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Summary. The present paper is concerned with the power function of the
classical tests associated with the normal distribution. Proofs of Hsu, Simaika,
and Wald are simplified in a general manner applicable to other tests involving
the normal distribution. The set theoretic structure of several tests is charac-
terized. A simple proof of the stringency of the classical test of a linear hypothesis
is given.

1. Introduction. The present paper is concerned with the optimum properties,
from the power function viewpoint, of the classical tests associated with the
normal distribution. In 1941 Hsu [2] proved the result stated in Section 2 below,
which is concerned with the general linear hypothesis (in this connection his
paper [1] of 1938 will be of interest). Also in 1941 Simaika [3] proved similar
results for the tests based on the multiple correlation coefficient and Hotelling’s
generalization of Student’s ¢. In 1942, Wald [4] gave a generalization of Hsu’s
result.

In the present paper we give short and simple proofs of almost all these
results, and a simple proof of the stringency property of the analysis of variance
(Section 5). These proofs rest on theorems which characterize the set theoretic
structure of the tests. Thus, while the proofs of Hsu, Simaika and Wald are
rather elaborate and each problem is essentially attacked de novo, the methods
of the present paper are in effect applicable to the classical tests based on the
normal distribution. For these tests it will not be difficult to demonstrate the
analogues of Theorems 1 and 3, and of the results of Hsu, Simaika, and Wald.
In the present paper we first treat the general linear hypothesis, because it is the
simplest problem, its solution is easiest to describe, and it admits Wald’s integra-
tion theorem. Multivariate analogues of the latter are rather artificial and not as
simple. We then discuss the problem of the multiple correlation coefficient,
because it seems to be more difficult than that of Hotelling’s T' and indeed, to
include all the essential multivariate difficulties. Theorems 6 and 7 are the
analogues of 1 and 3, respectively, while Theorem 9 describes the essential
property of the power function which is of interest to us. In other multivariate
problems one will prove the analogues of Theorems 6, 7 and 9. A generally
inclusive formulation is no doubt possible. Theorems 5 and 9 are slightly more
general than the theorems of Hsu and Simaika.

Many of the statements below may be not valid on exceptional sets of measure
zero. Usually this is so stated, but sometimes, for reasons of brevity or to avoid
repetition, this qualification may be omitted. The reader will have no difficulty
supplying it wherever necessary.
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The author is indebted to Erich L. Lehmann of the University of California,
who carefully read a first version of this paper. Theorem 4 below was arrived at
independently by Professor Lehmann, with a somewhat different proof.

2. The general linear hypothesis. In canonical form the general linear hypothe-
sis may be stated as follows: The chance variables

X).}X?} "'ka-i-l

have at z;, - -+ , Zx41 , the density function
o - 1 k k+1
@) (E on |~ {3 = '+ 2| = s )
1 1 k+1
with o, 71, - -+, 7% all unknown.
Let » be the vector (m, - - -, 7). The null hypothesis H, states that
nl == e e . = nk = 0

and is to be tested with constant size o < 1 (identically in o).

Let D be any admissible critical region for testing Hy. If A is any event let
P{A |, ¢} denote the probability of A when # and ¢ are the parameters of
(2.1). We have then

P{D|0,¢} = a

identically in o, where 0 is the vector with k¥ components all of which are zero.
We now prove a property which characterizes all D. This theorem is due to
Neyman and Pearson [12], and is given here only for completeness.
TueoREM 1. The fraction of the surface area of the sphere
k+1

ai=¢
1

which lies in D 1s a for almost all c.

Proor. Let a be any positive integer, h a positive parameter, and ¥(y) a
measurable function of y defined for y > 0 and such that 0 < y(y) < 1. In view
of the distribution of =X}, it will be enough to prove that, if

ha+1
I'(a + 1)
identically for all positive &, that then

fo yy'e M dy = a

¥(y) = a for almost all y.
Write

1
al'(a + 1)

Differentiating both members k times with respect to & and then setting h = 1

(22) [ v e ay =i,
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we obtain the following result. The function
1
- - G =Y

is a density function with kth moment
wm=@+@+2)---(a+1).
The moments y; are the moments of the density function

1 .y
Te+ DY~
They satisfy the Carleman criterion [5, p. 19, Th 1.10], and hence no essentially
different distribution can have these moments. This proves the desired result.
TuroreM 2 (Wald). Among all tests of the general linear hypothesis the analysis
of variance test has the property that, for all positive d, the integral of its power on the
surface ¢ = d* is a maximum.
Proor. Let ¢ be any positive number. We have only to show that if we allocate
to the critical region D of the test the fraction « of the surface area of the sphere

k41
(2.3) Dali=¢t
1
for which
k
2z
1
C= =]
P
prs |

is as large as possible and that if we do this for all ¢, the desired maximum of the
integral of the power will be achieved. If C is as large as possible so is

k k
22 Dl
1 1

k+1 - 2

Xat ¢
T

Leta,, - -+, ax+: be any point on the sphere (2.3). Let db be the differential of
area on the surface 4 = d°. Then

(24) -[n;;d; ff(ﬂ, o) db = (\/2r )" % exp {-— (c;—Td)}

* ’
oo exp {<_n>_} b,
n2=d2? o
where z is the vector (a;, «--, ax) and ()'z is the scalar product of the two

vectors. This last integral is easily seen to depend only upon |z| and to be
monotonically increasing in | z | . This proves the theorem.
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CoroLrarY (Hsu). Among all tests of the general linear hypothesis whose power
is a function of n* only, the analysis of variance is the most powerful.

3. The set theoretic structure of tests whose power is a function only of 5’/s2.
Wald’s result (Theorem 2) cannot always be extended, in its simple form, to
tests involving the multivariate normal distribution, but this can be done with
Hsu’s theorem (corollary to Theorem 2). In order to see what is involved we
shall investigate the set theoretic structure of tests of the general linear hypothe-
sis whose power is a function only of n*/s*.

Let g(x1, - - - , zx) be the set of points in the region D whose first % coordinates
are &y, -+, . Let A(xy, -+, ox, o) be the integral of

_ 1 (<
ey sp - 2 (3 2]

with respect to #x41, + -, Zr41 , taken over q(x;, --- z). We first prove the

following:
Lemma. Suppose the power of D is a function only of 4°/a*. Then for two points

Ty, ** , Tk

and
! 4
Ty, ***, Tk
such that
k k ,
3.1) Z = ; z
1 .
we have
(3'2) A(xly"',xkya)=A(x{7”“',x’zyo')

identically in o, with the exception of a set of measure zero.

Proor. Suppose the statement is false. Then under some orthogonal trans-
formation T of 1, - - - , i the region D would go over into a region D* with the
following property: Let A*(z;, - - - , #x , o) have the same definition for the region
D*as A(zy, -+ , %, 0) has for D. Then on a set of positive measure' we would

have

33) Ay, -+, 2,0) X A*@, -+, ¥, o).

We shall now show that (3.3) results in a contradiction. We have

34) P{D|n, ¢} = P{D*|Tn, o}

identically in 5. By the property of the region D, therefore, we have
P{D|n,¢} = P(D|T 'y, 0]

1 The situation here is similar to that described in footnote 3.
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and hence
(3.5) P{D|n, ¢} = P{D*| 4, o}

identically in . Thus we obtain

(k
(3.6) f @re®)™ % Az, -+, 41, 0) exp [— 2%2 i; (; — 77;)2}:, dzy -+ day

k
= f @2ra”) *PA¥(y o 2, @) exp [— 5%;2 {; (x; — m)z}] dey -+ drs

with the integrations taking place over the entire space. Differentiating both
members with respect to the components of # and setting » = 0, we obtain that
the two density functions (for fixed ¢)

k
@re®) ¥ Ay, -+, 2k, 0) exp [ — 510—5 {Z xf}]
and

k
@re”) ™ *P o A¥@y, - 1, 0) exp | — L >k
202 | T
have identical moments. We shall now argue that these moments satisfy the
conditions of Cramér and Wold [7, Th. 2], so that the two density functions are
essentially the same, in contradiction to (3.3). The Cramér-Wold theorem states
the following: Let Yy, ---, Y; be k chance variables with a joint distribution
Sfunction, and write
k
A = 2, EYP.
te=]

Then the divergence of the series

—(1/2n)

1s sufficient to ensure that there exists essentially only one distribution which has
these moments. We notice that the factor 1/a of course makes no difference.
If we set A(xy, -+, @, o) and A*(z;, -+, zx, o) both identically unity and
consider the resulting moments which enter into the A;,, we see that these
moments satisfy the Cramér-Wold condition. Now 4 and A* are <1. Thus,
using the true value of 4 can serve only to increase the value of A5,'/*™, so that
the series will diverge a fortiori. This proves the lemma.

The following theorem helps to describe the set theoretic structure of tests
whose power is a function only of A = ?/¢*:

TuEOREM 3. Let D be a test whose power is a function only of \. Let u be any
posttive number, and D(x,, - -, x1, u) be the fraction of the “area” of the sphere
S why; = ut occupied by points which are in D and whose first k coordinates
arexy, «-- ,xp. If
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k k
(3.7) ; T = Zl: z)
then, except on a set of measure zero,
(3.8) Dy, -+ ,xk,u) = D@y, -,k , uw).
ProoF. We shall show that, if the power of D is a function only of A, the

failure of (3.7) to imply (3.8) would contradict the preceding lemma. Suppose
then that (3.8) is not true on a set of positive measure. Under some orthogonal

R .2 . .
transformation on z;, ---, zr We obtain® a function D*(x;, - -, x, u) which
differs from D(x:, ---, Zx, u) on a set of positive measure and such that, for
almost every z;, -« - , 2%,

@0
—1_1-1 (—u2)/22
A(xl,"',xk,ﬂ')’——Kf D@, -y 2n, w5 ut e gy
0

{ -]
—1_ I-1 (—u?)/20?
=Kf D*(xy, -+, e, w)g u e gy
0

identically in o, where K is a suitable constant of no interest to us. Multiplying
by ¢!, differentiating repeatedly under the integral sign with respect to o, and
setting ¢ = 1, we obtain the result that the two density functions in u,

KDy, -+, Te, W) 1-1 (—u2)2
u e
A(xy, o0, m, 1)

and

KD*(:E;, cory Xk, u) l—le(—uz)l2
A(xly Crty Thy l)

are identical except perhaps on a set of measure zero. This contradiction proves )
the theorem.

TrEOREM 4. A necessary and sufficient condition that the power of D be a function
of \ only, s that, with the usual exception of a set of measure zero, D(x1, + -+ , T , u)
be a function only of

2
1
u?

The proof of this theorem is not essentially different from that of the preceding
theorem, and we shall therefore sketch it only briefly. Let Z be a transformation
on (xy, --+,x,u) = (x,u) which consists of a rotation of the vector z, followed
by a multiplication of 4 and the components of z by a positive constant c¢. If
D(z, w) is not a function of =} z3/u’ alone, then, just as before®, we can use some

2 See footnote 1.
3 This statement implies that a function of z; , -+« , & , u, which is invariant to within
sets of measure zero under all transformations Z (the exceptional set may depend on the
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transformation Z to give us a function D*(x, u) such that
D(z, u) = D*(z, u)
on a set of positive measure, while
ED(z, w) = ED*(x, u)

identically in 5, ¢. This yields a contradiction in the usual manner and proves
the necessity of the condition.

To prove sufficiency, write D(z, u) = »(Z z}/u’) = »(v). Let v(v, 1, ¢) be the
density function of ». Then

P{D|y, ¢} = ./o-“' v(0)y(, 9, o) dv.

By hypothesis, »(v) is a function only of ». We know [9, p. 140, eq. 101] that
v(v, 7, o) is a function only of v and \. Hence P{D | n, ¢} is a function only of A.
This completes the proof of the theorem.

THEOREM 5. Among all tests of the general linear hypothesis which have the
properties described in the conclusions of Theorems 1 and 3, the classical analysis
of variance test is the most powerful.

We shall omit the proof of this theorem, which is very similar to that of the
more difficult Theorem 9 below.

Theorem 4 above shows that there exist regions D which satisfy the conclusions
of Theorems 1 and 3 and such that P{D |4, ¢} is not a function of A alone. It
follows that the content of Theorem 5 is greater than that of Hsu’s theorem
(Corollary to Theorem 2).

It is instructive to note that Hsu’s theorem follows almost immediately from
Theorem 4 and the form of y(v, A). For let A be fixed but arbitrary. One verifies
immediately from the form of v(v, \) that

v(v, \)
v(v, 0)

is, for fixed A, a monotonically increasing function of ». This, by Neyman’s
lemma, immediately proves Hsu'’s result.

4. The multiple correlation coefficient. We shall now apply our methods to a
multivariate test. For typographic ease we shall conduct the discussion for the

. . . 2zt .
transformation), is a function of 7;—, except on a set of measure zero. This statement

would be completely trivial were it not for the exceptional sets; in any case it must be well
known to set theorists. The author constructed an unnecessarily long proof of it, and
believes that a more expeditious proof can be constructed using the ideas of [11, page 91,
Theorem 11.1, and page 318, p. 7]. Professor C. M. Stein of the University of California
has informed the author that this result is a special case of one established by himself and
G. H. Hunt in a forthcoming paper. For these reasons the proof is omitted. (See also [13,

page 27, Lemma 9.1].)
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case of three variates, but the reader will observe that the procedure is really
perfectly general.

The chance variables {Yi;}, ¢ = 1,2,8,j = 1, ---, n, have the density
function

(4.1) g(B) = @m) T2 (| B|)™” exp {—% i Zl ba yﬁyn’}

=1 i,l=

where 1) B = {b;} is a positive definite (symmetric) 8 X 8 matrix, 2) y;; is the
value assumed by Y.;. The null hypothesis Hy asserts that a given multiple
correlation coefficient is zero, say that of ¥; with ¥, and Y3, i.e.,

4.2) bz = b = bz = by = 0.

The test is to be made on the level of significance a, i.e., if By is any matrix
which satisfies (4.2), and if G is a critical region for testing H, , then

4.3) P{G | By} = «

where the symbol in the left member means the probability of G according
to g(Bo)

Write

n
ns;; = g Yir Yir

Let M(cu , C) be the manifold in the 3n-space of
Yy oy Yiky *** 3y Ysn

where s;; = ¢u, S = C. First we prove the following:

THEOREM 6. Any region G which satisfies (4.3) must have the property that the
fraction of the area of M(cu , C) which lies in G is a, for any positive cn and any
positive definite 2 X 2 matrix C = {c;;}. (We remind the reader that exceptional
sets of measure zero are not precluded).

Proor. Let ¢(cu, C) be the fraction of the area of M(cy, C) in G. Recall
equation (4.3) and the fact that su, s», S3, s are sufficient statistics for the
elements of By . On the manifold M(cy , C) the conditional density is uniform.
Employing Wishart’s distribution [6] we conclude that

(4‘4) K, f ¢(slla S) I BO l N l S l(n—-a)/2 811('..-2)/2

+ exp I:—-g {busu + baase + 2bi s + bss 833}] dsi dsy ds; ds 33 = «

where K’ is a suitable constant which need not concern us. Here the symbol
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““="" means identically in by , bee, bes , b33, provided only that by > 0, bz > 0
basbss — bay > 0. Of course sy is distributed independently of sx, S, .
Proceeding as in section 2, we can, by differentiation with respect to the b’s,
obtain all the moments of the s;;/’s. Now let the b’s take any admissible constant
values. The moments of the s;;’s are then seen to satisfy the criterion of Cramér
and Wold [7, Th. 2], and consequently essentially uniquely determine the
distribution of the s;;. The desired conclusion follows as before.

The six parameters which uniquely determine the trivariate normal distribu-
tion (of Y, Y., Y;) with zero means may be taken to be the following:

1) The covariance matrix {¢:;}, 7,7 = 2, 3, of ¥, and Y.

2) The partial regression coefficients 8:, 85, of ¥; on Y, and Y;. These are
defined as follows: Let E(Yy | Y2 = 3., Y3 = y3) denote the conditional expected
value of Yy, given ¥, = 9., Y3 = y;3. Then

E(Y1| Yo=u,Y = Ys) = Bey2 + Bsys -

3) The conditional variance o’ of Y, given Y3 = ¢, Y3 = 3.
The population multiple correlation coefficient B of ¥; with Y, and Y; is then
defined by
Be flon+2 + 63
A= B2 022 B283 023 + B3033.
The six parameters above may be chosen arbitrarily, provided only that {e;;}
is positive definite. B and w are, by definition, non-negative.

Let y; be the column vector yu , - - - , ¥ ; let yi be its transpose, and let y
denote the point yi1, 12, ***, Y1, Yau, *-+, Ysu in 3n-space. Let z(y) =
2(y1, ¥2 , ys) be the component of y; in the plane of y, and y; ;let r = | 2(y) | and 6
the angle between z and y., measured positively say in the direction of ;.
Finally let h be the absolute value of the vector y1 — 2(y1, ¥z, ¥s).

We intend now to investigate the set theoretic structure of tests whose power
is a function only of B, and for this purpose prove the following:

TueoreM 7. Let H be a region whose power is a function only of R. Let
V(h, r, 0, s2a , S23 , S33) be the fraction of the ‘“volume’ of the manifold on which
h, 7, 0, 8o5 , So3 , 833 are fixed which is contained tn H. With the usual exception of a
set of measure zero, for fixed h, r, s , So3 , S33, the quantity V above is constant for
all 6.

Later, after this theorem is proved, we shall write V without exhibiting .
This procedure is justified by Theorem 7.

Proor. Suppose the theorem false, and proceed as in Theorem 3. A suitable*
rotation of the radius vector z(y) implies an orthogonal transformation 7T on the
generic point y which leaves h, r, sy , 823 , and s33 unaltered, and takes the region H
into a region H* such that H and H* differ on a set of positive measure. T leaves
R invariant, hence leaves invariant B which uniquely determines the distribution

4 See footnote 1.
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of R. Hence an argument almost the same as that which led us to (3.5) yields the
conclusion that the power of H and the power of H* are equal, identically in B.
Proceeding as in Theorem 3, we obtain two essentially different density functions
in h, r, 6, ssm, Ss3, S33, whose integrals over the entire space are identical in the
elements of B. From these functions we obtain two different density functions in
8;i(, 7 = 1, 2, 3), with identical moments (obtained by differentiation with
respect to the elements of B). The rest of the proof is essentially no different
from that of Theorem 3.

TuEOREM 8. In order that the power of H be a function of R alone, it is necessary
and sufficient that, with the usual exception of a set of measure zero, V(h, r, Sz , Se3, S33)
be a function only of h/r (i.e., of R).

The proof of this theorem is essentially the same as the proof of Theorem 4.
The place of the transformation Z is taken by one which consists of any linear
transformation on the vectors y, and y;, the addition of a constant angle to 8
(rotation of z(y)), and multiplication of the vector y; by a positive scalar c.
This transformation leaves K invariant. In the proof of sufficiency we use the
distribution of R (see, for example, [10, p. 384, equation (15.55)]). The remainder
of the proof is essentially the same as that of Theorem 4.

TaeorEM 9. Among all tests H which have the properties described in the conclu-
sions of Theorems 6 and 7, the classical test based on R is the most powerful.

As a corollary to this theorem we have the following result due to Simaika
[3]: Of all tests H whose power is a function of R only, the classical test based
on R is the most powerful.

Simaika’s result also follows easily from Theorem 8 and the density function
of R in the same manner that Hsu’s result followed from Theorem 4 and the
density function of ».

In the course of the proof of Theorem 9, the various symbols W, with or
without subscripts, will denote suitable functions of the variables exhibited,
and the various symbols %, with or without subscripts, will denote suitable
constants.

We have that

n

P{H|B} = f,, 2m) 2| B exp{——% 12_:1 y,fo,-} dyn - dYs
= f (2r0?) ™" exp [—-21—2 {th — (Bey2 + Bsys) }2] .
" s

(4.5) Wo(se2, 82, S33, {tfﬁ}) dyn * - dysn = (21rw2)(_")’2 j; exp {% B2+ Bs y3)’z}~

exp [—2—1-“’2 {y‘i + ﬁgSm + 26263823 "]_ 63333}] )

. W0(822y 823, 833, {O’ij}) dyu « -+ dYsn.
Now (Bay: + Bsys)'z is a function only of Bs, B3, Sz, S, S, 7, and 8. Also
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B4+r=s = yf . Thus

P{H|B} = f V(h, r, S22, S23, 833)Wi(h, 7, So2, S23, 833, {B})

. exp{% Bey2 + Bs ys)’z} d6 dh dr dsss dssxs dsss = f V(h, r s02, Se3, S33)
48 Wik, 7, 822, S23, S33,{B}) (4hr) ™" exp {‘%5 Baye + B3y3)'z}

- 40 A & dsas dsys dsss = f V (Vg =7, 1, s, 500, 555)

1
- Walv Yt — 11, Sm2, Sug, Sas, {B}) "JXP{;2 B9z + 531/3)'2}
- do dr’ dyi dsm dss dsss.
Integrating with respect to 8 and designating

W, f exp {wl? (B:y2 + Bs 2/3)'2} de

by W(\/yf — 7,1, Su, S, S, {B}) we observe that just as in (2.4), W is
monotonically increasing in r (all other variables fixed). Thus we have

@7 P{H|B} = f VW & dy? dsw dsas dsss -

In constructing H only the function V is at our disposal, and this subject to the
limitations imposed by the conclusions of Theorems 6 and 7 and the fact that
B + * = yi = su. The function W is not within our control at all. With y7 ,
S22, 823, Sz fixed, W is monotonically increasing with r. To maximize the power
it is therefore best to distribute the “mass” so that V is as large as possible for
large values of r and hence of R. This implies the classical test and proves the

theorem.

b. Stringency of the classical tests. Wald [8] calls a test T: “most stringent”
if the following is true: Let {T'} be the totality of tests. Let 6 be the generic
point in the parameter space, and P{T | 8} be the power of T at the point 6.
Let T be any test other than 7, . Then

sup [sg}) P{T |6} — P{T:.|6}] < sup [flrl;p P{T |6} — P{T.| 6}l

Of course, we have omitted to specify the totality {T'}. One can admit all tests
whose size < «a, a given constant between 0 and 1, or restrict one’s self to tests
whose size is exactly «. We shall do the latter.

Under these circumstances we shall prove that the classical test of a linear
hypothesis is most stringent. Our proof will occupy but a few lines, and is an easy
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consequence of the structure of the classical tests as described in the lemma of
section 2. The result itself is a special case of an unpublished theorem due to
G. H. Hunt and C. M. Stein, and all priority on this result is theirs.

Return then to the notation of section 2. Let ¢ be fixed at any arbitrary
positive value, and the surface

be that one on which
win) = sup P{T |9} — P{Ly|n}

is a maximum, where L, is the classical test of the linear hypothesis. It is clear
that this maximum is actually achieved, and that w,(n) is a constant on the
surface n° = cp . Let Ly be any other test (of size ), and w:(n) be the corre-
sponding function for L, . We have only to show that on the surface * = c
we cannot have everywhere wy() < wi(1), and our proof is complete. If everywhere
on the surface n° = ¢§ we had wi(1) < wi(n), we would have, also on the same
surface, P{L, | n} > P{L,| 9}. This would, however, violate Wald’s Theorem 2
(section 2) and proves the desired result.
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