THE MULTIPLICATIVE PROCESS
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1. Introduction and summary. The multiplicative process is usually defined
by the sequence of random variables X,, X1, --- whose distributione are
specified as follows: P(Xo = 1) = 1, D_smg P(X1 = ») = 1, and if X, = 0 then
P(X, = 0) = 1, whereas if X, is a positive integer then X, is distributed
as the sum of X, independent random variables each with the distribution of X; .
The variable X, is interpreted as the number of “particles” in the nth generation,
and the index n as a discrete time parameter. This has been the method of
approach in previous studies of the process [1, 2, 3, 4, 5]. The multiplicative
process has various applications, notably in the study of population growth, the
spread of epidemics or rumors, and the nuclear chain reaction. The closely
related “birth and death” process was recently studied by Kendall [6].

Whenever one studies the probability theory of a particular system there
seem to be definite conceptual advantages in defining explicitly the set J of
elementary events, the additive class I of subsets of J, called events, and the
probability measure P for the events of . Now an elementary event of this
process can be represented by a rooted tree where the original particle is repre-
sented by the root vertex and where the particles of the nth generation are
represented by the vertices n segments removed from the root. The tree will be
finite or infinite according to whether a finite or an infinite number of particles
are involved in the elementary event. Thus, the set of trees is the natural
choice for . The first part of this paper is devoted to a more precise description
of J, It and P. We shall then see easily that X.(t), the number of vertices n
segments removed from the root of ¢ ¢ J; i.e. the number of particles in the nth
generation, has the distribution defined in the preceding paragraph. Since the
time does not appear in our description of J we fetter ourselves somewhat if we
interpret n as a discrete time parameter. Thus, we have already reaped some
harvest from considering the process from the point of view of J. Another
advantage is that we are led in a natural way to study the distribution of other
structural features of the trees, e.g. the total number of vertices, or the number of
vertices with k& outgoing segments.

The chief results of this paper are as follows. The recursion formula for the
probability P, that a tree have n verticesn = 1, 2, - - - is obtained as well as an
asymptotic estimate of P, valid for large n. The distributions of the number of
branches at the root in a finite tree, an infinite tree, or in a tree with n vertices
are obtained and the asymptotic distribution of the latter as n — . The
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distribution of the fraction of vertices with & outgoing segments in the finite
trees, in the trees with n vertices, and the asymptotic distribution of the latter
as n — o are also found. Finally, an estimate is obtained for the probability
that a tree be finite in case this probability is near 1, a result which was previously
obtained by Kolmogoroff [7].

2. The space of trees. We shall use the notation {a}, {a:1, @, -+ a.},
{a;}jer, and {a; | R} ;o to denote the sets which consist of respectively the single
element a, the elements a;, a2, - a,, all a; with jeJ, and all a; with the
property R andj e J. We denote the union of two sets A and B by 4 + B, their
intersection by AB, and the cartesian product of n identical factors each of
which is 4 by A™.

Let I denote the set of positive integers. We assume given for each n el a
countable set U, of objects u,,...;, called vertices, i.e.

Un = {Uiyi.evin} Girrigeeeimyer® «

Let uo be a vertex distinct from all the other vertices and let U = {w} + = U,
be the collection of all the vertices. We shall interpret u, as the original parent
particle and the vertex uys , for example, as the second son of the fifth son of the
first son of the original particle. If sisa subset of U,s C U,and if 41,%, " thim
are such that wiyi,. ...y , Wigigerinlpyy s *** Uigigervining1---ingm €ach belong to s then
this set of vertices is called a path from w;,iy...i, t0 Uiyiy...in,, in $ and m > 0 is the
length of the path or the distance from w;,:y...4, 10 Uiyiy..ig,n - I m = 1 we call
the path a segment, for short.

For the sake of convenience let us agree to put %iyiy...ip = Uigig.ovin, (0 = 1)
then we define W (s, w), for 4 € s < U, to be the number of segments from « in s,
and we call W(s, u) the type of the vertex 4 in s. If ¢ is a subset of U, then we
call  a tree if and only if

1) W, u) <  for uet
and
(2) WUigig..ip €t implies Uiyigecip_pet for v =0,1,--- 4,

Let 9 be the set of all trees. The condition (2) clearly implies that for each
t ¢ T we have uy ef and that there is a unique path from uy to any other vertex
of t. Hence, whenever a path exists between any two vertices of ¢ it isunique.
We call u, the root of t. If for u et ¢ Twe have W (¢, w) = 0 then u is called an
endpoint of t, and the vertices of ¢ which are not endpoints are called inner
vertices. (It is to be noted that the objects we call trees here are rooted trees
in the sense of Cayley but our trees have their vertices numbered as well.
Usually one would identify the trees {uo, w1, %s, un} and {uo, u1, uz, un},
but we do not wish to do so because for us it is distinctly different whether the
grandson is sired by the first son or by the second son.)

For u et e Twe define the branch of ¢ at u to be the set of all vertices belonging
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to any path from w in ¢. Our convention of admitting paths of length 0 implies
that u e b(t, u). Infact, if W(t, w) = O then b(t, u) = {u}. If ¢ is a tree such
that ¢’ C ¢ then we call t an extension of ¢/, denoted t > ' or ¢’ < ¢,if W(t',u) > 0
implies W(t’, w) = W(t, w). Thust > ¢t is equivalent to ¢ O ¢’ and

t=1t 42, bt u

where w runs through all the endpoints of ¢. The extension relation imposes a
partial ordering upon .

The extension ¢ of ¢’ is interpreted as a possible future aspect of a family tree
when its structure at present is given by ¢/, all present members of the family
who have progeny being regarded as sterile.

If w = ui,,..., then the mapping ¢ defined for the vertices of b(t, u) by
putting

<p(u,-1,-2...,',,,-,,+1...,-,,+m) = Uinyyorvingm

maps b(t, w) one to one onto a tree ¢(b(t, w)) in such a fashion that if {v; , »} isa
segment from v to v in b(?, u) then {p(v1), ¢(2)} is a segment from o(»;) to
@(v2) in o(b(t, w)). We call the mapping ¢ a homeomorphism and we say that
b(, w) is homeomorphic to o (b(t, w)).

If a tree contains a finite number of vertices then it is called a finite tree;
otherwise it is an infinite tree. Let F denote the set of all finite trees and J the
set of all infinite trees, and let X denote the set of non-negative integers. For
each k ¢ X we define Y;(f) for ¢ ¢ F to be the number of vertices of type % in .
When it is clear to which tree ¢ we refer we shall usually abbreviate Y,(t) by m,
and we agree not to use the letter m with any other connotation. For each
T eFlet ei(T), ex(T), --- en(T) denote its m endpoints. We then define for
TeFandk = (ky, ks, -+ k) e K™

[T)"] = {tItZ Tyw(taei(T)) =kf,i =12-.-- m’ej.}y

and we call [T, «] a neighborhood. For each t ¢ [T, «] we say [T, «] is a neighborhood
of t. Then it is easy to show that J is a topological space where the neighborhoods
defined above form the defining system of neighborhoods [8].

3. The measure theory in J. In the following paragraphs an outline of the
measure theory in J is given which omits proofs for the most part since they are
easily constructed. The only point of difficulty arises in showing the measure
function to be completely additive, but here the outline has more detail.

Let & be the collection of subsets of J such that 0 ¢ © and any other set S
belongs to & if and only if there is a ¢ ¢ F and a non-void “rectangle set”
A=A, XA X -+ Aw CTK™, m = Yy(t), such that
@) 8 =21,

Ked

where the sets A;, Az, --+ A» may be finite or infinite sets of non-negative
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integers. The collection of neighborhoods which appear as terms in (3), i.e.
{[t, K]} cea , we call an S-partition of S, and ¢t is called the generator of the &-
partition. Only a finite number of &-partitions are possible for an S €S,
because only a finite number of trees can possibly be generators and there is
only one S-partition per generator. With respect to our partial ordering of the
trees all possible generators lie between two particular ones. We call the
smaller of these the irreducible generator and the corresponding &-partition the
irreducible S-partition of S. Any partition of S into neighborhoods must be a
subpartition of this irreducible &-partition. The elements of & also display
two important properties of the rectangles in Euclidean space, namely if S
S’ ¢ & then

4 SS' e &
and if S C S’ then there is a finite chain
5) S=8cCcscC--- 8, =8

such that S;, S; — Siy e&fori =1,2, .-+ n.
A class of sets with the properties (4) and (5) has been called a half-ring by von
Neumann [9].

Let po, p1, - -+ be given non-negative numbers such that >¢p, =1 For
t € Flet us put

(6) P@) = ,.1-11 p,"

with the convention 0° = 1. We then define the measure function P for the
sets in & by

P0O) =0
@ P, ) = (f[l 1’.') P(t), wherek = (b1, ks -+ km) e K™
P(S) = > P([t, k]), where {[£, k]} xea is the irreducible &-partition of S.

P is evidently non-negative. Letting ¢ be the tree with one vertex and putting
A = Kgives P(T) = 1. It is easy to see that P is completely additive for the
S-partitions of a neighborhood, but this implies P is completely additive for the
S-partitions of an arbitrary element S of &. In order to show that P is com-
pletely additive for any partition of S into elements of &, it is necessary and
sufficient to show this for an arbitrary partition of a neighborhood into neighbor-
hoods. One may reach finer and finer partitions of a given neighborhood N by
replacing a neighborhood in any one partition by an @-partition of the neighbor-
hood, and repeating the process. The sum of the measures of the sets in the
partition is invariant under such a replacement. On the other hand it can be
shown that all possible partitions of N into neighborhoods may be reached in
this way. More precisely, let N = {N;} ;s be a partition of a neighborhood N
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into neighborhoods N;. We call N reduced if whenever a subset of N is an
S-partition of a neighborhood M C N then the partition consists of M itself, i.e.
it is the irreducible S-partition of M. Then we have the following theorem:

TaeoreM 1. If N is a reduced partition of a neighborhood N into neighborhoods
then N = {N}.

The proof is indirect and proceeds by constructing a decreasing sequence of
neighborhoods contained in N whose limit is not void and yet has nothing in
common with any N;, but this is a contradiction.

Let § consist of all those sets which may be formed by finite unions of disjoint
elements of a half-ring &, then § is a field of sets. If P is a completely additive
measure on & then its natural extension P, is completely additive on § [9].
Kolmogoroff [10] has shown that the completely additive measure P; may
always be extended to a completely additive measure P; on the Borel field I,
i.e. the smallest additive class of sets containing §. Since Po(J) = 1, Pz is a
probability measure. For simplicity we put P, = P. Let us also agree that if
M is the set of all trees with the property R we may write P(R) instead of P(M).
If N is a set with P(N) > 0 then P(M/N) shall denote the conditional probability
of M, given N, i.e. P(M/N) = (P(N))"'P(MN).

4. Independence of the branches. In the multiplicative process the events
occurring in one branch of a tree are independent of those in a second branch
disjoint with the first and it is for this reason that the process is relatively simple
to analyze. In this section we shall try to expose the character of this

independence.
For T ¢ F, let &; be the set of all extensions of T, then
& = 2 [T, 4,
uﬂ( (M)

whence by (6) and (7) P(6r) = P(T). The following lemma is then easily

established.
Lemma 1. If P(&) > 0 then W(t, ei(T)), ¢ = 1,2, - - - m, under the condition
t € &r , are independent-random variables each with the distribution,

(8) P(W(t) 6.(T)) = k/gf) = Pr k= 0) 11 27 St .

In the particular case where T = f{w} we have & = J and we put
W(t) = W(t, up) for short. Thus W(t) tells what type of vertex the root of ¢ is
and (8) becomes

P(W =k) = p« k=012 .-,

Fort e Tand n = 0, 1, 2, --- let X,(!) be the number of vertices of

t at distance n from its root. Then X,(f) = 1 and X1(t) = W(¢). If n,r are posi-

tive integers then there is at least one T' ¢ F which has r of its endpoints, say
ei,(T), ei,(T), - -+ €:,(T), at distance n from the root and which also satisfies

Xou(T) = 0. Put
E " = (LI Wt ei(T)) = 0,5 5 ia, %2, »++ iy, L€ Er).
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Evidently for ¢ e &7

Xua) = 3 W, e (D),

and a proof similar to that of lemma 1 gives

Lemma 2. If P(E#F %) > 0 then X,n(f), under the condition te &t
is the sum of r independent random variables each with the distribution of X, .

By (6) and (7) for t € M C Fér

P@) = IIp}"®,

which depends only upon the type of each vertex as it occurs in £. For those
vertices which are inner vertices of T, Y,(f) is constant. Any other vertex
belongs to one and only one of b(t, e(T)), b(t, &(T)), -+ b, en(T)) and its
type in ¢ is, of course, the same as its type in the branch to which it belongs.
Furthermore, each branch is homeomorphic to just one tree in &,

b(t7 ei(T)). i, 7 = 1, 2, cee M.
Since the type of a vertex is preserved under homeomorphism we have
P(t) = P(&E)P()P(k) *+* P(tm).

If, as ¢ runs through 9N, (b, &, *+ t») runs through My X M X +++ M,
we obtain

(10) PON) = P(&r)P(IMy)P () +++ P(IMn).

Let us hereafter put p = P(F). In the particular case of (10) where I = F6r
we clearly have 9; = F,7 = 1,2, - -- m, hence

(11) P(F&r) = P(&r)-p™.
If we define T,,» = 0,1,2, ---, to be the tree with » 4 1 vertices which has
W(T,) = » then

T = {u) + 2 &,
(12) .
3:= {uo} + ;l frgf’v;

where
&r6r; = &r; {w} =0, @ #J;
P(ér,) = v, y=1,2 -+
From (11) and (12) we get

(13) Z_% pp =P
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For t ¢ F&r let Z(b(¢, e:i(T))) be the number of vertices in the branch of ¢ at
€;(T). In the particular case where T = {uy} we have b({, us) = ¢t and Z(t)
is the number of vertices of . If now

Fa={t|ZQ) =nteF}; n=12 ---;
P, = P(%),
then by putting 9N = DM7*"""" where
Mzt "™ = {t| Z(bE, e(T))) = n;, 1=1,2,--- m,teF&r},
M; = %,,, 1=12 ---m,
we may apply (10), which gives
(15) Pt eFbr, Z(b(t, ei(T))) =ni,2 = 1,2, -+ m) = P(&r)Pn,Pry -+ P, .

If p > 0 we may multiply and divide the right hand member of (15) by p™
which leads us to the following lemma:

Lemma 3. If P(F&r) > 0, then Z(b(¢, ei(T))), 1 = 1, 2, -+ m, under the
condition t e ¥&r , are m independent random variables each with the distribution
of Z(¢), given t ¢ F.

(14)

6. The distribution of Z(¢). Let f(w) be the generating function for the dis-
tribution of W, i.e.

(16) fw) = 3 oo

where w is a complex variable. If one is interested in studying the sequence
Xo, X1, -+ then one should define another sequence of functions fy, fi, ---
where fo(w) = w and fru(w) = f(fu(w)) forn = 0,1,2, --- . By computing
formally the expansion of f,(w) around w = 0 it is not difficult to show that

fa(w) is the generating function for X, , i.e. fa(w) = > P(X. = »)w’ which is
pye=0

the starting point for the previous investigations of the multiplicative process.
But since we shall be mainly interested in the distribution of Z we define P(z)
to be the corresponding generating function, i.e.

17) P(z) = ‘Zi P,2".
Let p and « be the radii of convergence of the power series in the right members
of (16) and (17) respectively. Since f(1) = 1 and P(1) = P(F) < 1 we know
0, @ > 1 hence f(w) and P(z) are analytic in | w | < p and | 2| < « respectively.
The relation between the distribution of W and that of Z is put in evidence by
the following theorem:

THEOREM 2. Let

S(z, w) = 2zf(w) — w,
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then w = P(2) is the unique analytic solution of
(18) Sz, w) =0

in a certain neighborhood of (0, 0).

Proor. Since P(2) is analytic at 0 and P(0) = 0 it suffices to show that if we
substitute formally D P,Z" for w in 2 p,w’ the coefficient of 2" is uniquely
determined and is P, .

0

19) 22 p@E) =mz+ X (2_2 2n PP Poye P,..) 2"

If in (14) we put T = T,, where T, was defined just before (12), then
m = Yo(T,) = v. Let usrequire in addition that the total number of vertices
in the branchesben — 1,ie.n 4+ ng + -+ n, = n — 1, then

o0

(20) Fa=2, > O™, n=23- .-,

ym]l T pjmp—1
where
nyeeng Mmyeeom
T: 'gnq'; i = 0,

unlesss = jand n, = my,ny = my, --- n; = m;. By applying P to (20) and
using (15) we get the coefficient of Z" in (19) for n > 2. This together with the
obvious fact that P; = p, completes the proof.

It is worthwhile noticing that by means of the formula of Burman and La-
grange [11] we can solve the recursion formula for P, in terms of po, p1, ---,
namely

@)  P.= l[

n! | dw!

ae™ n n—1)! ,. .,
(f(w)) = > (_'_'_) PPt
w0 Zyjmn VoiViic-:
Zjyjmn—1
Now if ¢ has m vertices we know from Euler’s characteristic that
> iYi(t) = n — 1. Since P(t) = ] p;"*® we see from (21) that

(n — 1)

volwgle-.’

is the number of trees in &F, for which Yo(f) = v, Y1(f) = », --- .

Evidently w = 9(2) remains a solution of (18) for all z such that | z | < q,
|w]| < p. In case po = O the constant 0 solves (18). Hence P(z) = 0 for all
zand so P(1) = p = 0. Conversely, if p = 0 then P, = p, = 0 which gives

CoroLLARY 1. p = 04f and only if p, = 0.

Since we wish to investigate the distribution in & we shall henceforth assume
o # 0.

Any non-constant function g(z) which has a power series development pos-
sessing non-negative coefficients g(z) = Y a,¢’, a, > 0 with a positive radius of
convergence R has two properties that are important for us:

Zy; = n, Zi=n—1,

(22) ¢(z) has a singularity at R.
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(23) If 3" a,R’ converges then Y a,z5 converges absolutely and uniformly

for |z | = R, and so the series defines a continuous function g(z) there. We
have }_‘}2, g(2) = > a2} as long as the path of approach to 2z lies in |z | <

E. On the other hand, if as z approaches R through real values below R»
z — R—, the limit of g(z) exists then > a,R’ converges. So if we put g(R) =

lim g(z2) = > a,R’ then the meaning is unique even allowing « as a value.

z—*R—

Returning to P(2), if for | 2| < a we have |w | < p where w = P(2), then

w 1
(24) = P (w),
which shows the mapping is schlicht in such a domain and that the image domain
cannot contain zeros of f(w). Because of (23) and the fact that P(1) is finite
even if @« = 1 we see that the mapping is certainly one to one for |z | < 1.

COROLLARY 2. p s the smallest root of f(w) = win 0 < w < 1.

Proor. (13) shows p is a root in the interval. If for 0 < wy < p we have
f(wo) = wo then by (24) P (wo) = 1.

The following corollary is the well known criterion for extinction

CoroLLARY 3. p = 14f and only +f f/(1) < 1.

Proor. p = 1, py > 0, and the convexity of f(w) in 0 < w < 1 guarantee
that (f(w) — 1)/(w — 1) is bounded by 1 and is monotonic increasing with w.
Hence f’(1) exists and is < 1.

Conversely, if /(1) < 1 then either f/(w) is constant (= p; < 1)in0 < w < 1
or else it is strictly increasing with w and in either case f/(w) < 1. The
mean value theorem gives f(w) > win 0 < w < 1, hence p = 1.

Putting ¢ = P(a) we have the following lemma:

LemMma 4. a < p.

Proor. We already know that P(z) has a unique analytic inverse given by
(24) for | 2P(2) | < p, but on the other hand P'(z) # 0 for 0 < z < a so this
inverse is analytic for 0 < w < a. If we had a > p we could continue f(w)
analytically by means of (24) along the real axis past ts singularity at p, but
this is impossible.

CoroLLARY. p = lifand only if a > 1.

Proor. The necessity follows from the monotone behavior of P(z) for
0 <z<a Conversely,ifa > 1thenz = 97'(1) = 1.

THEOREM 3. If po + p1 # 1, then

(25) a and a are finite;
@26)  f@) = a/a;
27 (@) < 1/ where the strict inequality can hold only if ¢ = p.
Proor. Let r > 2 be such that p, # 0, then for 0 < z < a, we get from the
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functional equation
(P () — P(2) < 0;

1 1/(r-1)
0 <P < (—-—) .
Zp.

r

By letting z — a— we see a is finite and P(2) is bounded. Since P(z) is mono-
tonic in this region we get & < «. By letting z — a in S(z, P(2)) we get (26).
For 0 < 2z < o, Gulz, P()) = #f'(P(z)) — 1 is continuous and monotonic in-
creasing with z and is < 0 for z near 0. From the general theorem on implicit
functions we know S, (z, P(2)) # 0for | 2| < a, so if we let z — a we obtain (27).

If @ = p (27) merely guarantees the finiteness of f/(p) and gives an upper bound.
One can easily construct an example where 1/a is the least upper bound and
one where it is not.

But if @ < p then since S(z, w) is analytic at (o, a) and S(e, a) = 0 we obtain
from the implicit function theorem the strict equality in (27).

CoROLLARY. Ifa = lthena = p = 1.

Proor. By (26)

(28) fl@ =a=51)=p<1

If a < p then f/(p) = 1 s0 p = 1 from the convexity of f(w). If a = p then
a > 1 which when combined with (28) gives a = 1.

The case where po + p1 = 1 escapes Theorem 3 but it is easily examined
separately, namely

f(w) = Do + nw, Do # 07

_ n—~l_n __ Doz
Pi) = "Z_:lpopl "= =z’
Hencep = 1,a = 1/pranda = p = .

For the practical applications of the theory it is valuable to know some
conditions which guarantee a < p, and thus strict equality in (27). From the
foregoing analysis it is evident that one such condition is p = «, i.e. f(w) is an
entire function, and another is f/(1) > 1. If one has enough information about
f(w) to plot its graph for real positive w then the line through the origin tangent
to f(w) in the first quadrant touches the curve at the point (@, a/a) from which
we determine both @ and a.

6. Asymptotic properties of the distributions. If we examine the terms of
the sequence py , p1, -+ - we may find that the indices of the non-zero terms are
all multiples of some common integer larger than 1. In this case we should
expect to have P, = 0 with the same sort of regularity. So let us define ¢ to
be the largest integer such that p, # 0 implies » is a multiple of g. Clearly we
have ¢ > 1 and ¢ = 1 means there is no integer other than 1 which divides the
indices of all the non-zero p, . Of course, p; ¥ 0 implies ¢ = 1. The following
theorem establishes an asymptotic estimate for P, valid for large n, provided
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n — 1 is a multiple of ¢, and incidentally shows that P, = 0, if » — 1 is not a

multiple of g.
TeEOREM 4. If a < p then

N L —n,—1 — .
(29) P, = {q (21raf”(a)) a'n’ + 0(01 n ): n=1 (mOd Q),
10 ,  n#1(mod @),

t.e. for large n = 1 (mod q)

3
~ ——_._._a e u
Proor. Let us put § = 2r/g, then for |w| < a,
|f@w)| = < 2 plwl = f(w)),
k=0 k=0

and the equality evidently holds if and only if arg w is an integral multiple of 6.
Furthermore, if w is such that |f(w) | = f(|w|) and we put z = P (w) then
w = Pw/f(w)) so we get

961 =9 (ifeh) = @ (k) = 9020,

hence P, = 0, if n # 1 (mod ¢).
For|z| = aand w = 9(2) the point (z, w) satisfies (18) by (23). If we put

il
2, = ae”,

kg

w, =@, v=0,1,---¢—1,
then w, = P(z,) and
Su(@, w) = 2f'w) — 1 = af’(a) - 1=0,

so that 2z, 21, - -+ 2,1 are certainly singularities of P(z). But f(w) is analytic
at w, and f(w,) = a/a # 0, so the solution of (18) for z,

2= 97w = o

is analytic at w, . Furthermore

g)-l( y) — 1 - ny (’Wv) — 0’

J(w)
dz —1 _ _ny (wv) . _azf”(a)
'— 14 (w') = f('w') - w, #0

which shows that P(z) has a branch point of order 1 at each z,, i.e. Q’(z) is an
analytic function of (z — 2,)'” in the neighborhood of (2, ,w,),» = 0,1, - -- g — 1.
For |z | = a,w = P(z) but z # 2, we obtain

|Su(z,w) | > 1 —a|f@]|>1=af'(w]) >1 = af(a) =0,
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hence &P(2) is an analytic function of z in a certain neighborhood of such a
pair (z, w).

By analytic continuation we find a circle of radius 8 > a such that P(z) is an
analytic function of (z — %) for |z| < B. If we make radial cuts in this
circle running outward from each 2, then in the resulting domain D each of the
functions (z — 2,)"* is an analytic function of z hence so is P(z).

Let T be the path consisting of the boundary of D oriented in the posi-
tive sense, let v be the part of T' lying in the sector —x/q < arg z < /g,
and let v’ be that part of v leading from B to « along the lower lip of the cut at
a, thence along the upper lip back to 8. Since P(z) satisfies the relation
P™2) = ”P(2) for v = 0,1, - -+ ¢ — 1, we see from Cauchy’s formula that

_ 1 PR, A [P0
Po=omi i = g |, o 95

where

A= :: e_M("—l) = 0, n # 1 (mod Q);
| =gq, n=1(modQg).
Restricting ourselves to » = 1 (mod ¢q) we put
PR =a+b— &)’ +clz — @) + (z — 2)"2),
where 2(2) is analytic in D. Then P, = B + C, where

g [a+bz—a)}+ ez — a)
B—2—m'_/; 1 dz,

q [ (—a'20)

27t v zntl

dz.
We find
— o)} -
p= Y [E—oF dz + 08™) = ibg/a(—1)" (1/2) a4+ 0B™);

2wt dJr ¢ n

o1=0(] izt ) -o( [ £ ) -o (<))

The constant b is determined from the equations
w—a=bz—a)+ ..

(z — )}
zn+l

dz

1'

_ Olzf"(a) 2
Z2—a = —T(w_a) + e,
Using the fact that
|<1£2)| = @)™ 4 O,

()| = 0w,

n
we finally obtain (29) as desired.
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Thus P, approaches zero a little faster than exponentially with n regardless
of whether p = 1 or p < 1, except for the special case when o = 1. In this
case it is interesting that, according to the corollary to lemma 4, p = 1.

The case where ¢ # 1 is of no practical importance since one can always bring
¢ back to 1 by making a very small decrease in one of the non-zero p, and in-
creasing p; by the same amount. This can clearly be done so that none of the
important characteristics of f(w) is changed appreciably.

7. The limiting distributions of W (t) and n 'Y (¢) for te F. Let us mo-
mentarily drop the condition py % 0. The characteristic function of W is

(30) j; " 4P = ("),
so that for the rth moment of W we have

r=2012---.

’
0=0

r d” e
(31) EWw) = d(TG)"f(e )
For the first and second moments we obtain
EW) = 1),
EW") = f'(1) + (),

which shows that the criterion for extinction (Corollary 3 to Theorem 2) may be
stated as follews: the multiplicative process is almost certain to expire if and
only if E(W) < 1. From (30) we see that all the moments of W will be finite
as soon as p > 1; but if p = 1 no general statement can be made, except in case
a = 1 also, for indeed @ = 1 implies a = 1so by (31) and (27) E(W) = f'(1) < 1.
We now reassume po > 0. Since the variables Z, Yy, Y1, - - - are restricted to
t € Fit is convenient to see what happens to W in F. If we define g(w) = P f(pw)
then (13) shows g(w) and g(¢”) are the generating function and characteristic
function respectively for W, given ¢t ¢ F. Thus we see immediately that the
first moment of W, given ¥, is always < 1, and all its moments are finite if p < 1.
In case 0 < p < 1 we may also introduce h(w) defined by

(32) fw) = pgw) + (1 — p)h(w),

then h(w) is obviously the generating function of W, given 9. Here the rth
moment is finite whenever the rth moment of W is finite. (32) gives

1-p"
POV =1/9) = 1=, k=12

It would be interesting to be able to compare this with the corresponding thing
for large finite trees and in this connection we have the following theorem:
TueoreM 5. Ifa < pandgq =1,

lim P(W = k/F,) = akped®™, k=1,2,---.
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Proor. By expanding zf(e”P(2)) in powers of z we obtain

(33) #( P@) = X 6a(002",
where
éa(0) = f ¢*7dP = z Z emp”PMPM" “Pa,,
Fa y=1 Znjmn—1
so that if P, 5 0 then P7'¢.(0) is the characteristic function of W, given ¥, .
From (33) we get
1 f(e" g’(z))

2midr = ¢

éa(6) =

Since & < p we may expand f(e'og’(z)) about the point P(z) = a and integrate
as in the proof of theorem 4, thus

Ploa(0) = "'1 "’f’(ae"’) + ea(6).

Since €,(8) —0asn — o,
lim P7 ¢a(0) = ac®f'(ac®),

n—r0
the limit function obviously being the characteristic function for the distribution
whose generating function is awf’(aw), from which the theorem follows directly.
Now P(z)/p is the generating function for Z, given ¥, and the function solves

(34) zgw) —w =0
for | 2] < a. We find for the rth moment of Z
r d(r) g’ (e 0) _
EZ' /) = TG oo r=0,1,
hence all the moments are finite as soon as « > 1. Since by (34)
dw glw) w _ R

& T-gm -—zgw  p’
we obtain for the first moment
9’ (1) 1 1
E(Z/F) = .
@/ S T=em I
In a similar way one can express any moment of Z, provided it is finite, in terms
of f'(p), f'(p), ete. If & = 1 we see from the corollary to theorem 3 that even
the first moment of Z is infinite, except for the special case where p = 1 and
) <1
The characteristic function of Y , given J, is

w0 = Up [ ™ P = 1/p S ul®),
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where by (21)

Wa0) = [ L éMap = %

Zjpjmn—1

Thus, if P, 5% 0, P7'¥4a(0) is the characteristic function of Y}, given ¥,. If
pr = 0 then () = 1. If pp # O put pr = €% then

(r)
(35) g—q 90) = 3 w2 07,

(n - 1)' b
-———'——6
v lml-

yltoo

Do P1

hence
1 a(r) .
—3g TV = B,

which shows that all moments of Y are finite if « > 1. Let us put w = 9(2),
for short, then, by (18),

w _ v
dge 1 —zf(w)
which gives for the first moment of Yy,

(36) = Zpaw P (),

k—1
I Y
which is to be expected since pip* ' plays the same role in Fthat p; plays in J.
We may also expect that for ¢ e &, , n 'Y, should be closely related to p, . This

question is settled by the following theorem:
THEOREM 6. If a < p and ¢ = 1 then for x real

1, ifz> apd™

0, ifz < apa®™

n—+o0

lim P(™'Yy < 2/%,) = {

ProoF. We intend to estimate the rth moment of n 'Yy for teF, and n
very large from (35) by means of the contour integral

oy 1 a(r)
37) En™Yy/F) = S r Re) n+1
So let us put
. Qirte
w = P(2), w® = aq,a.w, rns=01 -+,
then by (36) wy = Z'paw*w™® and by Leibnitz formula, provided k # 0,
(38) W, 2 Pr (r — D! Wy, Wyy *** Wyy_, Wy

Zysmr—1 llo!vll e V];!
s 20 .
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The principal contribution to the integral in (37) will come from the term of
(38) which has the largest size for z near . If we put { = (z — a)"? then w is
regular at ¢ = 0 and so is the constant p; . Let’s assume that w, has a pole of
order2v — lat¢{ =0forv = 1,2, --- r — 1, which is clearly true for » = 1.
Then if s is the number of v, »2, -+ + .- Which are = 0, the order of the pole
of the general term of (38) at { = 0 is

=1

Z;(Zv;—1)+s+2vk+l=2(r—vo)—(/c—s),

which has the maximum value 2r — 1 if and only if , = vy = -+ ey =0,
ve =r — 1. Hence
(39) we = 2'pro T wity + R,

where R(¢) is a regular function of ¢ at zero. For k = 0 the formula (38) is not
correct but it is easy to see directly that (39) is correct for k¥ = 0. If we derive
(39) with respect to z and put » — 1 for r we obtain

w = Zpa* " w® + FR(),
hence
= @pa* ™) w® + FRs().

Substituting in (37) and estimating in a manner similar to that employed
previously we obtain

Y P() (2 — &) "Rz — “)m)
./; dz + ./;

—r 1 _ (pka
Ew™Yi/%) = 5 wips Jp 2minT paz™

Po,(n—r)n—r—1)--- (n—2r+1) + 0™

—1\r
= (pa™)’ P o

and finally
lim E(n~"Yi/F) = (apa™™)".

The limit of the rth moment is itself the rth moment of the distribution on the
real line which has all its mass at the point apia®". Since this distribution is
uniquely determined by its moments, a well known theorem [7] enables us to
conclude that our sequence of distributions has this distribution as limit and
this is equivalent to what is claimed by the theorem.

It is important to notice that if we put the mass apya® at the point & this
determines a distribution on the real line because of (26).

8. The estimation of p. If we wish to estimate p when we know p # 0, we
may obtain an estimate from the knowledge of f(w) in 0 < w < 1, using the
method of iteration. That is we choose a function G(w) such that G(p) =
and |G(w) — p| <|w — p|for 0 < w < 1. Then if for any wo in the open
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interval we compute successively wy , wz , -+ , where w1 = G(w,) for n > 0,
we are sure that w, converges exponentially to p as n — .

Obviously f(w) itself has the properties of G(w) but we achieve faster con-
vergence towards p using Newton’s method, that is if we put

fitw) = fw) — w,

(40) Ji(w)
G(’LU) =w — f{(W) .

If for some reason we expect p to be close to 1 then it is better to put
fuw) = 1D,

and use fo(w) in (40) instead of fi(w), for then we may choose w, = 1.
Let us put f/(1) = 1 4 ¢, € > 0 then

Fol + B) = )KL‘L")_‘_} lme  ho0:
fi(l + k) = lim (f(l 4};(’;17’2 -1 _ja +ki]? —~ 1)’
(1) = lim (f(l + 2h) -0+ B + 1) _ f_é_l) .
Hence
(41) p=w1=l—f,,2—(—el—).

This result was previously established by Kolmogoroff [7].
The following two simple examples display the results of the general theory.
Exampie 1. We take f(w) = po + pw + pw’ where po + p1 + P2 = 1
and po, p» > 0. We have p = «. From the equations (26) and (27),

SRS

fl@) = po+ po + pd’ =

b

fl(@) = p + 2pa =

’

RIm

we obtain easily
a = V pop?l, a—l = pl + 2\/170?2 ’

and it is evident that @ > 1 is equivalent to po > pz is equivalent to f'(1) =
pr+ 2p. < 1. Now

Sz, w) = 2po + (zp1 — L)w + 2pa?,
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hence

(42) 9@ = Lo =V (; — )" — 4pps
ZP2

the choice of the sign of the radical being determined by letting 2 — 0.

Do+ 12 — VDo — p)* _ { L Po = Pe;
2p* DDz Do < Pz .

In the case p1 > 0 we have ¢ = 1 and then by (21)

p=

Pn = —,—1;—,' po° pi* p2*,

votvitve=n VO' 14
r1t+2ve=n—1
which can also be obtained by expansion of (42) according to powers of z. From

(29) we get

Dn ~ ir (Px\/ popz. + 2popz 7)) (01 4+ 2V pe p)"

In the case p1 = 0 we have ¢ = 2 and obtain from (42) or from (29)
g)(z) — Z (_ 1)v+l (/) 22v—l » r lz2r—l

(2V - 2) y  »—1 2v—1
_v=1V'(V—1)!pp &
which shows
0 , n =2v;

Po= (2 —-21! , ,_
1,,(.(—’;,:—1))—.20@2’, n=2-1

By direct use of Stirling’s formula or from (29) we get

1 — v
Py ~ o 1/;2;22 (pope)”(2v — 1)**.

ExampLE 2. Wetake f(w) = €, X > 0, so that W has a Poisson distribu-
tion. Then p = »,q = 1, and we get from (26) and (27)

fla) =& = a/a,
@) =2 = 1/q,
a = 1/x, a ="/

Clearly we have a > 1 if ar)ld only if A < 1 and in this case 1 is evidently the
A(w—1!

only solution for w of e = w, hence 1 p = 1. On the other hand if A <1
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then (41) givesp = 1 — 2(\ — 1)A™% By (21) we get

— ("7'x ~t e—n)‘

P,
n!

’

and by direct use of Stirling’s formula or from (29) we get

1 A) anel  —
P, — 1 a1 s
2
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