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1. Introduction and summary. It is well known that the:zero-order correlation
between the predicted value of a variable and the observed value of the variable
is the multiple correlation. It is also well known that the zero-order correlation
between the residuals for two different variables, when the prediction is from a
common set of variables, is the partial correlation. These considerations naturally
lead to a systematic investigation of all the zero-order correlations involving
the various variables associated with least squares theory. Such an investigation
is the purpose of this paper.

As a result of this study it appears that other zero-order correlations include
the multiple alienation coefficient, the part correlation coefficient, and certain
other coefficients which, as far as I am aware, have not been previously defined.

The paper first examines the case of a single predicted variable and then
continues with the case in which two or more variables are predicted simultane-
ously. The paper includes (1) a theoretical development of the different coeffi-
cients and the relations between them, (2) the expression of the formulas in
determinantal form, (3) a matrix presentation of the material, and (4) an outline
of the calculational techniques—with illustrations.

It should be made clear at the start that this paper deals with populations
(finite or infinite) and not with samples from those populations. The sampling
distribution of each of the new correlation coefficients defined in this paper
might well become the subject of a later investigation, but first we need to
know what these correlation coefficients are.

2. The case of the single predicted variable. Notation, definitions, and basic
properties. We suppose that a population consists of N individuals with values

Xijy Xoj, o+, Xij, Y for the variables X;, Xz, -+-, Xz, Y and that ¥ is
linearly predicted from the X; by the formula
1) E=Y——a—aXi—wXy— - —aXy =Y —-Y

by least squares theory. For the purposes of this paper, we use a concise summa-
N

tion notation, 2@, in place of the more formal serial notation E Q. which is

i=1

b
preferable to the frequency notation Z Q:f. and, in the continuous case,

b z=q
f Q.f.dx Moreover it is desirable that the scales of X and Y be chosen so as
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to facilitate the casy determination of the various formulas. If we let

(2) Y,- - 7 X,'j - )—(}'
Yi = \/]_\70',, H Ty = \/N%;
we have =z} = Zy* = 1 with the resulting correlating formula
2Ty
3 iy = g = 24y and  pge; = Zrix;.
( ) Pziy (Ex?)(zyg) Y p 1

The transformations (2) when applied to (1) give

E
(4) e=\—/ﬁa—y=y—(61x1+6m+-~+kak)=y-y

E
where the 8’s are standard regression coefficients and e is defined to be VNor'
Y

It is to be noted that the values of z, y, e, and y are all dimensionless.
The values we wish to correlate are those of X, Y, E, Y of (1). The zero-order
correlations involving these are the same as for z;, y, e, y of (4).

3. Correlations with a single predicted variable. We wish to minimize
=¢’. Differentiating with respect to 8; and equating to zero we get

5) Sex; = 0

from which by multiplication by 8; and summation for ¢,
(6) Zey = 0.

It follows that

(7) Z¢ =Zely—y) =2y =2@y—yly =2y — Zyy = 1 — Zyy
=1—Z(+yy=1- =y
Using (4) and (7), we get

3 2 2
3e = “E2 =2 -1 -3y
N(Ty gy
so that
2 2
Oy — O
8) oy =22 1,
gy

This is the conventional definition (from least squares theory) of the multiple
correlation coefficient, so

9) Prazya = Py = 2y = Zyy.
Application of (9) to (7) gives

2 2 2 2
(10) Ze' =1 — py@) = ky@) = Kyizgay v 21
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where k() is the multiple alienation coefficient. We now have 2z} = 1, 2y° = 1,
¢ = k@, and Eyz = pac), SO that we are able to present formulas involving
zi, ¥, 6, y. We first form the cross products

(11) Exy = Pzy,
(12) Zre = 0,
(13) Zzy = Zx(y + e) = Zay = puy,
(14) ~  ye=Yy -y =2 -y =1- 3 = G,
(15) Zyy = 2y = oy
(16) Zey = 0.
We then have
2x;x;
(17) pr‘zj = '—'—'—._______..—7“— = zxix..
V(223 (22)) !
Zz:y
18 iy = e s = Exi s
s S V) T
2xe
(19) Pze = \/(—2‘;2)—(2?5 = 0:
z z 2
(20) Y 2% _ Pw

T VEDEPH e e

It is interesting to note that this is unity in case & = 1 for then p.;, = py). Other-
wise the absolute value of p,, is larger than that of p.,. For this reason this
coefficient might be called the multiple augmented correlation coefficient.

Zey K3 ()
P T NEAHEH T kw | U

Thus the correlation between y and its residual is the multiple alienation coeffi-
cient.

(21)

(22) Pyy = —.(TZ;ZI)Q(EZ;;) = \/2_2_/2 = Py(a) -
Thus, as is well known, the zero-order correlation between observed and pre-
dicted y is the multiple correlation.
_ Y
T VEAEY

4. Notation for the general case. We need to extend the notation and the
definitions before examining explicit formulas for the more general case of two
(or more) predicted variables. Suppose that Y, and Y; are the two variables

(23)
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predicted from the same X’s. Then from (4) we write

E;
€ = V/Nov, =Y — Ba®i — Baks — ++° — Pua%r = Yi — Yi

(24) B,
€ = \_/—_N’—ayi =Y — B — Bpp®y — 0 — Buli = Yj — Yj-

We then have the two sets of normal equations

(25) Zex =0 Zex =0
so that

Zeqy:i =0 Zeyi =0
(26) )

Zey; =0  Zey; = 0.
It follows that
Zeie; = Zeily; — ¥i) = Zew; = (i — y)y; = Zyy; — Zyy;
= Zyy; — ZyY; = ZyY; — ZYY; = pij — ZYyY;

if we use the notation that p;; = py,y;.

@7)

6. The correlations involving more than one predicted variable. In this case
the y’s, the ¢’s and the y’s (as well as the z’s) can have more than one variable
so that the correlation coefficients we need, in addition to those of section 3, are
Puivjs Peiess Puiujs Puiejs Pujeis Puijs Puivjs Peiujy and pye;. We need now only the
summed products

ZYYi = Pyiy; = Pijy

(28) . .
Zee; = pij — ZYY; as given in (27),
(29) Zye; = Zyy; — ¥i) = Zyyi — Zyyi = pi; — Sy,
(30) 2yiyi = ZYYi
(31) Ee.'g_/j = 0.
We have then
ZYi Y
(32) Pi = e = 2YiY;
T V(S Ey) "
Seie; i — Yy
(33) Pese; 25 P___—_y Yidi .

T VEDED | ke
This is the partial correlation coefficient.

(34) iy = WY Pl
UV EDHEY  pierie)
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This coefficient appears to be new. Since it is the correlation of predicted values,
I'suggest that it be called the predictions correlation coefficient.

2y1 el Py — Eyzy;
35 . i _ Py T A
o P T V() (D Kico

Ze:Yj pii — ZYiYi
36 eiy; = e = —————
9 Pesvi \/(263)(2?/?‘) Ki(z)

The correlations given by (35) and (36) have been defined previously and are
known as part correlation coefficients [1; 213,497].

37 Pyivi = 2YiYi — 2Y:Yi
TN EDED)  ee
2YiYi _ 2Y:Y;

(38) Puiy; = /__—_(ny) (ny) = i@ .

The correlations of (37) and (38) appear to be new. Each is, in a sense, a generali-
zation of the multiple correlation coefficient since it becomes the multiple cor-
relation coefficient when ¢ = j. I suggest that it might be called the cross multiple
correlation coefficient, since it correlates the actual value of one variable with
the predicted value of another.

Ze;y;
Pt T NV EDEY
(39) Zune,
Ji6 _
Pusei =/ EyH ()

A summary of definitions and names of Pearsonian correlation coefficients asso-
ciated with least squares theory is presented in Table I. No name is proposed
when the coefficient is identically zero.

6. Relations between the correlations. Many relations exist between the
correlations defined in earlier sections. Some of the more interesting of these
are obtained by the elimination of Zyy; from formulas involving this term.Thus
from (34), (37), and (38) we get

ZYYi = PuiviPi@Pi@) = PuiviPi@ = PuiyiPia)s
and from (33), (35), and (36) we get

Pij — ZYiY; = PeieKi@Kix) = PyieKi) = Pesy;Kita)-

We then have

Pij = Puiv; Pi(z) Pi(z) Peie; Kiz) Ki(2)
(40) Pij = Pyiv; Pi(m) = Pyie; Ki)

Pii = Puivj Pi(x) Pesy; Kiz)

where the six members may be equated in all possible ways.
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Interesting and simple relations can also be obtained by formation of ratios.

Thus
Pose; _ 1.
ay Pres 19 so Paits i
Peye; _ 1 Peiyi  Ki(z)
Peiyj Kj(z)
TABLE 1
Definition Name
Single predicted variable
Pziz; Correlation coefficient of zero order
Py Correlation coefficient of zero order
pze = 0 None
Pzy = Py *Multiple augmented correlation coefficient
Pyz
Pye = Ky@) Multiple alienation coefficient
vy = Py Multiple correlation coefficient
pey =0 None
Two or more predicted variables
Pyiv; Correlation coefficient of zero order
Peies Partial correlation coefficient
Puiv; *Predictions correlation coefficient
Py e Part correlation coefficient
Puiv; *Cross multiple correlation coefficient
Peiu; None

* Proposed name

Similarly

(42)

Puiy; _ Pi@

Pyiv; Piz)

The geometric mean of similar coefficients yields such expressions as

(43)

—
V Pyiej Peiy; =

\/Pw vi Puiy; =

Pejej \/Ki(x) Kj(z)

Pusv; Vpis) Piy

7. Determinantal formulas. The implicit normal equations (5) become when
expanded

(44)

puPr + p1Be + - + puBr = py

paB1 + pafs + -+ + pubr

I

PPy + profa -

— puf
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while Zyy = =y = p;(,) becomes

(45) puBr + pusBe + <+ + o = iy

Let A be the determinant of the matrix of the solution of the & z’s and y. Let A’
be the corresponding determinant with p,, replaced by pi). Let A,, be the
determinant of the correlation matrix of the & z’s. Then pp,y = 2y’ = Zyy can
be expressed as a function of A and A,,. If (44) and (45) are to hold simultane-
ously, then A” = 0. Expanding A’ in terms of the bottom row, we get

(46) A =0 = prmyly + “terms”.
Similarly
47 A = puAy, + “terms”

where the ”terms‘ of (46) and (47) are identical. It follows by subtraction that
A = (1 — ppry) A,y and hence that

(48) Syy = 2y = pjy = 1 — 4.
By
Then
(49) 2e2=zey=xz(,,=1-zy2=1_(1_i>=_4_,
4 - Aw
Correlation formulas of section 3 then appear as
Pz
(50) Pzy = S A’
1 =2
AIHI

(51) Pey = /‘/A%I:
(52) o = 4/1 —ZA—

In a similar way the normal equations (25) become two sets of normal equations.
The first set is like (44) with B, replaced by B, and pys replaced by py,.. The
second set is similar with ¢ replaced by j. It is desired to find

(53) Zyy; = Zyyi = puBi + pyjabe + v+ + oy

Now using (53) with (51) as applied to y; and using the technique of the first
part of this section, we get

(54) Au.'uy = Puwauw.'-viv,- + “termsn,
(55) 0 = Zyyidyw; vju; + “terms”,

where A is the determinant of the matrix of the correlations of the k z’s, ¥; and
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Yi; Ay, is the determinant obtained by deleting the column involving correla-
tions of y; and the row involving correlations of y:; Ay.y;.4;; is the determinant
of the matrix of the k& z’s; and the “terms” in (54) and (55) are identical. It
follows that

Ayiys
(56) Zyiyi = pi — A———”'l'—

YiYi-Yivi
and thence

Ay.y:
(67) pi — ZyYiy = —r—

YiYi YV

The formulas of section (5) then appear in determinant form as follows

Ay
A;i.,',' Aii
(58) Peie; = 1/( Ai; ) ( A ) VI
Aiiji ) \Djji
as is well known.
Ay
Pij Aii.ﬁ
(59) Puiv; = : Aus A\
V(-0 55)
Aiigi Qji.is
Bii g
(60) Pyiei = T .
viej /‘/ A.’,‘
Aiig
A,‘j
P Aug
(61)

Pysu; = /‘/_“—ZA :
11
Aii.jj

Formulas for p.,y; and py,y; are similar to (60) and (61).
Modern methods of calculating determinants (2), (3), (4), (5) are advised if
calculations are to be made from those formulas.

8. Matrix formulas. A matrix presentation is very useful in exhibiting the
general features of this theory and in developing compact and easy methods
of calculation with finite populations. The matrix presentation here is similar
to that given by the author in a previous article [6].

Let the normal equations (24) be represented by the matrix equation.

(62) E=Y-XB=Y-Y.
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Then the sets of normal equations become

XE=0 or X(Y —XB)=0
so that
(63) X'XB = X'Y.

Now since XB = Y, (63) can be written as X'Y = X'Y and it can be shown
that

64) Y'Y = Y'Y = Y'Y

But under the assumptions of section 2, X’X is the matrix of the intercorrela-
tions of the X'’s, X'Y is the matrix of the intercorrelations of the z’s and y’s
and Y'Y is the matrix of the intercorrelations of the y’s. Hence (63) can be
written

(65) RusB = Ray
so that
(66) B = R;:]Rzy-

If Y is composed of a single variable, B is a single column matrix (vector)
but if ¥ is composed of m variables, B is an m column matrix. It follows at
once that

(67) Y'Y = Y'Y = BX'XB = BR,,B = RyR72R..R7 Roy = RLR7 Rz
and that
EE= (Y —XBYE=YE=Y (Y —XB) =YY - Y'Y

= Y'Y — Y'Y = Ry — Ri,R:Ray.

It thus appears that the matrix (67) has diagonal terms 292 = Zyy which are
the squares of the multiple correlation coefficients, and that the non-diagonal
terms are Tygy; = Zyy;. Similarly the matrix (68) has diagonal terms s =
Koy and non-diagonal terms Zee; = Zeg;. It follows that all the correlation
coefficients defined above may be calculated from the matrices R.., R.y, Ry,
Y'Y, and E'E. The matrix (67) might be called the multiple correlation matriz
and the matrix (68) the multiple alienation matriz.

Conventional results are expressed in terms of the correlation matrices R..,
R.,, and R,,. All the correlation coefficients defined in this paper may be ex-
pressed in terms of these matrices and the multiple correlation and alienation
matrices.

(68)

9. Calculational method of determining the multiple correlation and multiple
alienation matrices. Various methods might be used in calculating the multiple
correlation and alienation matrices from the correlation matrices. One method
utilizes the square root method of solving simultaneous equations, which has
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recently been presented in a number of places, [7] [8] together with a device
which is similar to that used by Aitken [9] in eliminating the back solution. This
method solves the equation (65) by forming the auxiliary

(69) 8:2B = SRz Ry
where S, is a triangular matrix such that
(7w R.: — 8:8e = 0.
TABLE II
General Illustration
Ry 1.000 | .495

1.000 | .652 | .554 | .615 | .313 | .650

— 1.000 | .747 | .693 | .280 | .803
R.. Ry — — | 1.000 | .774 ] .182} .804
— —_ — | 1.000] .166 | .812

1.000 | .652 | .554 | .615| .313| .650
758 | .509 | .385 | .100 | .500
Szz SeeR7z Rey .659 | .360 | .064 | .287
.586 | .072 | .199

A17 | 221
'y — | .794
.883 | .274
E'E — .206

The right hand side of (69), when premultiplied by its transpose yields
(71)  (SecReiRey)' (Se:Rii Rey) = RiyRzS8u08ucRzRay = RoyRezRoy = Y'Y

Speaking less technically it is only necessary to multiply the columns of
SR Reytoget Y'Y,

A first illustration utilizes the correlations of the Carver anthropometric
data [10] for 1000 University of Michigan freshmen. This group may be regarded
as constituting a population, or it may be regarded as a random sample of a
larger population. For present purposes we regard it as a population. Height
(Y1) and weight (V) are estimated from shoulder girth (X)) chest girth (X3),
waist girth (X3), and right thigh girth (X,). The calculation of Y'Y and E'E
from the correlation matrices follow.
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As a second illustration I use the correlation between the parts of two forms
of the Thorndike Intelligence Examination which Lorge has used in illustration
canonical correlation technique [11, 69-74]. The X’s are the scores on the three
parts of Form!A and the ¥’s are the scores on the three parts of Form B. In
this case we designate the results by »’s and k’s (rather than p’s and «’s) since
the calculation is considered to be for a sample. The calculation of the sample
multiple correlation and'multiple alienation matrices is presented in Table III.

TABLE III
Form A Form B

X1 X2 X3 1 Y2 Y3

1.0000 | .8235 | .7912
— | 1.0000 | .8315 | R,,
— — | 1.0000

1.0000{ .7830| .7852| .8986 | .7841 .8217
R.. — | 1.0000{ .8393| .7961 .8543 | .8254 | R,,
— — | 1.0000{ .7683 | .8226 | .8588

1.0000| .7830| .7852| .8986 | .7841 | .8217
Sz .6220| .3609| .1487 | .3864 | .2926 | S..Ri.R.,
.5032| .0180 | .1341 | .2146

.8299 | .7645 | .7858
— .7821 7861 | Y'Y
— — .8069

.1701 .0590 | .0054
— .2179 .0454 | E'E
— — .1991

10. The numerical values of the coefficients. The diagonal entues of the
multiple correlation matrix give the values of Zy, = Zyy: = Py while the
non-diagonal values are Ey.y, = Ey,g, The diagonal entries of the multiple
alienation matrix are Ze} = Zeq; = Ky while the non-diagonal entries are
Zeie; = Zey; = Zy.e;. We are then able to write out any of the correlations
easily. Thus from Table IT

P = VI = V117 = 342,
P = VZyi = /794 = 891,
K@ = VZed = /883 = .940,
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ke = VZe2 = /206 = 454,
_ Zei e _ 274 — 643
@ = /Ze)(Zed)  V(883)(206)
PYLYe = 2:1_/1:1_/2 _ —.2._2_1__ = 724
1Y2 = e EECAYA YL y
“eE UG | VIT(794)
Zeer 274
pPy1€2 = ‘\/27% = '\/,2—06 = .604,
_ Zee: _ .27i — 201
Puer = \/Zet ~ /883 TV
Eyl:l_jz .221_ _
Pyive = \/E—'y% = ,\/m = '248:
E:l_/lyz 221 _
Puwz - \/;2——1_/,2 - \/T‘r‘? = .646.
TABLE IVa
General Tllustration
rlll V2 rﬂl v3 . 9489 . 9603
prm) Fuws | Towe | Tuws | Tvrus .9110| .8392]| .8644| .8626 | .8747
=y Syiye s .8299 .7645 .7858
Ty .9917
Taz) Tugs | Tvaus .8844 .8889 | .8751
>y Zyys 7821 .7861
73(z) .8983
Sy .8069
TABLE IVb
General Illustration
T oy ¢4 Teyes .3066 .0298
k1) Pews | Tores | Tews | Twes | -4124| .1431].1264) .0131].0123
Sel Seies Ze,e, .1701 .0590 .0054
Teges .2214
kaa) Tows | Tuses .4668 | .0973| .1033
Zes Seqes .2179 .0454
k32 .4394
Ses .1931
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It is possible to utilize a scheme of successive division if all these correlations
are desired when there are more than two predicted variables. By divisions we
compute in turn pie), pyy;» Pyiv; and py;y; from the multiple correlation matrix
and Ki) Peiyjy Pyicjy Pese; from the multiple alienation matrix for each ¢, j. The
computational scheme is illustrated in Table IV where the correlations used
are the sample correlations of Table III. The calculations from the multiple
correlation matrix are presented in Table IVa and those from the multiple
alienation matrix in Table IVb.

In Table IVa the multiple correlation matrix is first entered on the third of
each three lines. The square root of each diagonal term is then extracted to give
the multiple correlation coefficients. The value of 7., is then locked in the
machine as a divisor and it is divided, in turn, into Zyy., Zy1ys to get r,,,, and
;- Then 7y is used as a divisor by division into 74, to get 7,,4,, into Zy1y,
to get 74,4, and into Zyays to get ryy,. Finally rsq) is divided into ry,, to get
Ty D0 Zy1ys to get 7y 4y, into 74, to get 74, and into Zyuys to get ryyy,. A
check on these divisions can be made, if desired, by dividing ry,,, by 71 to get
Turuss Turus DY T16) 10 g€t 74,05, and 1,0, DY 2y to get 74,4,

Table IVb is treated in a similar manner.

This technique is immediately applicable to the case of many predicted
variables.
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