ON DISTINCT HYPOTHESES

By AeNES BERGER AND ABRAHAM WALD
Columbia University

1. Introduction. The following problem was suggested to one of the authors
by Professor Neyman:

Let X = (X, X4, -+, X,) be a chance vector and let & denote any simple
hypothesis specifying its distribution. Let H; be the composite hypothesis
that some element & of a set of simple hypotheses {h};, ( = 0, 1), is true, and
assume that H, and H; are known to be exhaustive. Let k; denote an element of
{h}: @ = 0,1).

For any region W of the sample space S, let P(W | h) be the probability that
the sample point falls in W when % is true.

We shall call Hy and H, distinct, if a region W exists for which

for all hg € {h}o
and all & € {h},.

The problem is to establish necessary and sufficient conditions for two composite
hypotheses H, and H; to be distinct.

For any critical region W for testing H, against H, , let v(W | k) be the proba-
bility of a wrong decision when A is true, i.e.

P(W | h) for heH,
1—P(W|h) for heH,.

Suppose now that H, and H; are not distinct. Then to any W a pair hq , b1
exist such that

P(W | ho) = P(W | ha),

7(Wlh)={

P(W | ko) = P(W | hy),

thus .
(W | he) = 1 — (W | hp),
and thercfore
(1.1) Lub. v(W | h) > & for any W.
This property of non-distinct hypotheses leads us to investigate the conditions
under which 2 hypotheses allow a test where the maximum probability of a
wrong decision is < 3.

The result, in turn, will enable us to state, for an important class of hypotheses
a necessary and sufficient condition for 2 composite hypotheses to be distinct.

2. Alemma. We shall now prove the following lemma:
Lemma 2.1.  Assume that X has a density function p(x) and let H; = h; be the
stmple hypothesis that p(x) = pi(x), (¢ = 0, 1). Assume that the set R of x’s
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satisfying po(x) # p1(x) has a positive measure. Then there exists a region W
such that y(W | ps) < 3,2 =0, 1.
Proor: Let Rybe defined by pp = p1, Riby po < p1, R2 by po > p1. Since

f pi(x) dz = 1 and pi(z) > 0, (¢ = 0, 1), R; and R, are of positive measure.
8
Let

fpl in R1
¢(x) = {poin Ry
[pl = Do inR,.
Then f ¢(x) dr > 1 and either
8
a) f mdr >3 or b) f Podr > %
R1+Rg Rz

or both. Assume first a).
Let Ry C Ri 4 Ro and such that f prdz = 3, but [ pode < 3 This
Rg R3
can be done by including into R; a part of R; of non-zero measure. Let B4 C R,

+ Ro — Ry and such that 0 <f pdz <3 — [ pode. Then
Ry R

podng pldx<%—f podx,thusf po dz < % but mdx > 3.
Ry R4 R3 R

3+Ryq Ry+Ry
Assume now b).
Let Rs € R: and such that f p dr = %. Then f podr < 3.
Rs Rg

Let Re C B — Ry and such that 0 < [ pods < } — f pi dz. Then
Rg = Rg

f po dz > 3 and pdr < %.
Rg+Rg

RBy+Rg

Thus in case a) W = R; + Ry, and in case b) W = S — Rs — Ry is a critical
region for which v(W | p:) < % (¢ = 0, 1). This proves the lemma.

3. The main theorem. Assume now X to have a density function p(z, |6)
where 8§ = (61, 64, -+ -, 0;) is an unknown parameter point. Let wy and w;
be two disjoint, bounded and closed subsets of the k-dimensional § — space.
Let @ = wo + w1 and suppose that 6 is known to belong to @, which therefore
will be called the parameter space. Let H; be the hypothesis that the true
parameter point is an element of w;, (¢ = 0, 1).

We shall consider the problem of testing Ho against H;. Clearly, P(W | k)
can now be written as P(W | 6) and v(W | h) as y(W | 6).

We shall make the following assumptions concerning p(z | 6):
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Assumption 1. p(x | 6) is continuous in 6. This is of course always fulfilled

if Q@ consists only of a finite number of points.
Assumption 2. For any bounded domain M of the sample space we have

f [Max p(z |6)] dz < .
M 0
It follows from Assumptions 1. and 2. that

(3.1) lim p(x|6) dec =0

re=0 JS—8,

uniformly in 6 whoere S, is the sphere in the sample space with center at the

origin and radius r.
In what follows, whenever we shall speak of cumulative distribution function

g(0) in the k-dimensional parameter space, we shall always mean a cumulative
distribution function satisfying the condition

L@®=L

For any c.d.f. g(6) let W, denote a critical region which contains any sample
point z satisfying the inequality

[ r@10 46 > [ p@10 do,
and does not contain a sample point z for which
[ r@l0d@ < [ o610 do.

It can easily be verified that W; minimizes the average risk

@2 [ 2710 dg@),ie, [ W,16) dg6) = Min [ v 10 dgo).

Let Q; (¢ = 0, 1) be the class of all density functions p(z) = j; p(z | 6) dg.(6)
where g;(0) is subject to the condition

'LMM=L

Two density functions p(z) and q(z) are said to be equal if p(z) # g(x) holds
only in a set of measure zero.

It follows from (3.1) and Assumptions 1. and 2. that v(W | 6) is a continuous
function of . Let (W) denote the maximum of v(W | §) with respect to 6.
We shall prove the following theorem:

THEOREM 3.1. A necessary and sufficient condition for the existence of a region
W such that y(W) < % is that the classes Q, and @ be disjoint.
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Proor. Suppose that @ and @ are not disjoint. Then there exist two
distribution functions g,(6) and ¢1(6) such that

[ @ = [ dn =1

and

[ pa10 o) = [ e |0) dnto)

(except perhaps for points z in a set of measure 0).
Let g(6) = 3 o(6) + } (0). Clearly, v() > [ +(W [0) dg(9) =

any W. This proves the necessity of our condition.

We shall now assume that Q and @, are disjoint. First we shall show that the
results of [1] can be applied. On pages 297-8 of [1] there are seven conditions
listed for the sequential case. For the non-sequential case (the one considered
here) the conditions 6 and 7 drop out and the first five conditions can be reduced
to the following conditions:

Condition 1: The weight function W (0, d) ¢s bounded.

Condition 2: For any 0, the chance vector X admits a density function p(x | 6).

Condition 3: For any sequence {6;} (i = 1,2, ---, ad inf.) there exists a sub-
sequence {8;} (j = 1,2, -+ -) and a parameter point 6y such that

for

™

lim p(z | 6:;) = p(= | 60)

Condition 4: If {6:;} (¢ = 1,2, - - +) s a sequence of points and 6y a point such that
lim p(z | ) = p(z | &)

then,
lim W(0| ) d) = W(00'1 d)
uniformly in d.

Condition 5: The same as our Assumption 2.

In our problem d(the decision of the statistician) can take only two values:
acceptance or rejection of Hy . Condition 1 is evidently fulfilled, since W(6,d) =0
if a correct decision is made, and = 1 if a wrong decision is made. Clearly,
Conditions 2-5 are also fulfilled in our problem.

A distribution ¢(6) is said to be least favorable, if it maximizes the minimum

average risk, i.e., if it maximizes j; v(W | 6) dg(6) with respect to g.

It follows from Theorems 4.1 and 4.4 of [1] that there exists a least favorable

distribution.
Let g*(6) be a least favorable distribution. Then, as has been shown in [1]

there exists a W+ such that
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(33) Max Y(Woe |6) = [ (4 9) dg*0).
Thus, our theorem is proved if we can show that '
(34) [RUADEZORS

Let Hy be the hypothesis that the true density is given by

[ »10) d@)
po(x) == ’

[ 4@
wo
and Hj the hypothesis that the true density is given by

[ v a6
[ a0

Since Q and @, are disjoint, po(z) and pi(z) are different density functions.
Hence, according to Lemma 2.1, there exists a critical region W* for testing Ho
such that o* < % and 8* < 3, where a* is the probability of type I error, and
B* is the probability of type II error. Clearly,

3.5) 3> [ dg*0) + ¢ ) 4*6) = fn (W* | 6) dg*(0).

n) =

Hence, our theorem is proved.
It follows from (1.1) that if Hy and H,; are not distinct, @ and Q; are not

disjoint.
On the other hand, suppose that Q and @ are not disjoint and let

[ 916 doot0) = [ p(z|0) dgio).
wp Wy
Then for every W
(36) [ P10 dgee) = [ POV 10 o).

wo w1

Assume now that w; is a connected set (z = 0, 1). Then, because of the

continuity of P(W | 6) there exist 2 functions (W), 6:(W), 6:(W) belonging to
w;(# = 0, 1) such that

PW (W) = [ PO | 6) dgo0)

wo

and
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POV |07 = [ P |6) dau(0)

for every W. Hence, because of (3.6),
P(W | 6(W)) = P(W | 6.(W))

for every W. Thus, we arrive at the following theorem:

THEOREM 3.2. If w; is a connected set (¢ = 0, 1), then, under the assumptions
of Theorem 3.1, a necessary and sufficient condition for Hy and H, to be distinct
18 that the sets Qo and U be disjoint.
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