STATISTICAL DECISION FUNCTIONS

By ABraEAM WaLD!
Columbia Untversity

Introduction and summary. The foundations of a general theory of statistical
decision functions, including the classical non-sequential case as well as the
sequential case, was discussed by the author in a previous publication
[3). Several assumptions made in [3] appear, however, to be unnecessarily re-
strictive (see conditions 1-7, pp. 297 in [3]). These assumptions, moreover,
are not always fulfilled for statistical problems in their conventional form. In
this paper the main results of [3], as well as several new results, are obtained
from a considerably weaker set of conditions which are fulfilled for most of the
statistical problems treated in the literature. It seemed necessary to abandon
most of the methods of proofs used in [3] (particularly those in section 4 of [3])
and to develop the theory from the beginning. To make the present paper self-
contained, the basic definitions already given in (3] are briefly restated in
section 2.1.

In [3] it is postulated (see Condition 3, p. 207) that the space © of all admissible
distribution functions F is compact. In problems where the distribution func-
tion F is known except for the values of a finite number of parameters, i.e., where
 is a parametric class of distribution functions, the compactness condition will
usually not be fulfilled if no restrictions are imposed on the possible values of the
parameters. For example, if Q is the class of all univariate normal distributions
with unit variance, @ is not compact. It is true that by restricting the parameter
space to a bounded and closed subset of the unrestricted space, compactness of
© will usually be attained. Since such a restriction of the parameter space can
frequently be made in applied problems, the condition of compactness may not
be too restrictive from the point of view of practical applications. Nevertheless,
it seems highly desirable from the theoretical point of view to eliminate or to
weaken the condition of compactness of 2. This is done in the present paper.
The compactness condition is completely omitted in the discrete case (Theorems
2.1-2.5), and replaced by the condition of separability of @ in the continuous
case (Theorems 3.1-3.4). The latter condition is fulfilled in most of the conven-
tional statistical problems:

Another restriction postulated in [3] (Condition 4, p. 297) is the continuity
of the weight function W(F, d) in F. As explained in section 2.1 of the present
paper, the value of W(F, d) is interpreted as the loss suffered when F happens to
be the true distribution of the chance variables under consideration and the
decision d is made by the statistician. While ‘the assumption of continuity of
W(F, d) in F may seem reasonable from the point of view of practical applica-
tion, it is rather undesirable from the theoretical point of view for the following

1 Work done under the sponsorship of the Office of Naval Research.
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reasons. It is of considerable theoretical interest to consider simplified weight
functions W (F, d) which can take only the values 0 and 1 (the value 0 corresponds
to a correct decision, and the value 1 to a wrong decision). Frequently, such
weight functions are necessarily discontinuous. Consider, for example, the
problem of testing the hypothesis H that the mean 6 of a normally distributed
chance variable X with unit variance is equal to zero. Let d; denote the decision
to accept H, and d; the decision to reject H. Assigning the value zero to the
weight W whenever a correct decision is made, and the value 1 whenever a
wrong decision is made, we have:

W, d) = 0for 8 = 0,and = 1for 6 £ 0; W (0, d») = Ofor § = 0,
and = 1for 6 = 0.

This weight function is obviously discontinuous. In the present paper the
main results (Theorems 2.1-2.5 and Theorems 3.1-3.4) are obtained without
making any continuity assumption regarding W (F, d).

The restrictions imposed in the present paper on the cost function of experi-
mentation are considerably weaker than those formulated in [3]. Condition 5
[3, p. 297] concerning the class @ of admissible distribution functions, and condi-
tion 7 [3, p. 298] concerning the class of decision functions at the disposal of
the statistician are omitted here altogether.

One of the new results obtained here is the establishment of the existence
of so called minimax solutions under rather weak conditions (Theorems 2.3 and
3.2). This result is a simple consequence of two lemmas (Lemmas 2.4 and 3.3)
which seem to be of interest in themselves.

The present paper consists of three sections. In the first section several
theorems are given concerning zero sum two person games which go somewhat
beyond previously published results. The results in section 1 are then applied
to statistical decision functions in sections 2 and 3. Section 2 treats the case of
discrete chance variables, while section 3 deals with the continuous case. The
two cases have been treated separately, since the author was not able to find
any simple and convenient way of combining them into a single more general

theory.

1. Conditions for strict determinateness of a zero sum two person game.
The normalized form of a zero sum two person game may be defined as follows
(see [1, section 14.1]): there are two players and there is a bounded and real
valued function K(a, b) of two variables a and b given where @ may be any point
of a space A and b may be any point of a space B. Player 1 chooses a point
a in A and player 2 chooses a point b in B, each choice being made in complete
ignorance of the other. Player 1 then gets the amount K(a, b) and player 2 the
amount —K(a, b). Clearly, player 1 wishes to maximize K(a, b) and player 2
wishes to minimize K(a, b).

Any element a of A will be called a pure strategy of player 1, and any element
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b of B a pure strategy of player 2. A mixed strategy of player 1 is defined as
follows: instead of choosing a particular element a of A, player 1 chooses a
probability measure ¢ defined over an additive class % of subsets of A and the
point a is then selected by a chance mechanism constructed so that for any
element « of U the probability that the selected element a will be contained in
aisequal to ¢(a). Similarly, a mixed strategy of player 2 is given by a probabil-
ity measure 5 defined over an additive class B of subsets of B and the element b
is selected by a chance mechanism so that for any element 8 of B the probability
that the selected element b will be contained in g is equal to (8). The expected
value of the outcome K(a, b) is then given by

(1) K = [ [ K@v) de an

We can now reinterpret the value of K(a, b) as the value of K*(¢., m) where £,

and m, are probability measures which assign probability 1 to a and b, respec-

tively. In what follows, we shall write K(£, 5) for K*(¢, ), K(a, b) will be used

synonymously with K (¢, &), K(a, n) synonymously with K(¢,, %) and K (¢, b)

synonymously with K(¢, ). This can be done without any danger of confusion.
A game is said to be strictly determined if

(12) Sl:p Igf K& n) = I?f Sgp K(¢, 7).

The basic theorem proved by von Neumann [1] states that if A and B are
finite the game is always strictly determined, i.e., (1.2) holds. In some previous
publications (see [2] and [3]) the author has shown that (1.2) always holds if one
of the spaces A and B is finite or compact in the sense of some intrinsic metric,
but does not necessarily hold otherwise. A necessary and sufficient condition
for the validity of (1.2) was given in [2] for spaces A and B with countably many
elements. In this section we shall give sufficient conditions as well as necessary
and sufficient conditions for the validity of (1.2) for arbitrary spaces A and B.
These results will then be used in later sections.

In what follows, for any subset « of A the symbol ¢, will denote a probability
measure ¢in A for which £(a) = 1. Similarly, for any subset 8 of B, £ will stand
for a probability measure # in B for which 7(8) = 1. We shall now prove the
following lemma.

Lemma 1.1. Let {a;} 0 = 1,2, ---, ad inf.) be a sequence of subsets of A
such that a; C sy and let @ = 2 icqes. Then

(13) lim Sfllp Inf K(Ea( ) 7’) = Ss‘lp Inf K(sc ) ’7)'
1= {q, " a n
Proor: Clearly, the limit of Sup Inf K(%.,, n) exists as 1 — « and cannot
«; L)
exceed the value of the right hand member in (1.3). Put
(1.4) lim Sup Inf K(¢s;,1) = p

= EC.’ L ]
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and
(1.5) Seup Inf K(¢:,7) = p + 6 (6 >0)
3 Ll

Suppose that > 0. Then there exists a probability measure £, such that

(16) m&wgp+g for all .

Let £%; be the probability measure defined as follows: for any subset a* of s
we have

Ea(a)
17 (@
(17 ta;(0®) = B

Then, since lim £% (@ — a;) = 0, we have

=0

(18) 1,12 K(E?n ) ’7) = K(é?x ) "7)

uniformly in 4. Hence, for sufficiently large ¢, we have
)
(19) Inf K(fas,m) 2 0 + 3
L)

which is a contradiction to (1.4). Thus, § = 0 and Lemma 1.1 is proved. In-
terchanging the role of the two players, we obtain the following lemma.
Lemma 1.2. Let {B8:} be a sequence of subsets of B such that B; C Biy1 and let

Z?—l Bi = B. Then
(1.10) lim Inf Sup K(g, n5,) = Inf Sup K(£, np).

im0 g,

We shall now prove the following lemma.
LemMa 1.3. The inequality’

(L.11) S;lp Inf K(,9) < Inf Sl:p K(&n)
L) L]

always holds.

PROOF for any given e > 0, it is possible to find probability measures £ and
n’ such that

1.12) Inf S?P K ) = Szlp KE ) — e
L]
and
(1.13) Sup Inf K (¢, 7) = Inf KE ) + e
L] n

32 This inequality was given by v. Neumann [1] for finite spaces 4 and B.
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Then we have,
(1.14) Sup Inf K@) <Inf K&, n) + e <K& n) + ¢
n 7

< Sgp K& 1) + € < Inf Sgp K¢ )+2e
n

Since e can be chosen arbitrarily small, Lemma 1.3 is proved.
TueoreM 1.1. If a is a subset of A such that

S;lp Inf K(¢s,7) = Inf S;lp K(ta,n)
] L] n a

and
Inf s£up K(ta, n) = Inf Sup K(£, »),
n @ L ]

then
Sgp Inf K(¢, 1) = Inf Sgp K ).
n n

Proor: Clearly,

(1.15) S;up Inf K(fa, 1) < Sl;p Inf K(£ 9)
a n n

and

(1.16) Inf S;lp K(¢a, n) < Inf S?p K(¢ 7).
n a n

If the left hand members of (1.15) and (1.16) are equal to each other and
equal to the right member of (1.16), then

(1.17) S?p Inf K(£ #) = Inf S;lp K(& n).
n n
Because of Lemma 1.3 the equality sign must hold and Theorem 1.1 is proved.

Interchanging the two players, we obtain from Theorem 1.1:
TrEOREM 1.2. If B ¢s a subset of B such that Sup Inf K (£, n5) = Inf Ssup K (¢, ng)
& g n8

and Ssup Inf K(¢, 75) = Sl:p Inf K (¢, n),
8 n

then
Sgp Inf K(¢, 1) = Inf Sgp K(§, ).
n n

We shall now prove the following theorem.
TaeoreM 1.3. If {a:} is a sequence of subsets of A such that o C o441 and

> ai=A,and if

=]

(1.18) Sup Inf K(¢; , n) = Inf Sup K(¢s , n)
fa; L] n Ea‘
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for each i, then a necessary and sufficient condition for the validity of

(1.19) Sup Inf K(%, 1) = Inf Sup K(%, »)
£ L] L] 4

s that

(1.20) lim Inf Sup K(¢.;, %) = Inf Sup K(¢, »).
=0 9 ag n 3

Proor: Because of (1.18) and Lemma 1.1 we have

(1.21) lim Inf Sup K (£, n) = Sup Inf K(g 7).

i=0 g fa; H n

Hence, (1.20) implies (1.19) and (1.19) implies (1.20). This proves Theorem 1.3.
Interchanging the role of the two players, we obtain from Theorem 1.3 the

following theorem:.
TueoreM 1.4. If {B:} s a sequence of subsets of B such that B; C Bin1 and

> 6 = 8, and if

=1

Sup Inf K( n5,) = Inf Sup K(&, ng,),
& g ng; &

then a necessary and sufficient condition for the validity of (1.19) s that
(1.22) lim Sup Inf K (¢, ns,) = Sup Inf K (¢, 7).
§ n

i=o00 £ ng;
In [3] an intrinsic metric was introduced in the spaces A and B. The distance
of two elements a; and a of A is defined by

(1.23) 8(ar, @) = Sup | K(a1,b) — K(az, b) |.

Similarly, the distance between two points by and b, of B is defined by
(1-24) a(bl ) bZ) = SuP } K(a': bl) _YK(a: b2) I .

Suppose that there exists a sequence {a;} of subsets of A such that o is con-

ditionally compact, a; C a;41 and > @i = A} Tt was shown in [3] that for
i=1

any conditionally compact subset «; the relation (1.18) holds. Hence, according

to Theorem 1.3, a necessary and sufficient condition for the validity of (1.19)

is that (1.20) holds for a sequence {a;} where a; is conditionally compact,

@; Caiaand O, a; = A.  Similar remarks can be made concerning the space B.
i=1

The distance definitions given in (1.23) and (1.24) can be extended to the spaces

of the probability measures £ and 7, respectively. That is,

(1.25) 8¢, &) = Sup K, n) — K, n) |

3 For a definition of compact and conditionally compact sets, see F. Hausdorff, Mengenlehre
(3rd edition), p. 107, or [3, p. 296].
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and
(1.26) 8(m , m) = Seup [ K, m) — K(& m) |+

We shall say that a probability measure £ is discrete if there exists a denumer-
.able subset « of A such that £(a) = 1. Similarly, a probability measure 5 will
be said to be discrete if 7(8) = 1 for some denumerable subset 8 of B. We shall
now prove the following theorem.

TaEOREM 1.5. If the choice of player 1 is restricted to elements of a class C of
probability measures £ in which the class of all discrete probability measures £ is
dense, then a necessary and suffictent condition for the game to be strictly determined
s that there exists a sequence {a;} of elements of A such that
{1.27) lim Inf S;lp K(tas, 1) = Inf Sup K(t, 9)

i=0 9

-where
a; = {a, a2, -, a.
Proor: Since the class of all discrete probability measures £ lies dense in the
class C, there exists a sequence & = {a;} (¢ = 1,2, ---, ad inf.)
such that
(1.28) Sup Inf K(¢a, 7) = Sup Inf K(¢, 7).
I3 ] ¢ L]

Since a; = {a1, * -, a;} is finite, we have
(1.29) Inf Seup Koy, 1) = Seup Inf K(£a,; , 7).
n @y ag; L)

It then follows from Lemma 1.1 that
(1.30) lim Inf Sup K(ta;yn) = Sup Inf K(ta,n) = Sup Inf K(g, n).

f=0 g fa
Clearly, (1.30) and strict determinateness of the game implies (1.27). On the
other hand, any o = {a;} that satisfies (1.27), will satisfy also (1.28) and (1.30).
But (1.27) and (1.30) imply that the game is strictly determined. Thus,
‘Theorem 1.5 is proved.

TuaeoreM 1.6. If the choice of player 2 is restricted to elements of a class C of
probability measure n in which the class of all discrete probability measures n lies
dense, then a necessary and sufficient condition for the strict determinateness of the
game 1s that there exists a sequence B = {b:} of elements of B such that
(1.31) lim Sup Inf K(§, 75,) = Sup Inf K(¢, n)

im0 £ g,
where
Bi = {b1, -+, bi}.
This theorem is obtained from Theorem 1.5 by interchanging the players
1 and 2.
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2. Statistical decision functions: the case of discrete chance variable.

2.1. The problem of statistical decisions and ils interpretation as a zero sum two
person game. In some previous publications (see, for example, [3]) the author
has formulated the problem of statistical decisions as follows: Let X = {X°}
(¢ =1,2, ---,adinf.) be an infinite sequence of chance variables. Any particu-
lar observation z on X is given by a sequence 2 = {xz'} of real values where z*
denotes the observed value of X*. Suppose that the probability distribution
F(z) of X is not known. It is, however, known that F is an element of a given
class @ of distribution functions. There is, furthermore, a space D given whose:
elements d represent the possible decisions that can be made in the problem
under consideration. Usually each element d of D will be associated with a
certain subset w of @ and making the decision d can be interpreted as accepting
the hypothesis that the true distribution is included in the subset w. The funda-
mental problem in statistics is to give a rule for making a decision, that is, a
rule for selecting a particular element d of D on the basis of the observed sample
point z. In other words, the problem is to construct a function d(z), called
decision function, which associates with each sample point z an element d(x)
of D so that the decision d(z) is made when the sample point x is observed.

This formulation of the problem includes the sequential as well as the classical
non-sequential case. For any sample point z, let n(x) be the number of com-
ponents of x that must be known to be able to determine the value of d(z). In
other words, n(x) is the smallest positive integer such that d(y) = d(z) for any y
whose first n coordinates are equal to the first n coordinates of z. If no finite
n exists with the above property, we put n = «. Clearly, n(x) is the number
of observations needed to reach a decision. To put in evidence the dependence
of n(z) on the decision rule used, we shall occasionally write n(x; ®) instead of
n(z) where © denotes the decision function d(z) used. If n(x) is constant over
the whole sample space, we have the classical case, that is the case where a
decision is to be made on the basis of a predetermined number of observations.
If n(x) is not constant over the sample space, we have the sequential case. A
basic question in statistics is this: What decision function should be chosen by
the statistician in any given problem? To set up principles for a proper choice of
a decision function, it is necessary to express in some way the degree of im-
portance of the various wrong decisions that can be made in the problem under
consideration. This may be expressed by a non-negative function W(F, d),
called weight functions, which is defined for all elements F' of © and all elements
d of D. For any pair (F, d), the value W(F, d) expresses the loss caused by
making the decision d when F is the true distribution of X. For any positive
integer n, let ¢(n) denote the cost of making n observations. If the decision
function © = d(z) is used the expected loss plus the expected cost of experi-

mentation is given by

@.1) 1P, 9] = [ WIF, d@)] dF @) + [, ctn@)) aF @)



STATISTICAL DECISION FUNCTIONS 173

where M denotes the sample space, i.e. the totality of all sample points . We
shall use the symbol D for d(x) when we want to indicate that we mean the whole
decision function and not merely a value of d(x) coresponding to some z.

The above expression (2.1) is called the risk. Thus, the risk is a real valued
non-negative function of two variables F and © where F may be any element
of 2 and ®© any decision rule that may be adopted by the statistician.

Of course, the statistician would like to make the risk r as small as possible.
The difficulty he faces in this connection is that r depends on two arguments F
and D, and he can merely choose D but not . The true distribution F is chosen,
we may say, by Nature and Nature’s choice is usually entirely unknown to the
statistician. Thus, the situation that arises here is very similar to that of a
zero sum two person game. As a matter of fact, the statistical problem may be
interpreted as a zero sum two person game by setting up the following corres-
pondence:

Two Person Game

Player 1
Player 2
Pure strategy a of player 1
Pure strategy b of player 2
Space A
Space B

Outcome K(a, b)

Mixed strategy £ of
player 1
Mixed strategy =# of

player 2

Outcome K(&, 7) when
mixed strategies are
used.

Statistical Decision Problem

Nature

Statistician

Choice of true distribution F by Nature

Choice of decision rule ® = d(x)

Space @

Space @ of decision rules © that can be used by
the statistician.

Risk 7(F, D)

Probability measure ¢ defined over an additive
class of subsets of @ (a priori probability dis-
tribution in the space Q)

Probability measure 7 defined over an additive
class of subsets of the space . We shall refer
to 7 as randomized decision function.

Risk r(t, 7) = fo fﬂ r(F, D) dt dn.

2.2. Formulation of some conditions concerning the spaces Q, D, the weight func-

tion W(F, d) and the cost function of experimentation. A general theory of statis-
tical decision functions was developed in [3] assuming the fulfillment of seven
conditions listed on pp. 297-8.4 The conditions listed there are unnecessarily
restrictive and we shall replace them here by a considerably weaker set of con-
ditions.

In this chapter we shall restrict ourselves to the study of the case where each
of the chance variables X, X?, - - - ,ad inf. is discrete. We shall say that a chance

4 In [3] only the continuous case is treated (existence of a density function is assumed),
but all the results obtained there can be extended without difficulty to the discrete case.
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variable is discrete if it can take only countably many different values. Let
@1, @iz, - -+, ad inf. denote the possible values of the chance varidble X*. Since
it is immaterial how the values a;; are labeled, there is no loss of generality in
putting a;; = j(j = 1,2, 3, ---, ad inf.). Thus, we formulate the following
condition.

Conprrion 2.1.  The chance variable X* (i = 1,2, -- - , ad inf.) can take only
positive integral values.

As in [3], also here we postulate the boundedness of the weight functior, i.e.,
we formulate the following condition.

ConprrioN 2.2.  The weight function W(F, d) is a bounded function of F and d.

To formulate condition 2.3, we shall introduce some definitions. Let w be a
given subset of 2. The distance between two elements d; and d, of D relative to
w is defined by

22) 8(di, dy ;@) = Sup | W(F, d) — W(F,d)|.

We shall refer to 6(d; , d: ; @) as the absolute distance, or more briefly, the dis-
tance between di and d; . We shall say that a subset D* of D is compact (con-
ditionally compact) relative to w, if it is compact (conditionally compact) in
the sense of the metric 6(d;, d» ; w). If D* is compact relative to @, we shall
say briefly that D* is compact.

An element d of D is said to be uniformly better than the element d’ of D rela-
tive to a subset w of Q if

W(F,d) < W(F,d") for all F in
and if
W(F,d) < W(F, d") for at least one F in w.

A subset D* of D is said to be complete relative to a subset w of  if for any d
outside D* there exists an element d* in D* such that d* is uniformly better than
d relative to w.

CONDITION 2.3. For any positive integer 1 and for any positive e there exists a
subset D7 of D which is compact relative to Q@ and complete relative to w;,. where
wi,e 18 the class of all elements F of Q for which prob {X* < i} = .

If D is compadct, then it is compact with respect to any subset w of @ and Con-
dition 2.3 is fulfilled. For any finite space D, Condition 2.3 is obviously ful-
filled. Thus, Condition 2.3 is fulfilled, for example, for any problem of testing
a statistical hypothesis H, since in that case the space D contains only two ele-
ments d; and dz where d; denotes the decision to reject H and d; the decision to
accept H.

In [3] it was assumed that the cost of experimentation depends only on the
number of observations made. This assumption is unnecessarily restrictive.
The cost may depend also on the decision rule ® used. For example, let D,
and D, be two decision rules such that n(z; ©,) is equal to a constant n, , while
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D, is such that at any stage of the experimentation where D, requires taking at
least one additional observation the probability is positive that experimentation
will be terminated by takmg only one more observation. Let 2° be a particular
sample point for which n(a’; D) = n(z’, D) = m. There are undoubtedly
cases where the cost of experimentation is appreciably increased by the necessity
of having to look at the observations at each stage of the experiment before we
can decide whether or not to continue taking additional observations. Thus
in many cases the cost of experimentation when z° is observed may be greater
for D, than for D, . The cost may also depend on the actual values of the ob-
servations made. Thus, we shall assume that the cost ¢ is a single valued func-
tion of the observations z', ---, 2™ and the decision rule ® used, i.e., ¢ =
c@, -+, 2", D).

ConpITION 2.4. The cost c(x', ---, z", D) is non-negative and lim
c@, -, 2", D) = o uniformly in ', -+, z", Dasm — «. For each pos-
ittve integral value m, there exists a finite value Cm) depending only on m, such
that ¢, -+, z", D) £ ¢m identically in z, -+, 2", D. Furthermore,
e, -, 2™ D) =e@@, -, 2™ SDg) 2f n(z; SDl) = n(z; SDz) for all x. Fmally,
for any sample point x we have c(x et > ) I O "= By)
if there exists a positive integer m such that n(x SDI) = n(zr, D2) when n(:c D) <m
and n(x, 1) = m when n(x, D) = m.

2.3 Alternative definition of a randomized decision function, and a further con-
dition on the cost function. In Section 2.1 we defined a randomized decision
function as a probability measure 7 defined over some additive class of subsets
of the space Q of all decision functions d(z). Before formulating an alternative
definition of a randomized decision function, we have to make precise the mean-
ing of n by stating the additive class Cq of subsets of @ over which ¢ is defined.
Let Cp be the smallest additive class of subsets of D which contains all subsets
of D which are open in the sense of the metric 8(d; , dz ; 2). For any finite set of
positive integers a, , - - - , ax and for any element D* of Cp, let Q(ar, « -+, a,
D*) be the set of all decision functions d(x) which satisfy the following two con-
ditions: ) Ifz' = ay,2° =@z, --- ,2" = a4, thenn@) = k; Q) Ifz' =a;, -+,
2* = a, then d(z) is an element of D*. Let Cjg be the class of all sets Q(as,

, ax , D¥) corresponding to all possible values of k, a1, - - - , ax and all pos-
sible elements D* of Cp. The additive class Cq is defined as the smallest
additive class containing C’ as a subclass. Then with any 5 we can associate
two sequences of functions

{Zm(xl’ ) x” I )}

and
{0,1..0n(D* | m)}(m = 1,2, -+ , ad inf.)

where 0 < 2, (2, --+, 2™|9) < 1 and for any ', - -+ , 2™, 8,1....m is a prob-
ability measure in D defined over the additive class Cp. Here

Zm(mly ) z" | 7))
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denotes the conditional probability tha.t 'n(x) > m under the condition that
the first m observations are equal to z', , z" a,nd experimentation has not
been terminated for (z', - - - , z*) for (k = , m — 1), while

a1:55am (D* | 9)

is the conditional probability that the final decision d will be an element of D*
under the condition that the sample (z', - - - , ™) is observed and n(z) =
Thus

4@ | e, 2 1n) ol o, 2 )L = 2l o, 2™ )] =
(2.3)
Q' -+ , 2™, D]
and
(2.4) Sotean(D* | 1) = 2[Q(, - -+, a™, D¥)]

7@, -+, 2™, D))~

We shall now consider two sequences of functions {za(z',---, ™)} and
{621....n(D*)}, not necessarily generated by a given . An alternative definition
of a randomized decision function can be given in terms of these two sequences
as follows: After the first observation z' has been drawn, the statistician deter-
mines whether or not experimentation be continued by a chance mechanism
constructed so that the probability of continuing experimentation is equal to
z(z"). If it is decided to terminate experimentation, the statistician uses a
chance mechanism to select the final decision d constructed so that the prob-
ability distribution of the selected d is equal to 6,:(D*). If it is decided to take
a second observation and the value 2° is obtained, again a chance mechanism is
used to determine whether or not to stop experimentation such that the prob-
ability of taking a third observation is equal to z(z", 2%). If it is decided to stop
experimentation, a chance mechanism is used to select the final d so that the
probability distribution of the selected d is equal to 8,1,2(D*), and so on.

We shall denote by ¢ a randomized decision function defined in terms of two
sequences {zm(2, -+, ™)} and {8,1....»(D*)}, as described above. Clearly,
any given n generates a particular {. Let {(1) denote the { generated by 7.
One can easily verify that two different #'s may generate the same ¢, i.e., there
exist two different 7's, say m and 7 such that {(n) = ¢(2).

We shall now show that for any ¢ there exists an » such that {(n) = ¢. Let
¢ be given by the two sequences {zm(z', -+ , ™)} and {5a.. zn(D*)}. Let b;
denote a sequence of r; positive mtegers, ie., b = (b, - ,bie)G=1,2,---,k)
subject to the restrlctlon that no b; is equal to an 1mt1a1 segment of b;(] # l)
Let, furthermore, Dy, - , D¢ be k elements of Cp. Finally, let Q(b, ,

b, DY, -+, Dy) denote the class of all decision functions d(z) which satlsfy
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the following condition: If (z', - -+ , 2”¥) = b; then n(z) = r; and d(z) is an ele-
ment of D}(j = 1, ---, k). Let n be a probability measure such that

2Qy, -+, b, DI, -+, D)

I RNC i I

. {zm(zl, ‘e ,|xm)”'”(”l""‘zm)[1 _ z,,.(xl, e, wm)]‘,'i”(zl'...zm)}

holds for all values of k, by, -+, b, Df, -+, Di . Here gu(a', ---, 2™ =
1if (2!, ---, ™) is equal to an initial segment of at least of one of the samples
by, ---, bi, but is not equal to any of the samples by, ---, bx. In all other
cases gm(z', -+, 2™ = 0. The function g*,(z', ---, z™) is equal to 1 if
(z', -+, z™) is equal to one of the samples by, --- , by, and zero otherwise.
Clearly, for any n which satisfies (2.5) wehave { () = {. The existence of such an
n can be shown as follows. With any finite set of positive integers 41, - - - , %,
we associate an elementary event, say A,(iy,---, 4,). Let A,GG, -, )
denote the negation of the event A4,(¢1, - -+, %.). Thus, we have a denumerable
system of elementary events by letting r, 4;, - - - , 7, take any positive integral
values. We shall assume that the events 4:(1), 4:(2), - --, ad inf. are inde-
pendent and the probability that 4,(¢) happens is equal 2(:). We shall now
define the conditional probability of A.(z, j) knowing for any % whether A,(k)
or A;(k) happened. If A;(7) happened, the conditional probability of 4.(3, ) =
2(3, j) and O otherwise. The conditional probability of the joint event that
A2(i1 ’ jl)) As(a, j2)7 Tt Aa(i; ’ jr)’ Asz(iria ’ j1‘+1)> +++, and fi?(if-bs ’ jr+a) will
happen is the product of the conditional probabilities of each of these events
(knowing for each 7 whether A;(i) or A4;(i) happened). Similarly, the condi-
tional probability (knowing for any ¢ and for any (¢, ), whether the correspond-
ing event As(%, j) happened or not) that As(i1, j1, k1) and As(iz, j2, k2) and
oo As(ir, Goy k) and Ag(irsa, Jrsa, kepa) and - and Ag(irye; Friw  Krge) will
simultaneously happen is equal to the product of the conditional probabilities
of each of them. The conditional probability of A3(z, 7, k) is equal to 2(z, 7, k)
if A1(¢) and A.(7, ) happened, and zero otherwise; and so on. Clearly, this
system of probabilities is consistent.

If we interpret A,(s1, -« , ¢,) as the event that the decision function D =
d(z) selected by the statistician has the property that n(z; ®) > r when z' =
%, +,x = 1i,,the above defined system of probabilities for the denumerable
sequence {A,(i1, -+, %)} of events implies the validity of (2.5) for D} =
DG =1, ---, k). The consistency of the formula (2.5) for D = D implies,
as can easily be verified, the consistency of (2.5) also in the general case when
D} # D.

Let ¢ be given by the sequences of {zmi(x’, - -+ , ™)} and {8.1....ms} (m =
1, 2, -+, ad inf.). Let, furthermore, { be given by {za(z, -, z™)} and
{8z1...2m}. We shall say that
(2.6) lim §; =

Fme00
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if for any m, z', --- , 2™ we have

2.7 lim Zmi(@, -, Z™) = 2wz, -0, 2™
and

@8) i de1...0m,i(D¥) = bat...m(D¥)

for any open subset D* of D whose boundary has probability measure zero ac-
cording to the limit probability measure 8,1....m.

In addition to Condition 2.4, we shall impose the following continuity con-
dition on the cost function.

ConprTioN 2.5. If

lim §(ne) = £(n),
then

tim [ oG, ,a" D) dn = [ ole, -, 2" D) dn.

femco Q(zl,- - +,2™) Q(zl,++zm)
where Q(z', - -+ , ™) is the class of all decision functions D for which n(y, D) =
mify =o', -, y" =z™

2.4. The main theorem. In this section we shall show that the statistical

decision problem, viewed as a zero sum two person game, is strictly determined.
It will be shown in subsequent sections that this basic theorem has many im-
portant consequences for the theory of statistical decision functions. A precise

formulation of the theorem is as follows:
TaeoreM 2.1.  If Conditions 2.1-2.5 are fulfilled, the decision problem, viewed
as a zero sum two person game, is strictly determined, i.e.,

(2.9) Szlp Inf r(¢ n) = Inf Sgp r(& m).
n n
To prove the above theorem, we shall first derive several lemmas.

Lemma 2.1. For any € > 0, there exists a positive integer m. , depending only
on e, such that the value of Sup Inf r (¢, 1), is not changed by more than e if we re-
4 L]

strict the choice of the statistician to decision functions d(x) for which n(z) < m,

for all z.
Proor: Put Wy, = Sup W(F, d) and choose m. so that
F,D

' 2
(2.10) e, -,z , D) > @

identically in ', - - - , 2™ and ® for all m = m.. The existence of such a value
me. follows from Condition 2.4. Consider the function Isgf r(¢, D). Our lemma

is proved, if we can show that for any &, the value of Igf r(£, ©) is not increased
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by more than e if we restrict D to be such that n(z, D) < m.forallz. The latter
statement is proved, if we can show that for any decision function D, = di(z)
we can find another decision function D, = dy(zx) such that n(z, D,) < m. for
all z and r(§, D2) < r(¢, D1) + e There are two cases to be considered: (a)
prob {n(X, D1) > m.| ¢} = ¢/Wo and (b) prob {n(X, D) > m.| £} < ¢/W,.
In case (a) we have 7(¢, 1) = Wo. In this case we can choose D; to be the rule
that we decide for some element dy of D without taking any observations.
Clearly, for this choice of D, we shall have r(¢, D) < r(¢, D1). In case (b)
we choose O; as follows:

d2(x) = di(z) whenever n(z, D) < m.;
d2(z) = do whenever n(z, ;) > m.,

where d, is an arbitrary element of D. Thus, n(z, D;) < m. for all z. Since
prob {n(x, D1) > me|£) < ¢/Wo, it is clear that r(§, Ds) = r(§, 1) + e Hence
our lemma is proved.

Let Q™ denote the class of decision functions D for which n(z; D) = m for
all z. For any positive ¢, let @Q™* denote the class of all decision functions
which satisfy the following two condltlons smultaneously 1) n(z, D) < m for
all z; (2) d(a:) is an element of D3 where D}, denotes the subset of D having
the properties stated in Condltlon 2.3. Clearly, Q™ C Q™. A probability
measure 7 will be denoted by #™ if 7(Q™) = 1, and by 2™ if (Q™°) = 1.

LemMa 2.2. The following inequality holds:

(2.11) Sélp Infr(¢ 1") = Slgp Inf r(§, ™) = Suep Inf r(& 2™) + ¢ Wo,
m nMe m

where W, is an upper bound of W(F, d).

ProoF: The first half of (2.11) is obvious. If we replace the subscript z' by
the chance variable X, the set w,1,. defined in Condition 2.3 will be a random
subset of €. It follows easily from the definition of ws . that

(2.12) prob {Fewr1,(|F} 21 — e

With any decision function © = d(x) we shall associate another decision func-
tlon D* = d*(r) such that n(z, D) = n(x, D*); d*(x) = d(z) whenever d(z) e
D} ; and d*(x) is an element of D} . that is uniformly better than d(zx)
relative to w1, whenever d(z) ¢ D} .. Itfollows from (2.12) and the fact that
W, is an upper bound of W(F, d) that

(2.13) r(F, D*) = r(F, D) + ¢ Wh.
The second half of (2.11) is an immediate consequence of (2.13) and our lemma
is proved.
Lemma 2.3. The equation
2.14) Sup Inf r(t, 1™) = Inf Sup r(¢, 1™)
M€ ™e

holds for all m and e.
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Proor: For any positive integral values m, & and for any p > 0, let 2™*** be
the class of all elements F of @ for which

prob {2' S kand2’ < kand---2" <k} =1 —p.

A probability measure £ for which £@Q™**) = 1 will be denoted by £™**. To
prove (2.14), we shall first prove the inequality

(2.15) ISup Inf r(E™**, ™) — Inf Su r(s'”"" 2™ | S p(Wo + Cn)

nMe Emik,

where Cp 1sanupperboundof C@, - ,2",D)forallr < m,x, cee and@

Since for any d(z) in Q™*, d(z) must be an element of D, and since D,,x
is compact, it is sufficient to prove the validity of (2.14) in the case when D,,l .
is a finite set. Thus, we shall assume in the remainder of the proof that D},
is finite.

Let & be a given positive number and let Q™*** be a finite subset of Q™ satis-
fying the following condition: for any element ® = d(z) in Q™" there exists an
element D* = d*(z) in Q™" such that

d*@x) =d@z) and |[C@, D*) —C@ D)| =46

for all z for which«' < k,2* <k, --- ,and 2™ < k. Clearly, for any choice of
3 there exists a finite subset Q™" of Q™* with the desired property. For any
® in Q™*, we can then find an element D* in Q™*** such that

r(F, D*) < r(F, D) + o(Wo + Cn) + 4,
for all F in @™**, From this it follows that
(2.16) Sup Inf r < Sup Inf r < Sup Inf r + p(Wo + Cn) + 6

gk gmi.e gm ke gmik,e gmikp gmie
(217)  Inf Sup r < Inf Sup r < Inf Sup 7+ p(Wo+ Cn) + 6
e M pmakie gmk.p e Emik.p
where ™*(Q™**) = 1. Since Q™" is finite, we have
(2.18) Sup Inf » = Inf Supr.
Emkp,,mke .,,mk,emkp

Inequality (2.15) follows from (2.16), (2.17) and (2.18) and the fact that &

can be chosen arbitrarily small.
Lemmas 1.1., 1.3 and the inequality (2.15) imply that Lemma 2.3 must hold

if
(2.19) lim Inf Sup r = Inf Sup r
km=oo gmie fmik,0 nMe
holds. Thus, the proof of Lemma 2.3 is completed if we can show the validity
of (2.19).
Let {9t} (6 = 1,2, -+, ad inf.) be a sequence of randomized decision func-
tions such that
(2.20) lim [Sup r(¢™ " qp) — Inf eSl}‘p (&0 ™ = 0.
kemoo M, e gmk.p
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Let ¢x = ¢(n%°) (see definition in Section 3.2) and let {3 be given by the two
sequences of functions {zx(x', <.+, 2")} and {6s.eri} (* = 1, 2, -+, m).
Since there are only countably many samples (z', - - - , z") (r £ m), there exists
a subsequence {k'} of the sequence {k} such that

(2.21) Efg zf.kl(xly e, ) = zr(xly e, )
and
(2.22) lim 81...0r it = Op1g2...0r

k=c0

for all r and all samples (z', --+ , 27). Let 75" be a randomized decision funec-
tion such that (75) is equal to the ¢ defined by {z(z, - -+, 2")} and {8....r}
(r=12---,m).

For any element F of Q@ and for any » > 0, there exists a finite subset M, of
the m-dimensional sample space such that the probability (under F) that the
sample (z', -+ -, z™) will fall in M, is = 1 — ». From this and the continuity
of the cost function (Condition 2.5) it follows that

(2.23) ’lcim r(F, nii%) = »(F, 7o) for all F.
Clearly,
(2.24) Sup rE™"**, 9) = SuP r(F™** )
Em,l:,p rmkp
where F™** is an element of Q™**. Hence
(2.25) Inf Sup r(E™**, y™¢) = Inf Su up r(F™F P, g™,
e EmiEP e Py

Since any F in  is contained in @™** for sufficiently large k, it follows from (2.20)
and (2.25) that

(2.26) lim #(Faf%) < lim {Inf Sup r(F™**, 1™},
K=o

) ,,m e« Fm,
Hence, because of (2.23),
(2.27) r(F, ) < lim {Inf Sup »(F™"**, y™)}.

kwmowo g™ FM,kL,P
Thus,
(2.28) Inf Sup r(F, x™)  lim {Inf Sup r(F™**, 3™},

kwmoo  gMie FMy
Since the left hand member of (2.28) cannot be smaller than the right hand
member, the equality sigh must hold. This concludes the proof of Lemma 2.3.
Theorem 2.1 can easily be proved with the help of lemmas 2.1, 2.2 and 2.3.
From Lemma 2.2 it follows that
(2.29) lim Sup Infr = Sup Inf 7.

e=0 § fn™e
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From this and Lemma 2.3 we obtain
(2.30) lim Inf Sup r = Sup Inf 7.

e=0 n™e ¢

But
lm(} Inf Sup r = Inf Sup T
e=0 yme §

Hence

(2.31) Inf Sup » < Sup Inf 7.

™ E m
Hence, because of Lemma 1.3, we then must have
(2.32) Sup Inf » = Inf Sup 7.
& am m ok
It follows from Lemma 2.1 that

(2.33) lim Sup Inf r = Sup Inf Te
me=0  §

Hence, because of (2.32), we have

(2.34) lim Inf Sup r = Sup Inf T
mm=c0 9™

Buf*

(2.35) lim Inf Sup r= Inf Sup 2
mem=c0 M

Hence

(2.36) Inf Sup 7 =< Sup Inf r
L] 4 3 L]

Theorem 2.1 is an immediate consequence of (2.36) and Lemma 1.3.

2.5. Theorems on complete classes of decision functions and minimazx solutions.
For any positive ¢ we shall say that the randomized decision function #, is an
e-Bayes solution relative to the a priori distribution £ if

(2.37) (& m) < Inf 7§, n) + e
L]

If n, satisfies (2.37) for e = 0, we shall say that 7, is a Bayes solution relative
to £.

A randomized decision rule 7, is said to be uniformly better than 7. if
(2.38) r(F, m) < r(F, n) for all F
and if
(2.39) r(F, m) < r(F, 7,) at least for one F.

A class C of randomized decision functions 7 is said to be complete if for any
7 not in C we can find an element 7* in C such that %* is uniformly better than 7.
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TaEOREM 2.2. If Conditions 2.1-2.5 are fulfilled, then for any ¢ > 0 the class
C. of all eBayes solutions corresponding to all possible a priori distributions &

is a complete class.
Proor: Let 7 be a randomized decision function that is not an e-Bayes solu-

tion relative to any £ That is,
(2.40) r(¢, m0) > Inf (£, 1) + efor all &,
n

If 7(F, no) = o for all F, then there is evidently an element of C. that is uni-
formly better than n,. Thus, we can restrict ourselves to the case where

(2.41) r(F, no) < « at least for one F.
Put
(2.42) W*(F,d) = W(F,d) — r(F, n)
and let r* (£, 1) denote the risk when W(F, d) is replaced by WH*(F, d). Then
(2.43) (&, 1) = r(E 1) — & m).

Let Q™ denote the class of all decision functions d(x) for which n(z) = m
identically in z. Furthermore, denote any 7 for which n(@™) = 1 by ". We
shall first prove the following relation.

(2.44) Sgp Inf r*(, 1™) = Inf St:p ™E& ")
,'m ,,m

for any positive integral value m. For any positive constant ¢, let Q. denote the

class of all elements F for which »(F, o) = c.

Clearly, Conditions 2.1-2.5 remain valid if we replace W(F, d) by W*(F, d)
and Q@ by Q. where ¢ is restricted to values for which @, is not empty. Hence,
Theorem 2.1 can be applied and we obtain

(2.45) S;lp Inf r*(#, n™) = Inf Seup &1,
c m am 4

where £ denotes any & for which £(Q;) = 1. Let h and w be two positive values
for which

(2.46) Sup Inf r*(&, ™) = —h forall ¢
[

and

(2.47) r(F, n™) < w for all F and all 9™,

Clearly, such two constants & and « exist. From (2.46) and Lemma 1.3 we ob-
tain
(2.48) Inf Slélp ™ (&) = —h

,,m

Since
(2.49) ™*(F, 7™) < —(h + 6) for any F not in Qs451w(8 > 0),
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it follows from (2.48) that

(2.50) Inf S;lp r* = Inf Slslp r* forall ¢>h+ w
"M e ,,m

From (2.45) and (2.50) we obtain

(2.51) Sup Inf r* = Inf Sl:p r* forall ¢>h+ w.
g oqm Lt

Hence,

(2.51a) Sup Inf * = Inf Sup r*

§E ™ ¢

Because of Lemma 1.3, the equality sign must hold and (2.44) is proved.
Since 7o is not an element of C., we must have

(2.52) Inf r(£, 1) < 7§ m) — e
7
From this it follows that
(2.53) Inf r*(¢, 1) S —e.
n
Hence
(2.54) Sup Inf r*(§, 7) £ —e.
13 L]

It was shown in the proof of Lemma 2.1 that for any p > 0 there exists a
positive integer m, , depending only on p, such that

(2.55) Inf r(¢, 9™) < Inf r(§ 4) + pfor all &
™Mp L]

From (2.44), (2.54) and (2.55) it follows that there exists a positive integer
mp , namely my = mp2 , such that

(2.56) Inf Sup r*(¢, 9™) < —5 for any m = my.
™ &

From (2.44) and (2.56) it follows that there exists an a priori distribution £
and an e-Bayes solution #7 relative to £ such that

(2.57) (P, ) £ — ifor all F.
Hence, because of (2.43),

(2.58) o(F, 1) S 1, m) — 7 for all F.
and Theorem 2.2 is proved.

TaeoreM 2.3. If D is compact, and if Conditions 2.1, 2.2, 2.4, 2.5 are fulfilled,
then there exists a mintmax solution, i.e., a decision rule no for which
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(2.59) Sup r(F, ) < Sup r(F, ) for oll 4.
r F

To prove the above theorem, we shall first prove the following lemma.

LemMma 2.4. If D is compact and if Conditions 2.1, 2.2, 2.4, 2.5 are fulfilled,
then for any sequence {n:} (¢ = 1,2, - - - , ad inf.) of randomized decision functions
for which r(F, n:) is a bounded function of F and 1, there exists a subsequence {n;,}
G=1,2--,ad inf.) and a randomized decision function no such that

(2.60) hm inf (&, m;) = r(¢ m) for all £.

Proor: Let ¢ = ¢(m) (deﬁned in Section 2.3) be glven by {z.:(@', -+, 27)}
and {8;152...0ri} (* = 1, 2, -+, ad inf.). Thus, zi(@', -+, «7) is the con-
ditional probability that we shall take an observation on x* usmg the rule
7; and knowing that the first r observatlons are given by z', , " and thatex-
perimentation was not terminated for (z", ,z28) (b < r). As stated in section
2.3, forany r,z', - -+ , 2’ the symbol 8,1....r 5 denotes the conditional probability
distribution of the selected d when 7; is used and is known that the first » ob-
servations are equal toz, - - - , 2" and that n(z) = r. Since there are only count-
ably many finite samples (:c s , '), it is possible to ﬁnd a subsequence {¢;} of
{} such that lim zr,.,(x , e ) and lim 8.1...r; exist.’ Put

j=00

j=o

(2.61) lim 2,5, -+, &) = zro(z’, 0, 20)
Jemc0

and

(262) lim 631 ari; = 5;1 “at,0 .
,-no

As shown in section 2.3, there exists a randomized decision function 7, such
o = ¢(no) is given by {zro(x, -+ ,2")} and {6z! aro}. Let g i@, -, 27| )
denote the probability that the sample (z', - - - , ") will be obtained and that
experimentation will be stopped at the r-th observatlon when £ is the a priori
distribution and 7; is the decision rule used by the statistician. For any sample
(@, -+, z7) let Ri(z', - - - , ") denote the expected value of W(F, d) when the
distribution of F is equal to the a posteriori distribution of F as implied by &
and (¢!, - -+ , «) and where d is a chance variable independent of F with the
probability distribution &:....rs. Since, r(¢, #:) is bounded by assumption,
the probability that experimentation will go on indefinitely is equal to zero.
From this it follows that

(2.63) E @ri(@, --+, 37 |§) = 1forall £

ral..

& The existence of ,lllf 8z1...2,i; follows from the compactness of D (see Theorem 3.6

in [3]).
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Then r(¢, ;) is given by
7(5) 711')

(2.64) f @, -+, 2, D) dns
= E : 'Qr.i(xl’ PPN ,x" { g) Ri(xl, R xr) ‘ Qzl...zr
) f dn,-
Qzl...z"

21,00
where Q.1....r is the totality of all decision functions d(x) for which n(y) = r
whenever 4* = a', .-,y = z". Clearly,

(2.65) hm q"-‘i(xl: e, 2 E) = qr.O(xl: cee, 20 |E).
=00

Since D is compact and since W (F, d) is a continuous function of d uniformly
in F (in the sense of the metric defined in D), we have

(2.66) li.m Ril(xl’ ceey x') = Ro(xl’ cee, x').
’-m

From Condition 2.5 it follows that

f c(@, -+, 2, D) dny, f
(267) lim "9 sr _ Jaa..
J==00
dns, i
Lzl-..,r n ! ‘/;zt-..zr 110

Lemma 2.4 is an immediate consequence of the equations (2.64) — (2.67).
We are now in a position to prove Theorem 2.3. Because of Theorem 2.1
there exists a sequence {7;} such that

(2.68) lim Sup 7(F, 9:) = Inf Sup r(F, 3).
F n F

$==00

c(xI) Sty z’ SD,o) dﬂo

zr

According to Lemma 2.4 there exists a subsequence {n:;} (j = 1,2, --- , ad inf.)
and a randomized decision function 5, such that
(2.69) lim inf #(F, 9:;) = r(F, ) for all F.
=00
It follows from (2.68) and (2.69) that 7 is a minimax solution and Theorem

2.3 is proved.
TreorEM 2.4. If D is compact and if Conditions 2.1, 2.2, 2.4, 2.5 are fulfilled,

then for any & there exists a Bayes solution relative to &.

This theorem is an immediate consequence of Lemma 2.4.

We shall say that 5 is a Bayes solution in the wide sense, if there exists a
sequence {&} (0 = 1,2, ---, ad inf.) such that

(2.70) 13;1 [r(&, m) — Infr(t:, n)] = 0.

We shall say that #, is a Bayes solution in the strict sense, if there exists a &
such that o is a Bayes solution relative to &.
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Turorem 2.5. If D is compact and Conditions 2.1-2.5 hold, then the class of all
Bayes solutions in the wide sense is a complete class.

Proor: Let 7o be a decision rule that is not a Bayes solution in the wide sense.
Consider the weight function W*(F,d) = W(F, d) — r(F, n). We may assume
that 7(F, no) < « for at least some F, since otherwise there obviously exists a
Bayes solution in the wide sense that is uniformly better than n,. Then it
follows easily from (2.44) and Lemmas 2.1 and 1.3 that

(2.71) Slgp Inf r*(¢, 9) = Inf S?p r*(, ) = v* (say),
7 7

where 7*(£, ) is the risk corresponding to W*(F, d), i.e.,

(2.72) (& 1) = (& n) — 7 m).

Theorem 2.3 is clearly applicable to the risk function 7*(¢, 1). Then, there
exists a minimax solution n; for the problem corresponding to the new weight
function W*(F, d). Since, because of 2.72, v* < 0, we have

(2.73) (&, m) = r(&, m) — r(§ m) = 0forall &

Our theorem is proved, if we can show that 7, is a Bayes solution in the wide
sense. Let {&} (1 = 1,2, -, ad inf.) be a sequence of a priori distributions
such that

(2.74) lim Inf r*(& , 1) = o*

Tmc0y

Since 71 is a minimax solution, we must have

(2.75) ™, m) = v%

It follows from (2.74) and (2.75) that 7, is a Bayes solution in the wide sense
and our theorem is proved.

We shall now formulate an additional condition which will permit the deriva-
tion of some stronger theorems. First, we shall give a convergence definition
in the space €. We shall say that F; converges to F in the ordinary sense if

(2.76) lim o, - 2| F) = poat, -, 2" |F) r=1,2 ---,adinf).

Here p,(z', - - - , 2" | F) denotes the probability, under F, that the first r observa-
tions will be equal to z*, - - - , «", respectively. We shall say that a subset w
of Q is compact in the ordinary sense, if w is compact in the sense of the conver-
gence definition (2.76).

ConprTioN 2.6. The space @ is compact in the ordinary sense. If Fy con-
verges to F, as © — =, in the ordinary sense, then

lim W(F:, d) = W(F, d)

uniformly in d.

THEOREM 2.6. If D is compact and if Conditions 2.1, 2.2, 2.4, 2.5, 2.6 hold,
then:
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(i) there exists a least favorable a priori distribution, i.e., an a priori distribution
£ for which

Inf 7(%, 1) = S;xp Inf r(g, ).
1 1

(ii) A minimax solution exists and any minimax solutton is a Bayes solution
in the strict sense.

(iii) If no is a decision rule which is not a Bayes solution in the strict sense and
Jor which r(F, n) ts a bounded function of F, then there exists a decision rule n,
which is a Bayes solution in the strict sense and s uniformly betier than n, .

Proor: Let {&} (1 = 1,2, - - -, ad inf.) be a sequence of a priori distributions
such that
Q.77 lim Inf r(t:, 1) = S;lp Inf 7(¢, 7).

$e=00 g n

Since © is compact in the ordinary sense, there exists an a priori distribution

£ and a subsequence {£;;} or {£:} such that

(2.78) lim £&,(0) = fo(w)

Jmmo0
for any subset w of € which is open (in the sense of the ordinary convergence
definition in 2) and for which £(w*) = 0, where w* denotes the set of all boundary

points of w. We shall show that & is a least favorable distribution. Assume
that it is not. Then there exists a decision function Dy = dy(x) such that

2.79) (0, Do) = v — 4,
where § > 0 and v denotes the common value of Sup Inf 7 and Inf S?p r. It was

4 n 1]
shown in the proof of Lemma 2.1 that (2.79) implies the existence of a decision
function ®; = di(x) and that of a positive integer m such that

(2.80) n(x; 1) =< mfor all :c
and
2.81) (g, D) S v — %

Since ¢(z, + - , ", D1) and W(F, d) are uniformly bounded and W (F, d) is
continuous in F uniformly in d, we have

(2.82) lim » (F; N @1) = T(F, @1)

$=200

for any sequence {F;} for which F; — F in the ordinary sense. From (2.78),
(2.82) and the compactness of © (in the ordinary sense) it follows that

(2.83) limr (g, D) = (6o, D) S — &

oo
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But this is in contradiction to (2.77) and, therefore, £ must be a least favorable
distribution. Hence, statement (i) of our theorem is proved.

Statement (ii) is an immediate consequence of Theorems (2.1), (2.3) and state-
ment (i) of Theorem (2.6).

To prove (iii), replace the weight function W(F, d) by W*F, d) =
W(F,d) — r(F, n,) where 7, satisfies the conditions imposed on it in (iii).

We shall show that (i) remains valid also when W(F, d) is replaced by
W*(F,d). Thisisnot clear, since W*(F, d) may not be continuous in F. First
we shall prove that
(2.84) lim inf 7(£ , 70) Z 7(& , M)

t==00
. ’ . . . .
for any sequence {£{} for which & — & in the ordinary sense, i.e., for which

(2.85) lim £/(w) = £(v)

for any open subset » (open in the sense of ordinary convergence defined in )
whose boundary has probability measure zero according to £. For any sample
z', -+, 2" let gni(a', -+ , z7) denote the probability that the first » observations
will be equal to ', - - - , a’, respectively, when & is the a priori distribution.
Clearly,

(2.86) %@“wﬂ=L%@“waM$

Since p,(2’, - -+ , 2" | F) is a continuous function of ¥, we have
(287) lim Qri(xl; Tty xr) = Qro(xl> T 2?').

The function r(£, 1) can be split into two parts, i.e., 7(£, 7o) = r1(£, m0) + r2(¢, 10)
where 7, is the expected value of the loss W(F, d) and r; is the expected cost of
experimentation. Since W (F, d) is a bounded function of F and d, and since
W(F, d) is continuous in F uniformly in d, we have

(2.88) lim 7y(&: , m0) = ra(fa, m0)

for any sequence {£;} which satisfies (2.85). To prove (2.84), we merely have
to show that

(2.89) lim inf 7o(¢: , m0) = 72(o , M0).

=00

But
(290) 7'2(51{ ) 7'0) = lz: . qﬂ'(xl) ttt xr) L c(xlr ftt xr; Z)) d’?o

po oy

where Q1....r is the totality of all decision functions d(x) with the property
that d(y) = r for any y whose first r coordinates are equal to z', - -+, &', respec-
tively. Equation (2.89) is an immediate consequence of (2.87) and (2.90).
Hence, (2.84) is proved.
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Let r*(¢, #) be the risk function when W(F, d) is replaced by W*(F, d), i.e.,
r*(, 9) = v 1) — (& m). Let, furthermore, {E?} be a sequence of a priori
distributions such that

(2.91) lim Inf 7*(¢f, 1) = Sup Inf r*(, 7).
n 4 "

=00

There exists a subsequent {Ef,.} of the sequence {£f} such that ‘g*f,. converges (in
the ordinary sense) to a limit distribution £ as j — . We shall show that
£ is a least favorable distribution. For suppose that £ is not a least favorable
distribution. Then there exists a decision function ® = dj (z) such that

(2.92) &, D) S o* — 8
where § > 0 and v* = Sup Inf r* = Inf Sup r*. But then there exists a decision

4 " n 4
function DF = d’f(x) and a positive integer m such that

(2.93) n(z; D7) < mforall z
and
(2.94) e, B S o - 5

Since 7*(¢, D1) = (& D) — (£ ), and since
lim 'I‘(E:!:- N @;,k) = 7‘(5::, Qr),

=0

it follows from (2.84) and (2.94) that

(2.95) lim sup r* (&%, , DY) < o* — 2
§==00

which is in contradiction to (2.91). Hence, the validity of (i) is proved also

when W(F, d) is replaced by W*(F, d). Clearly, also (ii) remains valid when

W(F, d) is replaced by W*(F, d).

Let ¢ be a minimax solution relative to the problem corresponding to
W*(F, d). Then because of (ii), 71 is a Bayes solution in the strict sense.
Since 7 is not a Bayes solution in the strict sense, 71 % 7o and v* < 0. Hence
71 is uniformly better than 7. This completes the proof of Theorem 2.6.

We shall now replace Condition 2.6 by the following weaker one.

ConprtioN 2.6*. There exists a sequence {} ¢ = 1, 2, .-+, ad inf.) of
subsets of Q such that Condition 2.6 ¢s fulfilled when Q is replaced by Q; , Qip1 DO @
and lim @; = Q.

We shall say that 7: converges weakly to 9 as 1 — o, if lim {(n:) = ¢{(n).
We shall also say that 5 is a weak limit of %; . This limit definition seems to be
natural, since #(¢, m) = 7, n2) if {(2) = {(m). We shall now prove the follow-
ing theorem:



STATISTICAL DECISION FUNCTIONS ' 191

TueoreM 2.7. If D is compact and if Conditions 2.1, 2.2, 2.4, 2.5 and 2.6* are
Sulfilled, then:

(1) A minimax solution exists that is a weak limit of a sequence of Bayes solu-
tions in the strict sense.

(i1) Let 1o be a decision rule for which r(F, 1) vs a bounded function of F. Then
there exists a decision rule n; that is a weak limit of a sequence of Bayes solutions
in the strict sense and such that v(F, n1) = r(F, no) for all F in Q.

Proor: According to theorem 2.6, there exists a decision rule »; that is a Bayes
solution in the strict sense and a minimax solution if Q is replaced by ;. There
exists a subsequence {n:;;} (j = 1,2, --- , ad inf.) of the sequence {#;} such that
{n:;} admits a weak limit. Let 5o be a weak limit of {#:;}. Then, as shown in
the proof of Lemma 2.4, equation (2.60) holds and %, is a minimax solution rela-
tive to the original space Q. Thus, statement (i) is proved.

To prove (ii), replace W(F, d) by W*(F', d) = W(F, d) — r(F, 7). Accord-
ing to Theorem 2.6 there exists a decision rule 7y; such that 5;; is a minimax solu-
tion and a Bayes solution in the strict sense when Q is replaced by @; and W (I, d)
by W*(F, d). Clearly, n1: remains to be a Bayes solution in the strict sense also
relative to @ and W(F, d). Since 7; is a minimax solution relative to Q; and
W*(F, d), we have

(2.96) r(F, i) < r(F, n) for all Fin Q;.

Let {mi;} be a subsequence of the sequence {n;;} such that {m;;} admits a weak
limit #; . Then, (2.60) holds for {n,;} and m , and

(2.97) r(F, m) < r(F, n) for all F in .

Since 7; is a weak limit of strict Bayes solution, statement (ii) is proved.

3. Statistical decision functions: the case of continuous chance variables.

3.1. Introductory remarks. In this section we shall be concerned with the
case where the probability distribution F of-X is absolutely continuous, i.e.,
for any element F of @ and for any positive integer r there exists a joint density
function p,(x', --- , " | F) of the first r chance variables X*, -+, X".

The continuous case can immediately be reduced to the discrete case discussed
in section 2 if the observations are not given exactly but only up to a finite num-
ber of decimal places. More precisely, we mean this: For each 7, let the real
axis R be subdivided into a denumerable number of disjoint sets Ri, Riz, - - -,
ad inf. Suppose that the observed value z* of X" is not given exactly; it is merely
known which element of the sequence {R;} (j = 1, 2,---, ad inf.) contains
z'. This is the situation, for example, if the value of 2* is given merely up to a
finite number, say r, decimal places (r fixed, independent of 7). This case can
be reduced to the previously discussed discrete case, since we can regard the
sets R:; as our points, i.e., we can replace the chance variable X" by Y* where
Y* can take only the values Ri1, Rz, -+ - , ad inf. (Y* takes the value R;; if X*
falls in RB;;). If W(F:, d) = W(F:, d) whenever the distribution of ¥ under
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F, is identical with that under F,, only the chance variables ¥*, Y? --- | etc.
play a role in the decision problem and we have the discrete case. If, the latter
condition on the weight function is not fulfilled, i.e., if there exists a pair (F; , F.)
such that W(F, , d) ¢ W (F., d) for some d and the distribution of Y is the same
under F; as under F;, we can still reduce the problem to the discrete case, if in
the discrete case we permit the weight W to depend also on a third extraneous
variable G, i.e., if we put W = W(F, G, d), where G is a variable about whose
value the sample does not give any information. The results obtained in the
discrete case can easily be generalized to include the situation where W =
W(F, G, d).

In practical applications the observed value z* of X* will usually be given
only up to a certain number of decimal places and, thus, the problem can be
reduced to the discrete case. Nevertheless, it seems desirable from the theo-
retical point of view to develop the theory of the continuous case, assuming
that the observed value z* of X* is given precisely.

In section 2.3 an alternative definition of a randomized decision rule was given
in terms of two sequences of functions {z(z', - -+ , 2")} and {8s1....r} (r = 1, 2,
-+-,ad.inf.). We used the symbol { to denote a randomized decision rule given
by two such sequences. It was shown in the discrete case that the use of a
randomized decision function » generates a certain ¢ = {(»), and that for any
given ¢ there exists an g such that { = (). Furthermore, because of Condition
2.5, in the discrete case we had r(F, 7;) = r(F, ;) if {(m) = ¢(n:). It would be
possible to develop a similar theory as to the relation between ¢ and 7 also in the
continuous case. However, a somewhat different procedure will be followed for
the sake of simplicity. Instead of the decision functions d(z), we shall regard
the {’ s as the pure strategies of the statistician, i.e., we replace the space Q of
all decision functions d(x) by the space Z of all randomized decisions rules {.
It will then be necessary to consider probability measures 5 defined over an
additive class of subsets of Z. It will be sufficient, as will be seen later, to con-
sider only discrete probability measures 7. A probability measure % is said to be
discrete, if it assigns the probability 1 to some denumerable subset of Z. Any
discrete 5 will clearly generate a certain { = ¢(n). In the next section we shall
formulate some conditions which will imply that 7(F, o) = r(F, n2) if ¢(m) =
$(n2). Thus, it will be possible to restrict ourselves to consideration of pure
strategies ¢ which will cause considerable simplifications.

The definitions of various notions given in the discrete case, such as minimax
solution, Bayes solution, a priori distribution # in @, least favorable a priori dis-
tribution, complete class of decision functions, etc. can immediately be ex-
tended to the continuous case and will, therefore, not be restated here.

3.2 Conditions on @, D, W(F, d) and the cost function. In this section we shall
formulate conditions similar to those given in the discrete case.

Conprrion 3.1.  Each element F of Q is absolutely continuous.

ConvorrioN 3.2. W(F, d) 18 a bounded function of F and d.

ConorrioN 3.3. The space D is compact in the sense of its inirinsic metric

8(dy, dz ; Q) (see equation 2.2).
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This condition is somewhat stronger than the corresponding Condition 2.3.
While it may be possible to weaken this condition, it would make the proofs of
certain theorems considerably more involved.

ConprTiON 3.4. The cost of experimentation c(z', - -+ , ™) does not depend on
¢. It is non-negative and lim ¢(z', - - - , 2™) = oo uniformlyin ', --- ,z™ For
each positive integral value m, c(z', - - - , =) is a bounded function of z*, -+ - , ™.

This condition is stronger than Condltlons 2.4 and 2.5 postulated in the dis-
crete case. The reason for formulating a stronger condition here is that we wish
the relation »(F, m1) = r(F, u2) to be fulfilled whenever {(m) = {(9:) which will
make it possible for us to eliminate the consideration of n’s altogether. Since
the ¢’s are regarded here as the pure strategies of the statistician, it is not clear
what kind of dependence of the cost on { would be consistent with the require-
ment that »(F, m) = r(F, 1) whenever {(m) = ¢(n).

We shall say that F; — F in the ordinary sense, if for any positive integral
value m

limf (@, -o- 2™ | F) dat - da” = j; (@, oo, 2" | F) dat -+ d2”
gm0 J 8y, m
uniformly in S, where S, is a subset of the m-dimensional sample space.
ConprTioN 3.5. The space @ vs separable in the sense of the above convergence
definition.b
No such condition was formulated in the discrete case for the simple reason
that in the discrete case Q is always separable in the sense of the convergence

definition given in (2.76).

3.3. Some lemmas. We shall first give a convergence definition in the space
Z of all §"s which is somewhat different from the one given in the discrete case.
Let h.(z', «*, -+ , 2", D¥) denote the probability that experimentation will be
terminated with the rth observation and that the final decision d selected will
be an element of D*, knowing that the first r observations are equal toz’, - - - , 2,

respectively. That is,
hr(xl y " z ) D*) = zl(xl)@(xl ) x‘Z)
caaat, e, 2T = 2@, - ee, 20)0a1.0r(D¥).

Clearly, the functions k,.(z', - - - , 2", D*) are non-negative and satisfy the follow-
ing conditions:

(3.1)

3.2) 2 h(z', -+ ,2", D*) < 1for any D* and for any sample @, -, 2™,
=]
(33) Z;h'(x17“',x'7D?)=hr(xly"'rxr:D*)r
o

o0
if >, Df = D*and D}, D3, -, etc. are disjoint.
=1
¢ For a definition of a separable space, see F. Hausdorff, Mengenlehre (3rd edition), p. 125.




194 ABRAHAM WALD

One can easily verify that for any sequence of non-negative functions
(b2, -+, 2, D¥)} (r = 1,2, - - -) satisfying (3.2) and (3.3) there exists exactly
one sequence {z(z', --- , )} and one sequence {8,...,r (D*)} such that (3.1)
is fulfilled. Thus, a randomized decision rule { can be given by a sequence
{h.@', - - , z7, D¥)} satisfying (3.2) and (8.3). The functions 2,(z%, - - - , 27) and
621....» need be defined only for samples 27, - - - , z7 for which z;(z!, - -+, 2%) > 0
for ¢ = 1,---,r — 1. The above mentioned uniqueness of z.(z%, ---, z")
and d;...,» was meant to hold if the definition of these functions is restricted
to such samples 2, - - - | z".

For any bounded subset S, of the r-dimensional sample space, let

(3.4) H(S,, D) = [ W@, o, 2, D) dat o o

8y

Let {t:j(¢ = 0, 1, 2,---, ad inf.) be a sequence of decision rules,

and H,:(S,, D*) be the function H,(S,, D¥) corresponding to {;. We shall
say that

(3.5) lim ¢ = &
if
(3.6) lim H, (S, , D* = H,o(S,, D*

for any r, any bounded set S, and for any D* that is an element of a sequence
{Diy,ooty} ki =1, ,r;35=1,---,1;1=1,2, --- , ad inf.) of subsets
of D satisfying the following conditions:

(3°7) Zl Dkl = D Z Dk; kp < Dklkg ki1
Prapes

(3.8) Dkl'"kl-ll y T, Dkl'“kl—l'l are dlSJO]Ilt,
and -
(3.9) the diameter of Dy, ...x, converges to zero as! — o uniformlyin &y, --- , ki

Lemma 3.1. For any sequence {£:}(@ = 1, 2, -+, ad inf.) of decision rules
there exists a subsequence {¢i;} (9 = 1,2, -+, ad inf.) and a decision rule & such
that lim §i; = &o.

Ju=o0

Proor: Let H,:(S,,D*) (r = 1,2, ---, ad inf.) be the sequence of functions
associated with ;. Let, furthermore, {D;fl ;) be a sequence of subsets of D
satisfying the relatlons 3.7), (3.8) and (3. 9) Clearly, for any fixed r and any
fixed element Dkl ..x; of the sequence {Dj....;}, it is possible to find a subse-

quence {i;} (j = 1,2, ---, ad inf.) of the sequence {7} (the subsequence {7;}
may depend on r and Dk, ;) and a set function H., 4(S;) such that
(310) llm Hr,ji(Sr 5 Dkl'"kl) = r,O(Sr)~

=00

Using the well known diagonal procedure, it is therefore possible to find a fixed
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subsequence {i;} (independent of » and D*) and a sequence of set functions
{(H,o(S:, Di...c,)} such that
(3.11) lim H,,:,(S: , Diyoots) = Heo(Sr, Do)

j==00

for all valuesof r, &y, - -+ , kyand L

To complete the proof of Lemma 3.1, it remains to be shown that
there exists a decision rule {, such that the associated function H,(S., D*) is
equal to H,o(S,, D*) for any D* that is an element of {Dj,..r,}. Since
hei(z', - -+, 2", D*) is uniformly bounded, the set function H, (S, , Df,...;) is
absolutely continuous. Hence for any values of k;, « - - , k; there exists a func-
tion heo(z!, - -+, z’, Di,..x;) such that

(3.12) fs heol@ , -+ @, D a)dat -+ da” = Hoo(S,, Df.oy).

The existence of a ¢, with the desired property is proved, if we show that the
functions h, (', -+ -, 2, D,f,...k,) satisfy the relations (3.2) and (3.3). Let
k', -+, 2", D*) = h(a, - -+ , 2", D*) for any m > r. Then, since the func-
tions A, ; satisfy (3.2), we have

(3.13) > H, iSw, D*) < V(Sn)

ra=]
where V(S,) denotes the m-dimensional Lebesgue measure of S,,. From (3.13)
it follows that

(3.14) Zl H,0(Sm; Do) = V(Sw).

Hence, the functions h,o(z', - - - , z", Dg,..x,) must satisfy (3.2) except perhaps
on a set of Lebesgue measure zero. Since the functions h, ;(z', - - - , 2", D*) satisfy
(3.3), we must have

rl ‘
(3.15) H,«8,,D},..4_) = kzl H,.o(S,, D} i)
=

Hence, the same relation must hold also for H, (S, , D,’:l...k,). But this implies
that the functions &, o(z', - -+ , ", D;fl...k,) satisfy (3.3) except perhaps on a set
of Lebesgue measure zero, and the proof of Lemma 3.1 is completed.

Lemma 3.2. Let T«(S) (2 = 0, 1,2, ---) be a non-negative, completely additive
set function defined for all measurable subsets S of the r-dimensional sample space
M,. Assume that

(3.16) T«(8) = V(8)
forall S (i = 0,1,2, -+, ad inf.) where V(8S) denotes the Lebesgue measure of S.
Let, furthermore, g(z', - - - , 2°) be a non-negative function such that

@3.17) f g, -,z dat - da’ < oo,
My
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If
(3.18) ll_m T:(8) = To(S)
then

(3.19) lim g@', -oo, 2 dT; = fM gl@', ---, 27 dT, .

i=0 JM,

Proor: Let M, . be the sphere in M, with center at the origin and radius c.
Clearly,
B2 lm [ g6, ) dt e = f o@, ) det e
Hence, because ;fc (3.16), we have '
(21) lim [[M o@, -, 2) dTs — fM o, -, ) dT.-] 0
uniformly in 7. I'-’Icenge our lemma is proved 'if we show that
(3.22) lim g, -+, 2" dT; = f gx', -+, x") dT

t=w0 JM, . My,o
for any finite ¢. Let ga(z', --+,2") = g@@', --+, «°) when g(z',-+-,2") < A4,
and = 0 otherwise. Since

lim (g—ga)da'---dz” =0

A=w JM, .
it follows from (3.16) that
(3.23) lim (g—gddT:i=0
A= JM,
uniformly in . Hence, our lemma, is proved if we can show that
(3.24) lim [ gadT: = f gs dTs
i=w0 J M, My

for any ¢ > 0 and any A > 0. Let S; denote the set of all points in M, . for
which
(3.25) G—Desga<je
where ¢ is a given positive number. We have
320 (i -Vef avs [ gdrisTie[ ari, G=0,1,2 ).

i 8 My i 8

Since for any e, j can take only a finite number of values, and since ¢ can be
chosen arbitrarily small, our lemma follows easily from (3.18) and (3.26).
Lemma 33. Let {¢1} be a sequence of deciston rules such that lim ¢; = o and

$m=00
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r(F, ¢:) is a bounded function of F and i (¢ = 1). Then
3.27) lim inf 7(F, {:) = 7(F, ¢o)-

=00
Proor: First we shall show that it is sufficient to prove Lemma 3.3 for any
finite space D. For this purpose, assume that Lemma 3.3 is true for any finite
decision space, but there exists a non-finite compact decision space D and a
sequence {{;} such that lim ¢; = { and

{00

(3.28) lim inf 7(F, ;) = r(F, {o) — o for some F(§ > 0).

Since ¢: — ¢o, there exists a sequence {Dy,...r;} of subsets of D satisfying the
conditions (3.7)-(3.9) and such that

(3.29) lim H, (S , Diyots) = Hro(Sr, Diyoots)

where H, (S, D¥) is the function H, associated with {;(? = 0,1,2, --- ). Let
\ be a fixed value of ! and consider the corresponding finite sequence {Dx,...x,}
of subsets of D. Let &k be the number of elements in this finite sequence. We
select one point from each element of the finite sequence {D,..:,}. Let the
points selected be dy , ds , - - - , dx and let D denote the set consisting of the points
di,---, di. Let § be the decision rule defined as follows: the function
h(z, - - - , &, d;) associated with §; is equal to k. i(z!, -+ - , 2, DY) where Dj is
equal to the element of the finite sequence {Dy,...} which contains the point
d;(j = 1,---, k). Clearly, because of (3.29),

(3.30) lim§ = §.

Furthermore, for sufficiently large X we obviously have
(3.31) | r(F, &) — r(F,§:)| < efori =0,1,2, -+, ad inf.
Since for finite D our lemma is assumed to be true, we have

(3.32) lim inf r(F, §:) = r(F, §).

{m=o0

Choosing ¢ < g, we obtain a contradiction from (3.28), (3.31) and (3.32). Thus,

it is sufficient to prove Lemma 3.3 for finite D. In the remainder of the proof
we shall assume that D consists of the pointsdy, -+, di.

The probability that we shall take exactly m observations when {; is used and
F is true is given by

prob. {n = m | F, ¢:}

(3.33
) = fu pm(xl’ ceey, ™ l F)hm,i(xl, cee, xm, D)dxl, e dg™
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where M ,, denotes the m-dimensional sample space. Since
lim Hm,i(Sm ) D) = Hm,O(Sm ] D)7

=00

it follows from Lemma 3.2 that

(3.34) lim prob {n = m | F, {;} = prob {n = m | F, &}.

Hence

(3.35) lim prob {n < m | F, {;} = prob {n < m|F, }.
Since r(F, {:) is a bounded function of F and ¢ (z = 1), we must have

(3.36) “limprob {n E m|F, &} =1 (t=1,2---)

uniformly in F and 2. From (3.35) and (3.36) it follows that

3.37) limprob {n = m|F, &} =1

uniformly in F. Because of (3.36) and (3.37), we have

[

(3.38) rF,¢) =2 ma(F, ) (G=0,1,2, ---,adinf),

m=1

where

k
rolF, §) = 2 fM pu(@, o+, & | FYW(E, di) dHp (S, di)
(3.39) "
+ f pm(at, +oo , 2™ | Fe(a, +++ , ™) dHm,i(Sm, D).
Mn

Since
lim Hp,i(Sm , D*) = Hpno(Sm, D¥)

{m=c0

for any subset D* of D, it follows from Lemma 3.2 that
(3.40) hm Tm(Fy $3) = rn(F, $0).

Lemma 3.3 is an immediate consequence of (3.38) and (3.40).

3.4. Equality of Sup Inf r and Inf Sup r, and other theorems. In this section
we shall prove the main theorems for the continuous case, using the lemmas de-
rived in the preceding section.

TaeoreMm 3.1. If Conditions 3.1-3.5 are fulfilled, then

(3.41) Slelp I?f r¢§) = I?f Slzlp r& ).

Proor: Let Z™ denote the class of all {’s for which prob {n = m|¢, F} =1
for all F. We shall denote an element of Z™ by ™. First we shall show that it
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is sufficient if for any finite m we can prove Theorem 3.1 under the restriction
that { must be an element of Z™. For this purpose, put W, = Sup W(F, d)
Fid

and choose a positive integer m. so that
wi

€

(3.42) c@, -, 2™ >

for all m = m.. The existence of such a value m. follows from Condition 3.4.
We shall now show that for any ¢ we have

(3.43) I‘nf r(g ™) = Ix;f r(£ ¢) + efor any m = m..

Let {1 be any decision rule. There are two cases to be considered: (a) prob

fn=mel& ol = I;—,—; (b) prob {n = m| & &1} < We—- In case (a) we have
0 (]

r(¢, §1) = Wo. In this case, let {3 be the rule that we decide for some & without

taking any observations. Clearly, we shall have r(¢, {») < W, and, therefore,

(& £2) < 7§ ). In case (b), let {3 be defined as follows: k,(z', - -+ , 2", D¥)

for {2 is the same as that for {3 when r < m,, and h,(z", - - - , 27, do) for {» is equal

tol — 21 h(z', -+ , 2", D) when r = m,, and zero when r > m, where d, is a

fixed element of D. Since prob {n = m.| £ H} < i, we have
0

rE ) SrEa) +e

In both cases {: is an element of Z™.. Hence (3.43) is proved. From (3.43) we
obtain

(3.44) Sup Inf 7 < Sup Inf r < Sup Inf r + e
4 ¢ §  (me 4 ¢
Assume now that
(3.45) Sup Inf r = Inf Sup r
£ [
holds for any m. From (3.44) and (3.45) we obtain
(3.46) lEnf Slelp r = Slélp I;Jf r+ e
Hence
(3.47) Inf Seup r= SIEAp Infr + e
t ¢

Since this is true for any ¢, we have

(3.48) Inf Sup r = Sup Inf r.
¢ &t

Theorem 3.1 follows from (3.48) and Lemma 1.3.
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To complete the proof of Theorem 3.1, it remains to be shown that (3.45)
holds for any m. Since D is compact, (3.45) is proved if we can prove it for any
finite D. In the remainder of the proof we shall, therefore assume that D con-
sists of k pointsdy , - - ,dr . Let w be a subset of Q that is conditionally compact
in the sense of the metric’

[ ar— [ ar,
Sm Sm

where S, is a subset of the m-dimensional sample space. We shall show that
is conditionally compact also in the sense of the intrinsic metric given by

(3.49) 8(F1, F3) = Sup
Sm

(3.50) 51(F1,F2)=S‘}5lp|7'(F1,§'m)“7'(F2;§'m)|~
Let

(3.51) 82(Fy, F3) = Sgp | W(Fy,d) — W(Fs,d) |

and

(3.52) 83(F1, F2) = 8(F1, Fa) + 8:(F1, Fe).

It follows from Condition 3.3 and Theorem 3.1 in [3] that ©, and therefore
also w, is conditionally compact in the sense of the metric &(F1, F3). Hence w
is conditionally compact in the sense of the metric 83(F1, F2). The conditional
compactness of w relative to the metric 6(F1 , F) is proved, if we can show that
any sequence {F:} that is a Cauchy sequence relative to the metric d; is a Cauchy
sequence also relative to the metric 8. Let {F;} (¢ = 1,2,---, ad inf.) be a
Cauchy sequence relative to 8. Then there exists a distribution Fy (not neces-
sarily an element of Q) and a function W(d) such that

(3.53) lim W(F;, d) = W(d) uniformly in d
and
(3.54) lim | dF; = dF,

fmmo0 VS, Sm

uniformly in S,. We have

W= [

r=a] je=1

(3.55) (@, -, & | FYW(F:, dhe(a, - -+, &7, d;) da’ -+« da’

+ Zf ¢ (@, -, aNp@, -, 2" |[FOR(, -, &, D) da' - de,
rm] J M,

7Byf dF we meanf Pm(zt, -+ ,2™| F)dzt - - dz™.
Sm 8m
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where M, denotes the r-dimensional sample space. The sequence {F:} is a
Cauchy sequence relative to the metric 8, if there exists a function (™) such that
(3.56) lim r(Fs, ¢") = r(§™)

uniformly in ™. Let #(F;, ¢™) be the function we obtain from r(F;, {™) by
replacing the factor W(F;, d;) by W(d;) under the first integral on the right
hand side of (3.55). Because of (3.53), we have
(3.57) im [r(F, ™) — 7#(F:i, §™)] =0
uniformly in ¢™. Thus, (3.56) is proved if we can show the existence of a func-
tion 7#(¢™) such that
(3.58) lim #(Fy, ™) = #¢™)
uniformly in ™. Let C be a class of functions o', - -+, ™) such that

@, -+ ,2™) | <A < » forallpin C.

It then follows from (3.54) that there exists a functional g(¢) such that

(3.59) lim K dF; = g(o)
uniformly in ¢. Application of this general result yields (3.58)immediately.
Hence, {F;} is a Cauchy sequence relative to the metric 8, and, therefore v is
shown to be conditionally compact relative to the metric §, if it is relative to
the metric & .

It then follows from Theorem 3.2 in [3] that S;lp Ignf r= I{gf S?p rif we replace

Q by a subset » that is conditionally compact relative to S Since Q is separable
relative to & , there exists a sequence {Q:} of subsets of @ such that Q; is condi-
tionally compact relative to & , Q41 D @ and > = Q*isdense in Q. Let

£ denote an a priori distribution £ for which £(2;) = 1. Since the left and right
hand members in (3.45) remain unchanged when @ is replaced by ¥, it follows
from Theorem 1.3 that equation (3.45) is proved if we can show that
(3.60) lim Inf Sup r = Inf Sup .

&

jmo0 M g m
Let {¢7}(G = 1,2, - - - , ad inf.) be a sequence of decision rules such that
(3.61) lim [Seqp (&, &7 — Iipf S;lp r] = 0.

$=00

8 Strictly, we would have to write Inf instead of I{nf where 5™ is a probability measure in
m m

7
the space of all {™. But, since the use of any discrete probability measure is equivalent to

the use of a {™, and since the restriction to discrete »™ does not change Slslp Iaf ror Il’lnf Sl€1p r
] 7

we can replace Inf by I;:\f.
,,m m
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According to Lemmas 3.1 and 3.3, there exists a subsequence {¢;} of {7} and
a decision rule {7 such that
(3.62) lim inf #(F, ¢5)) = r(F, ¢0) for all F.

j=00
Since @* is dense in , it follows from (3.61) and (3.62) that
(3.63) Sup 7(F, o) < lim Inf Sup r
F i=0 fm  ii

and, therefore, 3.60 holds. Thus, (3.45) is proved and the proof of Theorem:

3.1 is completed.
Taeorem 3.2. If Conditions 3.1-3.5 are fulfilled, then there exists a minimax
solution, i.e., a decision rule {o for which

(3.64) Sup r(F, &) = Sup r(F, ¢) for all ¢.
F F

Proor: Because of Theorem 3.1 there exists a sequence {{:} 1 =1,2, .- ,ad
inf.) of decision rules such that
(3.65) lim Sup 7(F, ¢;) = Inf Sup r(F, {).
{=00 F I F
According to Lemmas 3.1 and 3.3 there exists a subsequence {{;;} of {¢:} and a.
decision rule ¢, such that
3.66 lim inf »(F, {i;) 2 r(F, o) for all F.
71==00
It follows from (3.65) and (3.66) that ¢, is a minimax solution and Theorem:
3.2 is proved.
TreoreM 3.3. If Conditions 3.1-3.5 are fulfilled, then for any £ there exists a
Bayes solution relative to &.
This theorem is an immediate consequence of Lemmas 3.1 and 3.3.
TaEOREM 3.4. If Conditions 3.1-3.5 are fulfilled, then the class of all Bayes
solutions in the wide sense is a complete class.
The proof is omitted, since it is entirely analogous to that of Theorem 2.5.
3.5. Formulation of an additional condition. In this section we shall formulate
an additional condition which will permit the derivation of some stronger
theorems. Let the metric §o(Fy , F2) be defined by
- 1
50(F1,F2) = Z—éSup|f dF;l —'[ szI
m=1 M Sm Sm Sm
where S, may be any subset of the m-dimensional sample space.
CoNprTION 3.6. The space @ is compact relative to the metric do(Fy, Fs)

lim W(F;,d) = W(Fo,d)
uniformly in d if lim 6(Fs , Fo) = 0.
TrroreM 3.5. If Conditions 3.1-3.6 hold, then



STATISTICAL DECISION FUNCTIONS 203

(i) there exists a least favorable a priori distribution
(ii) any minimax solution is a Bayes solution in the strict sense

(iii) for any decision rule {o which is not a Bayes solution in the strict sense and
Jor which r(F, o) is a bounded function of F there exists a decision rule ¢, which is a
Bayes solution in the strict sense and 1s uniformly better than ¢ .

Proor: The proofs of (i) and (ii) are entirely analogous to those of (i) and (ii)
in Theorem 2.6, and will therefore be omitted here.

To prove (iii), let ¢, be a decision rule that is not a Bayes solution in the strict
sense and for which r(F, o) is bounded. We replace the weight function W (F, d)
by W*(F,d) = W(F,d) — r(F, t). We shall show that (i) remains valid when
W(F, d) is replaced by W*(F, d). This is not obvious, since r(F, ), and there-
fore also W*(F, d) may not be continuous in F. First we shall prove that
(3.67) lim inf (&, §0) Z 7(&, $0)

for any sequence {£;} for which
lim £{(w) = &()

for any open subset w of © (in the sense of the metric §) whose boundary has
probability measure zero according to £ . Let ra(F, ) denote the conditional
expected value of the loss W(F, d) plus the cost of experimentation when n = m,
F is true and the rule { is used by the statistician (see equation (3.39)). Since
W(F, d) and the cost of experimentation when m observations are taken are
uniformly bounded, one can easily verify that

(3.68) lim 7m(F: , o) = rm(Fo, $0)
for any sequence {F;} for which

{(3.69) lim 8(F; , Fo) = 0.
Hence, since © is compact (Condition 3.6),

(3-70) hm rm(&{ ’ {0) = rm(El; ) .(0)
where

@3.71) ralty $5) = [ 1l 50)de.
Since

r@m=gm@m

inequality (3.67) follows from (3.70).
The remainder of the proof of (iii) will be omitted here, since it is the same
as that of (iii) in Theorem 2.6.
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We shall now replace Condition 3.6 by the following weaker one.

ConprtioN 3.6*. There exists a sequence {&} (¢ = 1,2, -+, ad inf.) of sub-
sets of @ such that Condition 3.6 s fulfilled when Q is replaced by Q; , Qi1 D Q; and
lim Q; = Q.

TareoreM 3.6. If Conditions 3.1-3.5 and 3.6* are fulfilled then
(i) A minimazx solution ¢, and a sequence {¢:} (0 = 1, 2, -+, ad inf.) exist
such that lim ¢ = foand 5 (5 = 1,2, -+ -, ad inf.) is a Bayes solution in the strict

$=00
sense.

(ii) For any decision rule & for which r(F, $) ts bounded there exists another
decision rule &1 such that ¢1 1s a limit of a sequence of Bayes solutions in the strict
sense and r(F, t1) = r(F, &) for oll F in Q.

ProoF: According to Theorem 3.5, for each ¢ there exists a decision rule
¢ @ =1,2, -+, ad inf.) such that {; is a minimax solution and a Bayes solution
in the strict sense when Q is replaced by ;. Let {{i;} be a subsequence of the
sequence {{:} such that {{;;} admits a limit {o, i.e., lim {i; = . Because of

jmo

Lemma 3.3,
3.72) lim inf 7(F, ¢3;) 2 r(F, $o).
J=00

Hence ¢§, is a minimax solution relative to the original space @ and statement.
(i) is proved.

To prove (ii), replace W(F, d) by W*(F, d) = W(F, d) — r(F, {) where {
is a decision rule for which r(F, §) is bounded. In proving statement (iii) of
Theorem 3.5, we have shown that there exists a decision rule {H:(2 = 1,2, -+,
ad inf.) such that {1; is a minimax solution and a Bayes solution in the strict sense
when Q is replaced by @; and W(F, d) by W*(F, d). Clearly, {1; remains to be a
Bayes solution in the strict sense also relative to @ and W(F, d). Since ¢1sis a
minimax solution relative to Q; and W*(F, d), we have

3.73) r(F, t1:) S r(F, &) for all F in Q5.
Let {{1:;} be a convergent subsequence of {{1;} and let lim ¢1;; = {1 Then,
je=o0

because of Lemma 3.3, we have
r(F, &1) < r(F, &) for all F in Q.

Since {3 is a limit of a sequence of Bayes solutions in the strict sense, statement
(ii) is proved.

Addition at proof reading. After this paper was sent to the printer the author
found that Q is always separable (in the sense of the convergence definition in
Condition 3.5) and, therefore, Condition 3.5 is unnecessary. A proof of the
separability of @ will appear in a forthcoming publication of the author.

The boundedness of (¥, ¢;) is not necessary for the validity of Lemma 3.3.
Let lim §; = ¢o and suppose that for some F, say Fo, r(Fo, ¢:) is not bounded

{m=00

in ¢. If lim inf r(Fo, {:) = «, Lemma 3.3 obviously holds for F = Fo. If
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lil'rl'fipf r(Fo, £:) = g < o, let {4;] be a subsequence of {i} such that
lim r(Fo, ¢5) = g. Since r(Fo, §i) is a bounded function of j, Lemma 3.3 is
Jmmo0

applicable and we obtain ¢ = »(Fy, ). In a similar way, one can see that also
Lemma 2.4 remains valid without assuming the boundedness of »(F, ).

Although not stated explicitly, several functions considered in this paper are
assumed to be measurable with respect to certain additive classes of subsets.
Ingthe continuous case, for example, the precise measurability assumptions may
be stated as follows: Let B be the class of all Borel subsets of the infinite di-
mensional sample space M. Let H be the smallest additive class of subsets of
Q which contains any subset of @ which is open in the sense of at least one of
the convergence definitions considered in this paper. Let 7 be the smallest
additive class of subsets of D which contains all open subsets of D (in the sense
of the metric 8(dy, d», ©@)). By the symbolic product H X T we mean the
smallest additive class of subsets of the Cartesian product @ X D which con-
tains the Cartesian product of any member of H by any member of T. The
symbolic product H X B is similarly defined. It is assumed that: (1) W(F, d)
is measurable (H X T); (2) pn (%, ---, 2™ | F) is measurable (B X H); (3)
8z1....r(D¥) is measurable (B) for any member D* of T; (4) z.(z!, ---, z7) and
c.(x!, - -+, z7) are measurable (B). These assumptions are sufficient to insure
the measurability (H) of r(F, ¢) for any ¢.
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