will be similar for all 8. Consequently, the knowl-
edge concerning 6 cannot be used to find a more powerful test. On the other
hand, as is indicated at the end of section 5, restrictions of the nuisance parame-
ters may, for small samples, lead to considerably more powerful tests if the con-
dition of similarity is replaced by the weaker condition (3).

There is one class of problems to which it may be desirable to apply the method
of the present paper regardless of sample size; namely, if no similar region exists.
Suppose, for instance, that X, ---, X, ars known {» he normally and inde-
pendently distributed, X; having unknown mean and variance &; and o3 for 7 =
1, --+, n. For testing the hypothesis

Hyios=1, G=1,--,n)
no similar region exists, while it is easy to see that against any simple alternative
Hy:o; =04 <1, & =¢ta,

there exists a test which satisfies condition (3) and which has good power against
H, provided the ¢ are sufficiently small.

The present first part of this paper is restricted to hypotheses concerning
normal distributions. It is intended to extend the considerations to exponential

1 In an unpublished paper, it is shown by G. Hunt and C. Stein that the traditional test
is most stringent in several cases, including the (univariate) linear hypothesis and the
hypothesis specifying the ratio of the variances of two normal distributions. These results
can be extended to analogous problems for distributions other than the normal, and similar
results can be proved regarding minimization of the maximum risk if the weight function
has a certain type of symmetry.
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and rectangular distributions, to consider non-parametric problems and pos-
sibly also more complicated problems connected with normal distributions, in
later parts of the paper.

2. Sufficient conditions for a most powerful test. The method which will be
used in this paper to obtain most powerful tests is an adaptation of the funda-
mental lemma of Neyman and Pearson [1]. At the same time it is essentially
a special case of much more general results of Wald [3, 4], although theexact
conditions of Wald’s investigation are not satisfied in most of our problems.

Let h and ¢ be two functions defined over R, , let k be a constant and let w
be a region in R, such that

g(x) > k h(z) in w;

)
g(x) < k h(z) in R, — w.

Then if w' is such that
5) f h(z) dz < f h(z) da,

it follows as in the fundamental lemma where in (5) equality is assumed instead
of inequality, that

(6) fw , g(x) dz < fw g(x) dx.

Throughout the present paper we shall be concerned with the special case in
which ¥ is an s-parameter family. We may denote the members of F by f, and
we shall obtain all members of F as 0 ranges over a set w in an s-dimensional Eu-
clidean space. In the theorem which we shall now state, we shall be concerned
with point functions A defined over . We shall assume that N = cu where ¢
is a positive constant and u a cumulative distribution function.” Also we sup-
pose that fy(x) is a measurable function of z and 6 jointly. However, the theo-
rem is also valid if w is an abstract space and A a (finite) non-negative additive
set function (measure) over w. Such more general interpretation may be re-
quired when applying the theory to non-parametric problems.

THEOREM 1. Let H, be the hypothesis that the random variable X s distributed
according to a density function fo with 0 in w, and let Hy denote the alternative that X
is distributed according to a density g. Let N be a function defined over v and such

that

@) A= cu,

2 The introduction of the distribution u is simply a mathematical device and does not
imply that 0 is a random variable (see Wald [16] p. 282).
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where ¢ is a positive constant and p a cumulative distribution function. Let k be a
constant and let w be a region in R, such that

g(z) >k f folz) dN@B) in w;
) -
0@ <k [ f@ a0 in B.—w

Suppose that w is of level of significance e for testing Ho against Hy , that vs that
) [ 5@ dz < ¢ forall gina,

and suppose that the subset of w for which

(10) fw folz) dz < e

has N-measure zero. Then w is most powerful for testing Hy against H at level of
significance e.

Proor. Without loss of generality we shall assume ¢ = 1. Let w’ be any
test of level of significance e. Then

(11) f folz)dz < e forall 6inw,
and because of (7)

(12) K{Lﬁ@&%ﬁ@geﬁﬁw=a

Since A is of bounded variation we may interchange the order of integration in
(12) and obtain

(13) f ha@)de < ¢,
where
(1) We) = [ 1@ ).

From (9) and the condition surrounding (10) it follows that
(15 [{[ 4 defr) =

and therefore that

(16) [ 16@) dz = e

Thus w and w’ satisfy conditions (4) and (5), and hence also (6) which completes
the proof.
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It is useful to notice that, the assumptions of theorem 1 will be satisfied pro-
vided

L folz) dx

attains its maximum e at all points of increase of A, and therefore in particular
whenever w is a similar region of size e.

We shall in many problems exhibit a function A which satisfies the conditions
of theorem 1 without giving the reasons which led us to this function. However
the following comments concerning the tentative process that we used, may be
helpful. One may first examine the known most powerful similar region. If
there exists a cumulative distribution function A such that (8) is the most power-
ful similar region, the problem is solved. If the most powerful similar region
cannot even be approximated by (8) with a sequence of N\’s, it is reasonable to
conclude that the most powerful test is not similar. Because the probability
(under the null hypothesis) of any test is in all the problems considered here an
analytic function of the parameter, this implies that the probability (under the
null hypothesis) of the most powerful test attains its maximum at an at most
denumerable (in some cases finite) set of points. In all the cases of this kind
which we considered in the present part I, it was then possible to prove the
existence of a function A with a single point of increase, which satisfied the condi-
tions of theorem 1.

A theorem analogous to theorem 1 holds for most powerful similar regions.
Let Hy, and H; be as before and let N\ be a function of bounded variation not
necessarily non-decreasing, Let w be a region in R, such that

glx) > kf fo(x) dA(®) in w;
1 °
glz) <k f folz) dN®) in R, — w.

Let w be a similar region of level of significance ¢ for testing H, against H, , that
is, let

(18) f fo@)dz = ¢ forall 8in w;

then w is a most powerful similar region for testing H, against H, .

For all the problems considered in this paper we shall prove the existence of
functions A satisfying the conditions of theorem 1, but we have not investigated
the corresponding existence problem in general. On the other hand one verifies
easily that for many of the cases treated here in which the most powerful test is
not similar, the method for obtaining most powerful similar regions does not
apply. However, for all the problems considered in the present paper the most
powerful similar tests can be obtained easily by other methods [1, 5, 6, 7, 8].
For most of the problems the corresponding derivations have been carried out
in the literature.
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Although we restrict ourselves in the present paper to the problem of maximiz-
ing the power at a single alternative, theorem 1 clearly also applies to the more
general problem of maximizing the average power over surfaces in a space of
alternatives. Such problems have been considered from the point of view of
similar regions by Wald, Hsu and others [9, 10, 11].

3. Testing the values of one or several variances. Let X, - - -, X, beasample
from a normal population with mean ¢ and variance ¢°, both unknown. We
want to test the hypothesis H, that ¢ = ¢y against the simple alternative that
¢ = o01,&=£§. Weshall show that the most powerful test for H, against H,
is
(19) S — £)' <k when o < oo
(20) 2(z; — 2 > ¢ when o > oo,

where k and ¢ are determined by the level of significance. Thus the best similar
region is most powerful if the variance under the alternative is greater than that
under the null hypothesis, while the most powerful tests against the other alter-
natives are not similar. That the region Z(z; — %)* > ¢ (< ¢’) is most powerful
of all similar regions against o, > 9 (61 < 09) was shown by Neyman and Pear-
son [1].
We consider first the case o1 < 9, and apply theorem 1 with A a stepfunction

having a single jump at & , that is,

0 if & <é&;

1 if £2>4&.

The region w given by (8) thus becomes
1 2
exp [ 257 2(xi — £) ]

1
exp I:—'Eg 2z — 51)2]

(21) AE) =

(22) 2 K,

which is equivalent to
(23) 2z — &) <k,

since o1 < 9. The size of the region (23), that is, its probability under the null
hypothesis is a function of £ and clearly attains its maximum when £ = & . Thus
all conditions of theorem 1 are satisfied provided we choose & so that the maxi-

mum size of (23) equals e.
Before considering the case o1 > oo we state for later reference the following:
LemMa 1. If o1 > oo there exists an absolutely continuous non-decreasing func-

tion X of bounded variation such that

® 1
@) [Cew| gt -8 |0 = Coxp| 0.
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This follows immediately from the well known representation of exp (— 2122 t’)

as a Laplace transform by applying a translation, and is easily verified directly
by substituting

' A I 2
25) N© = op | g on € - 8.
Now let o1 > soand n > 1. The region w given by (8) can be expressed in the
form
1 n
exp [ gt 2z — i)z] exp [" 25? (z — 51)2]
(26) = 1 . ! > K.

exp ["2—}73 Sz — 92)2] feXp l:—é:‘g & — 5)2] dX(§) -

By lemma 1 there exists an absolutely continuous function A for which the second
factor is constant. For this A (26) is equivalent to

(27) Sz — ) > ¢

and since this is a similar region, the conditions of theorem 1 are satisfied pro-
vided ¢ is chosen so as to give the correct level of significance.

We next consider the problem in which the random variables X; (z = 1, - - - ,n)
are independently normally distributed with unknown means ¢ and unknown
variances o:. We wish to test the hypothesis Hy : 0; = g forz = 1,---,n
against the alternative Hy : ¢; = o1, & = £a. Feller [12] showed that there
exist no similar regions for this problem. However, as we shall show now, when
the critical regions are not required to be similar, non-trivial tests against H,
do exist provided ¢;1 < a; for at least one value of 7.

Let us assume without loss of generality that ¢y < oi fors = 1,---, m;
ga > onfori =m + 1, -+, n where n — m may be zero but where for the

moment we shall assume m > 0. With A&, ---, &) = II iz, the region
1=1

(8) becomes
1
m exp [_2_02; (x; — €£1)2J
= % 1
! ‘Lo exp [—2_030 (2 — Ei)z:l ANED)

(28)

1
n exp l:_éo_z, (x; — En)z]
. H - : il 2 k.
j=m+1
! ‘/;w exp [—5;3; (z; — fz‘)z] dn(§;)
For \;( = 1, --- , m) we take step functions with a single jump at £, while

for the remaining A’s we choose the absolutely continuous functions which make
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the second factor constant and whose existence is guaranteed by lemma 1. The
region (28) thus reduces to

2 /1 1
(29) 5 () ey <ee

=1 \ 041 (]
Since the probability of the region (29) is independent of &1, - - - , &1 and with
varying & , - - - , £m takes on its maximum when & = £, it follows from theorem
1 that this region is most powerful for testing H, against H; .

We still have to consider the case m = 0, that is, the case in which ¢iy > 0w

forallz. To treat this problem we adjoin to the variables X, - - - , X, a random

variable Y uniformly distributed between 0 and 1, that is, essentially a table of
random numbers. In the space of n + 1 random variables we determine a region

w according to (8), letting A&, - -+ , &) = LI Mi(&) and choosing the N’s so
i=1

as to make the left hand side of (8) equal to the right hand side. This is possible
by lemma 1 and with this choice of the N’s the inequalities (9) become

k > kin w;
(30)
kSkinR,‘“—w,

and hence they impose no restrictions on w. Thus any similar region of the cor-
rect size will satisfy the conditions of theorem 1. It follows that the region

(31) w:0 <y <eg

being a similar region of size e, is most powerful. This result means that we do
not use the observations z;, - - - , . at all but consult a table of random num-
bers.

The situation just described occurs in other problems to which the same
method of proof can be applied. It is therefore convenient for later reference to
formulate the following

TreEoREM 2. Let Hy be the hypothesis that the random variable X s distributed
according to a probability density function fo with 6 in w, and let H, denote the alter-
native that X s distributed according to the density function g. Let Y bea random
variable known to be uniformly distributed over the interval |0, 1]. If there exists a
real valued function \ satisfying (7) for which

(32 o) = I [ £4(2) N0,

then the critical region 0 < y < e is most powerful for testing Hy against Hy at level
of significance e.

4. Testing equality of variances and the value of the circular serial correlation
coefficient. Foreachs = 1,---, mlet X;;(j =1, -+, n:) be a sample from a
normal distribution with E(X;;) = & and E(X.; — &)° = oi. We are con-
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cerned with the hypothesis Hy that 1= 0, = --- = 7, , where first we shall
assume the £’s to be known, so that without loss of generality we may assume
them equal to 0. The alternative hypothesis specifies o; = oy,2 = 1:-- m.
Let ¢° denote the unknown common variance under H, and let A(¢) be 4 step
functlon with a single jump at a point ¢, to be determined later. With

E = H ao) the test (8) takes on the form

oo [454]

¥ 471,1

expl: 2 qu]
a0 ¢,f

> 1,

(33)

or equivalently

(34) —L > o5

Since the function on the left hana side is homogeneous of degree 0 in the z’s,
this is a similar region and the conditions of theorem 1 are therefore satisfied
provided the region has the correct size. This can be achieved for any level
of significance e by proper choice of of .

As stated earlier, the conditions of theorem 1 imply that the size of the critical
region is equal to e at all points of increase of A. As a consequence, if the size
equals € at only a finite number of points of w, X must be a step function. Also
if each point of a certain interval is a point of increase of ), the critical region
must be similar over that interval (and, if the functions involved are analytic,
the region must be similar over »). However, the last problem shows that the
converse of neither of these two statements is correct. For the region (34)
is a similar region although the corresponding X has only a single point of increase.

Next we consider the hypothesis of equality of variances without assuming the
means to be known. For the case m = 2 the most powerful similar region was
obtained by Neyman and Pearson [1]. We assume first that n; > 1 for all 7,

and we take A(a, &1, -+ , én) = )\o(a)qki(&), with N\(co) as before a step func-
tion with a single jump at a point oy t:be determined later. Suppose now that
oo > oufori =1,--+,s; o< ogufori=s—+ 1, ,mon <oun < -
where 0 < s < m and s depends on ¢y. Then define

0 if & <éEny

1 if &> ¢a

fort =1, -+ ,sand uselemma 1 fors =s-4 1, .-+ ,m.
For proper choice of & the critical region will then be determined by the in-

equality

(35) Ni&) =
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36) 2 (—1—2 - —1) 2 (@ —2) = X (% - —%) 2 (zi; — £a) 2 0.
T=3+41 g0 01 =1 =1 g1 (4] j=1
The probability of this region computed under Hy , is independent of &40, -+,
£, and for any ¢ attains its maximum when & = &3 (1 = 1, ---, s). Since the
probability of the region is independent of ¢ when & = ¢, forz = 1,---, s,
the conditions of theorem 1 are again established. That for ¢ = £, the size of
(36) goes continuously from 0 to 1 with decreasing o, is easily checked since at
the only doubtful points ¢ = ¢ (where the value of s changes), the correspond-

. . 1 1
ing coefficient 3 — 2 passes through 0.
[1] 71

We still have to consider the case that some of the n; areequalto 1. Ifn; = 1
for some ¢ < s there is no change whatever, while if n; = 1 for some 7 > s,
the corresponding term in (36) vanishes. It follows easily that if n; > 1 for at
least one value of 7 > 1 the solution (36) is valid. On the other hand, if n; = 1
for all 7 > 1, we can apply theorem 2 by taking oy = i1, Mi(£1) as a step function
with a single jump at £, and the remaining \;(¢:) according to lemma 1. It thus
follows that for this problem no non-trivial test exists.

The following problem can be reduced to the hypothesis of equality of vari-
ances with means assumed known: Under the null hypothesis X, - - -, X, have

a joint multivariate normal distribution with density C' exp [-2};2- T apvr j]

where the a’s are known and where o is an unknown scale factor. Under H,
the X’s have a joint multivariate normal distribution with density C’ exp

[—— ;Zbﬁx.{c{l. A number of hypotheses specifying the value of one or several

correlation coefficients have this form. The most powerful test of H, against
H, is given by
(36) bz

2025
as is easily shown by applying a non-singular linear transformation which re-
duces Zb;jxx; to diagonal form and Za;x:x; to a sum of squares, or by applying
directly the method of proof of the earlier problem.

A corresponding reduction when the X’s have a common but unknown mean is
usually impossible. One problem of this kind for which the solution is simple is
the hypothesis specifying the value of a serial correlation coefficient in a circular
population. The most powerful similar region for testing this hypothesis was
obtained in [7]. Consider the probability density function

(37) C exp [—a {zn: (i — &) — 8wy — E)} ],

=1
(@ = @), [8] <1,
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and let H, specify § = § while H; assigns to the parameters the values ay , & , & .
Then the most powerful test of H, against H, is

u(l‘l - ’L)(.’l',_H - .’E) .
. SRR S > o .
S — @)? B>

(38)
“(u — El)_(lz+1 &) <k if & <&.

- (’C, — £ 1)
We shall omit the proof of this result, since the method is the same as in the other
problems considered in this section.

5. Student’s hypothesis and some generalizations. As the principal result of
the present section we shall prove that for testing Student’s hypothesis against a
simple alternative the most powerful test is a non-similar region of the form

(39) S(X:— )t <k,

if the level of significance e is less than or equal to 3. Here  and &k depend on
¢ and on the alternative, and they will not be determined explicitly. It will be
shown also that if € is greater than or equal to 3, Student’s test is most powerful.
These results will be extended rather easily to the general univariate linear
hypothesis. The corresponding investigation for similar regions was carried
through for Student’s hypothesis by Neyman and Pearson [1] while the extension
to a general linear hypothesis is contained in a paper by Hsu [13].

The proof of the main result mentioned above is rather lengthy. We shall
begin by proving two lemmas.

LEmMa 2. Let Yy, .-+, Y, be n independent random variables, normally dis-
tributed with 0 mean and unit variance, and let

P(a, k) = P{Z: Y:i—a)l < (n— lc)a2};

o(k) = sup P(a, k) for 0 <k <n, 0<a.

(40)

Then for each k there exists a(k) such that

(41) P(a(k), k) = (k).

Proor. If Z; = Yi/a, @ = 1, ..., n) the Z’s are independently normally
distributed with zero mean and variance 1/a° and (40) may be written as
(42) Pla, k) = P{2(Z; — 1)’ < n —k}.

Hence it is seen that for any &, P(a, k) tends to zero as a tends to either zero or
infinity. This proves the lemma since for any %, P(a, k) is a continuous function

of a.
LemMA 3. Given any ¢, 0 < € < 1 there exists I(e) between zero and n such that

o(k(e)) =
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Proor. The proof will be given in a number of steps.

() k) > 2 as k — 0.

Clearly P(a, k) never exceeds 3. The result will therefore follow if we exhibit
a sequence a; such that P(a;, k) — ask —0. Leta, = 1/4/k. Then

(43) Plac, k) = P{\/kZY: — 22Y, + Vk < 0}.
The right hand side is a continuous function of £ and therefore tends to
(44) P{zY; 20} =3,

as k tends to zero.

(ii) o(k) —0ask — n.

Consider P(a, k) as in (42). Written as an integral of the probability density
of the Z’s, the region of integration is independent of a and its volume tends to
0 as k tends to n. On the other hand the probability density depends on a
but is uniformly bounded over the region of integration if £ > 0, and hence the
result follows.

(iii) If 0 < ko, P(a, k) tends to zero uniformly for & in the interval ks < k < n
a8 a tends to zero or infinity.

This follows from the fact that 0 < P(a, k) < P(a, ko) since P(a, ko) tends to
0 as a tends to zero or infinity.

(iv) Given ko and k; there exist numbers a, and a; with 0 < @ < a; <
such that 0 < &y < k < ki < nimplies ap < a(k) < a1 .

If this were not true there would exist a sequence kD with ke < k¥ < ky and
a(k?) tending to infinity or zero. Then o(a(k'”)) would tend to zero by (iii).
On the other hand consider P(1, k) for ko < k < k; . This is a continuous non-
vanishing function of k& and hence attains its lower bound m for some % in &y <
k < ky. Therefore m is positive and we have a contradiction.

(v) Given any ko, ky with 0 < ky < k1 < n, ¢(k) is continuous on the inter-
val (ko , k1.

To see this, select ao and a; in accordance with (iv). Then P(a, k) is uniformly
continuous in the rectangle ap < a < a1,k <k < k. Given n > 0let 3 be
such that |k’ — k" | < & implies | P(a, k') — P(a, ¥”") | < 7. Then o(k") >
P(a(k"), k') > P(a(k”), k') — n = (k") — =, and by symmetry o(k”) >
(k') — n, which establishes the continuity of ¢.

The proof of the lemma is now immediate. For let 0 < ¢ < §. It follows
from (i) and (ii) that there exist ko and ki such that

oko) < €/2, (k1) 2 e+ 55 — o),
and hence by (v) there exists k(e) for which ¢(k(e)) = e.

Let us now consider Student’s hypothesis. The random variables X3, - -+ , X,
are a sample from a normal distribution which under H, has mean 0 and un-
known variance ¢, while under H; the mean is £ and the variance o, Without
loss of generality we shall assume & > 0. Applying theorem 1 with X\ a step-
function having a single jump at a point ¢o > o1 to be determined later, we ob-
tain the critical region in the form
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(45) (i - l) sxi-28sx, <.

F)
o1 [4)) o1

Let Y; = X;/o so that under H, the Y’s are distributed with zero mean and unit
variance. Then (45) becomes

(46) IY: - 251_52———'?%—5 zY: < f

which may be written as

47 2(Y: —a) < (n — k),

where

(48) a= b Ic=—_—c(1 —‘ﬁ)%
o(l — ai/a0)’ & L

As o varies from 0 to «, a goes from « to 0. Let P(a, k), ¢(k) and a(k) be
defined as in lemma 2. Given the level of significance ¢ (0 < ¢ < 3), let k*
and o* be determined according to lemma 2 and 3 so that

(49) o(k*) = eand P(a* k*) = o(k*).
We now select o9 > o1 and ¢ so that
& ¢ ( ai)
50 *= > — and k*=-(1--5).
(50 S ) & o

We have to show that for this choice of a0 and c¢ the size of the critical region at-
tains its maximum when ¢ = oo and that this maximum size is e. Substituting
from (50) we express the region (47) in the form

2 2
(51) = (Y; -2 a*) < (n—k% i‘;’ a*l
g [
Thus the probability of the region is

(52) P (‘7’79 a¥, k*> :

As o varies, (52) attains its maximum when Pa* = a(k*) = a*, that is, when
[

o = oo and the maximum value of (52) is (k*) = e.

This derivation is valid even when n = 1, i.e., when the hypothesis £ = 0 is
to be tested by observing only a single random variable X, known to be nor-
mally distributed but whose mean ¢ and variance are unknown. For this prob-
lem no similar region exists. However, critical regions of the form 0 < & — a <
x < & + b will give any level of significance < % for proper choice of a and b,
while the power of such regions will tend to 1 as ¢, tends to 0. Therefore, the
power of the most powerful test will be close to 1 if o; is sufficiently small.
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Having completed the discussion of the case ¢ < % let us next suppose that
e > 1. We shall need the following

LemMmA 4. Let ¢ and oy be positive constants. Then there exists a function f
such that f(a) = 0 when o < oy and such that for all w > 0

(53) f e f(a) da = ke ~V™,
0

This follows from the well known representation of e V¥asa Laplace trans-
form by applying a translation. (53) can be checked directly by substituting

‘ ce—(v2/4(a—a1))
(54) fla) = o = it for o> ar.

a — ay)3?

Applying theorem 1 to Student’s hypothesis, where again we shall assume £
to be positive, for proper choice of & we obtain from (9)

1
exp | — 573 =X + éa =X,
20’1 1

o1

f exp [— 1-2 EXE-] 1 d\ (o)
0 B 20’ o”
It follows from lemma 4 that for any positive ¢ there exists a non-decreasing
function M of bounded variation with A(¢) constant for ¢ > o1, such that

] 1 o
(56) f exp [-— L3 EX?:I 1 d\(c) = exp [— — X2 —¢ \/Exf]
) 202 i 201

(55)

For this choice of A, (55) reduces to

(57) exp l:i_li Exi] > exp [—c V=2,
1
and hence to
2x;
— > ¢,
(58) Vet = °

This is a similar region and therefore most powerful for testing Student’s hy-
pothesis against H; . By adjusting ¢, the size of the region can be made equal
toany € > 3.

The argument for ¢ > % must be modified slightly in the case n = 1, that is,
when we want to test Student’s hypothesis on the basis of a single observation.
Let us adjoin to the variable X a random variable ¥ known to be uniformly
distributed over the interval [0, 1]. Using the same X and k as before, (58)
becomes

(59)
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For ¢/ = —1 the critical region includes all points (z, y) for which z is positive
while (59) places no restriction on which of the remaining points to include in
the critical region. The similar region

(60) t>0; <0, 0<y<2e—13

therefore satisfies all conditions of theorem 1 and hence is most powerful

In extending these results to the general linear hypothesis, we shall assume the
hypothesis reduced to canonical form [14, 15]. We shall therefore assume that
X;, -+, X, are normally distributed with common variance which is unknown
under H, and has the value ¢,* under H; . Furthermore, under H, , E(X;) = 0
fori =1,---,8 s+ 1, .-, m; E(X;) unknown for ¢ = m + 1, - -+, n while
under Hy E(X,) = 0fori = s+ 1, --- ,m; E(X:) = £afor the remaining values
of <.

For ¢ < % we shall consider critical regions of the form

1 8 m n
exp{—- 27 [Z (z: — £a)" + Z zi + E (x: — Eu)z:l}
1 i—l . - 1==g+1 _ 1=m-+1 ] 2 k,
GXP{— 257 [Z P D DI S DA ¢ En)z:l}
o1 Li=1 f=stl i=mt1
which are obtained from (8) by substituting for A a step-function with a single
jump at the parameter point (oi, ém+1,1, *** , £, 1). Making an orthonormal

(61)

transformation from z,, ---, &, to y1, -+, yt such that y1 = gﬂ'im and
VZ¢h
letting ys = z; fors =s+1,--- ,m;yi =2 — afore =m +1,--- ,n,

(61) reduces to
1 [& N s
exp {— 557 [Z vi—2m A/ 2 Ezl]}
(62) 1 | i==1 1 . 1= Z c.
|- i)

00 =1

For oo > o1 we can rewrite (62) as

2 2
=m+1 gL — 0o gy 7=1

and we see that under H, for any ¢ the size of this region considered as a function
of the unknown means of Ym41, -+, Y, takes on its maximum when these
means are zero, i.e. when §; = £xfor? = m + 1, -+ ,n. For these maximizing
values of the means the existence of a suitable g and ¢ follows from the corre-
sponding result in connection with Student’s hypothesis.

Thus the most powerful test for testing H, against H; at level of significance
e = 3 has the form

s A 2 m n
6 Tle- ]+ S B w0 <o

1=s+1 t=m-+1

4=
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It is interesting that the variables Xi(z = m + 1, -+, n) which may be dis-
carded when considerations are restricted to similar regions [18], do contribute
to the power when similarity is not required. The same phenomenon also
occurs in certain problems considered earlier in this paper.

For the case € > 3, let us take

(65) Mo, Bty 5 6) = M) TT M o)

We shall select A(¢) such that A(¢) is constant when ¢ > o1. Hence it is enough
to define \i(¢; | ¢) for ¢ < ¢1. For any ¢ < o; there exists by lemma 1 a func-
tion A,(%: | o) such that

0 [Cew[~ L - 80 [tele) = Few{ o - e},

For this choice of the \;, (9) becomes

e*p\ [Z(xl W+ 5 ] .

fowexp{ 1 Zx,}d)\ (o)

Next we chose Mo) according to lemma 4 such that

(68) /omexp [— ——Za’,]:}ﬁd}\(a) = exp [ ggu e ;g]

=1 ‘

(67)

)

thus, by proper choice of %', reducing (67) to

Z E@I T

(69) e Z — C.
The probability of this region under Hy is independent of £mi1, -+, £ and o,

and hence (69) is most powerful for testing H, against H, .

Let us return once more to the problem of testing Student’s hypothesis against
a simple alternative £ = £ , ¢ = 1 and let us assume as known that ¢ < 1. No
use can be made of this knowledge if consideration is restricted to similar regions.
For the probability of first kind error is an analytic function of ¢, and conse-
quently, if a test is similar with respect to all values of o which are < 1, it is simi-
lar with respect to all values of o. Let us now consider this problem without the
restriction of similarity. If e > 3, the knowledge concerning ¢ does not enable
us to find a test which is more powerful than that given by (58), since the func-
tion A(¢) on which (58) was based had all its points of increase for ¢ < 1.

On the other hand we may expect improvement for ¢ < % since the most
powerful test in this case was based on a function A with a single point of increase
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oo > 1 which is no longer admitted as a possible value of . If, instead, we take
for X\ the step function with a single jurnp at ¢ = 1 we obtain the critical region

exp [ — 3 2 (2 — &)')

70
70 exp[ — 322l

which is equivalent to
(71) Z2>c

Here ¢ > 0 since ¢ < 3, and therefore, when ¢ = 0 the probability of (71) is an
increasing function of ¢ and hence takes on its maximum at ¢ = 1. It follows
from theorem 1 that (71) is most powerful under the conditions stated.

In the opposite problem in which it is known that ¢ > 1, the situation is
reversed. For ¢ < 1 no improvement over (45) is possible while for ¢ > % we
can use for A the step function with a single step at ¢ = 1 thus obtaining the
critical region (70) but this time with ¢ < 0. When # = 0 the probability of
this region is a decreasing function of ¢ and it follows that (70) is most powerful
in this case.

Similar remarks apply to other problems. We mention as one further ex-
ample a modification of the Behrens-Fisher problem. Let X;, ---, X, and
Y1, -+, Y. be independently normally distributed, the X’s with mean ¢ and
variance ¢°, the ¥’s with mean 5 and variance 7, all four parameters being un-
known. We wish to test, at level of significance ¢ < %, the hypothesis £ = 9
against the simple alternative £ = & ,9 = m,0 = 1, 7 = 1, where & &= m and
we assume it known that 0 < 1, r < 1. Basing the test on a step function A

with a single jump at o = 1, 7 = 1, ¢ = 7%7—””11 we obtain for w the region

exp [ — 32 (s — &) — $ 2(wi — m)]
(73) exp [ 1 Z(xf _ @ﬂ)“’ S (yi _onk + mm>2] >k,

2 n-+m n+m

which is equivalent to

(74) g—T2c (c > 0),

if we assume, as we may without loss of generality, that n; > & . When 4 =
2

o — 2
&, Y — X is normally distributed with zero mean and variance % + :ﬁ There-
2 2
fore the probability of (74) is an increasing function of % + 7% and hence attains

its maximum when ¢ = 7 = 1. It follows from theorem 1 that the region
(74) is most powerful for the problem under consideration.

6. Admissibility. The general problem to be considered in this paper has
been formulated in section 1: To obtain a region w
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(75) maximizing j; g(z) dx

subject to the restriction

(76) [1@da<e joratoce

Since for any particular such problem there may exist several essentially different

regions satisfying these conditions, it may happen that there exists a region w’
such that

(1) [ o@ e = [ @ az,
and
(78) f , folx) dz < f fo(x) dx for all 6 € w,

with inequality holding for some 6. Clearly w' is preferable to w. In this case,
following the definition of Wald [4], we say that w is not admissible. We shall
rule out this possibility for a large class of problems by proving

TueorEM 3. If w satisfies the conditions of theorem 1, and if the set of points
x for which equality holds in (8) has measure zero, then any region satisfying (75)
and (76) differs from w only on a set of measure zero.

Proor. Without loss of generality we shall assume A of theorem 1 to be a
distribution function. Then

We) = [ fiz) @)

is a completely specified probability density function, and w is the unique’®—
up to a set of measure zero—most powerful test for testing the simple hypothesis
Ho:h against the simple alternative H,:g. Suppose now that w’ satisfies (75)
and (76). Then

(79) / h(z) doz < e,

and w' is most powerful for testing H, o against Hy. It follows that w’ differs
from w at most by a null set.

Earlier we enlarged the problem of testing by adjoining to the original random
variable X a random variable with a known distribution. This is equivalent
to the following modification of the original problem. Instead of defining a test
to be a critical region (of rejection) in the space of x, we define it to be a critical

3 One sees this easily from Neyman and Pearson’s proof of the fundamental lemma [1],
by using the assumption that the set of points for which equality holds in (8), has
measure zero.
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function ¢ (0 < ¢(x) < 1) which with every point x associates a probability of
rejection ¢(z). If x is observed, the hypothesis is rejected with probability o(z)
according to a table of random numbers. In the case where random numbers
are not employed, ¢ merely becomes the characteristic function of the set w.

We shall now state a theorem which will prove admissibility for all but one of
those problems treated in sections two to five, to which theorem 3 does not apply.

THEOREM 4. Suppose w = {8} is a subset of an s-dimensional Euclidean space,
and that for any measurable function ¢ and for any set S which has positive measure
and s contained in w

(80) f o(x)fo(z) dz = ¢ for8eS
implies
(81) f o(X)fs(x) dxz = ¢ for 0 ¢ w.

(Here and in all that follows whenever a region of integration is not indicated, the
inlegral extends over the whole x space). Suppose further that ¢ is a critical function
satisfying the conditions of theorem 1 and that the set S, of points of increase of \
has positive measure. Then ¢ is admissible.

Proor. If ¢ were not admissible there would exist ¢; with

(82) [o@) 9@ o = [o@g@) az;
(83) f e(@)fs(z) dz < f o(x)fo(x) dx for all 0 ¢ w;
(84) f ei(@)folz) dx < f o(2)fs(z) dz for some 6 € w.

The set T of points 8 for which (84) holds, differs from w at most by a null set,
For

(85) [la@ — @@ dz =0 foroew -,
and if @ — T had positive measure, (85) would hold for all 8 € w.
Let h and Hg be defined as in the proof of theorem 3. Since S has positive
measure, it follows that
(86) ¢ = f o(@h(z) dz > f @h(x) de = 1, say.
Let ¢2(x) = min [1 ,ou(x) + € — n:l. Then

(87) [ertantz) dz <
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and

(88) [e@@ @ > [ e@t) d.

But ¢ is most powerful for testing Ho against H; and we have a contradiction.

By applying theorems 3 and 4 one can easily show for all but one of the prob-
lems treated in sections three to five that the tests obtained there are admissible.
The one exception occurs when testing equality of variances. Simplifying the
notation, since we are now concerned with a special case, we shall assume that
X =1,---,n), Y1,---, Y, are independently and normally distributed,
the X’s with mean & and variance oj, ¥; with mean £; and variance o7, all para-
meters being unknown. We wish to test the hypothesis of equality of variances
against the simple alternative

H & =&, g = oq @ = 0., 1),
with

g < oy < ¢ < one

We shall first consider the case n = 1, and prove admissibility of the critical

function
(89) ‘p(xy?h,"' ryr) =€
by using a different distribution function for the parameters from the one used
earlier. With some specialization of the distribution function, (8) becomes
for our problem

exp {— 21 (@ — ta)® — }i;%(y. - Eﬂ)2}

o1 23

[5{[exr| - e -0 |
I e[~ - 60| a0 e} anto

=1

(90)

For any ¢ < oo we select the \” (&) according to lemma 1. If we then take for
w the uniform distribution over (so; — 1, 09;) the left hand side of (90) will reduce
to k. Admissibility of the critical function (89) then follows from theorem 4.

That a constant critical function is not admissible in the case n > 1 is easily
seen if one compares it for instance with the critical region

L — tn
vV 2(x1 - Ii?)z

We shall not obtain a complete family of admissible tests (cf. [4]) for the case
n > 1 but we shall show that this problem is equivalent to the following one: To
find a complete class of unbiased admissible tests for the hypothesis specifying

<e

(91)
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the mean-and variance of a normal distribution on the basis of a sample from
this distribution, the class of alternatives being the totality of univariate normal
distributions.

Let n > 1 and let ¢ be any most powerful critical function for testing the
hypothesis of equality of variances against H; . If ¢ corresponds to the level of
significance e and if 8, denotes the power of ¢, we have

(92> B(c(a"o-f"')6750’51:"'121')5.e

for all admissible values of the arguments. It also follows from section 4 that
(93) ﬂ¢(0'01 y o1t 0my Eory En, e - ’ Erl) = €

Consider for a moment the hypothesis Hyioi = on(@ =0, -, 1), & = &, &
unspecified forz = 1, - .-, r. It is easily seen that the maximum power for test-
ing Hy against H; is e. Therefore any most powerful test for testing Ho against
H, is also most powerful for testing H, against H, , and in particular this holds
for ¢. Furthermore, it follows easily from theorem 4 that for any most powerful
test of Hy against H, the probability of an error of the first kind must be iden-
tically equal to e. Therefore

(94) Beloor, -+, 001, b, 61, -, &) = eforall &, -+, &.

But (94) is equivalent to the condition that ¢ is similar with respect to &, , - - - ,
¢, and it follows [12] that ¢ is a function of z,, - -+ , z, only. The problem is
therefore reduced to that of finding all admissible critical functions ¢(z; , - - - , x,)
satisfying

(95) Bo(oor, bn) = €; Bolao, &) < eforall oo, & .

That this problem in turn is equivalent to the one stated above is immediate when
one considers the complementary critical functions 1 — .
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