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THE GEOMETRIC RANGE FOR DISTRIBUTIONS OF CAUCHY’S TYPE

By E. J. GumBeL anp R. D. KEENEY

New York City and Metropolitan Life Insurance Company

1. Introduction. We consider large samples drawn from a symmetrical un-
limited population whose distribution is of the Cauchy type, defined by the
properties
(1) lim z[l — F(z)] = 4, lim (—2)"F(z) = 4,

ZT=»00 Z—>—00

where k and A are positive and F(z) stands for the probability function. This
type of distribution has no moments of an order equal to or greater than k.
We construct the distribution of a certain function of the extreme values, and
require only the knowledge of the type of the initial distribution, not of the
distribution itself.

From each sample we pick out the largest and smallest observations, =, and
z; . If the median of the initial distribution is zero, and the sample size is large
enough, the probability of any extreme x, or —z; being negative can be neglected.
If we draw N such samples, each of large size n, we obtain N pairs of extremes,

Znyand x1,, v = 1,2,3, --- , N). For each sample we can then compute the
geometric mean, p, of these extremes:
(2) P = VZ.(— 1),

which we henceforth call the geometric range.

The distribution of these geometric ranges can be obtained directly from the
joint asymptotic distribution of the extremes. However, it is easier to obtain
this distribution indirectly from the distribution of the reciprocal of the geometric
range. This distribution of the reciprocal is of interest in itself: since it possesses
all moments we can use it to estimate the parameters by the method of moments,
whereas this problem seems to be very intricate if we start from the distribution

of the geometric range itself.

2. The distribution of the reciprocal of the geometric range. The distribu-
tion of the reciprocal of the geometric range follows from a theorem of Elfving

[1] which may be stated thus:
“Let x be a symmetrical unlimited variate with probability F(x). Let ¢ be

defined by

3) £ =20 VF@) — F(z)l.

Then the asymptotic density function g(¢) and the asymptotic probability G(£)
of ¢ are:

(4) g(5) = tKo());  G(®) = 1 — EK\(¥),

where K, and K; are the modified Bessel functions of the second kind and of
order zero and one.”
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Introducing instead of A the parameter u defined by F(u) = 1 — 1/n we
have, from (1), approximately for large n

(5) F(z) = 1/n (:'Lxl)k 1 — F(z,) = 1/n<xﬁ)k, 21 < 0,2, >0,k > 0.

For the variable ¢ in Elfving’s theorem, we obtain asymptotically

(6) /2 = u'o .

We attach a subscript & to £ to show its dependence on k. The moments of & are
obtained from a formula given by Watson ([3], p. 388) as

) H = 2T + 1/2)

and all moments of this variate exist.

3. Estimate of parameters. From N sets, each of n observations, we pick out
the largest and the smallest, X,,, and X;,, . We subtract from each observed
extreme the central value, m, of the N -n observations. If eachz,, = X,,—m >0
and z;,, = X;,,—m < 0 the sample size is large enough.

Define n = 1/p. The first two moments of » are, from (7),

(8) i= - r2(1 + 1/2k), gt = = Lpe 4 1/k).

Elimination of the parameter » from these two equations leads to
7? _ I'(14 1/k)
® TH1 + 1/2k)
In terms of the coefficient of variation, V, this equation becomes
9 VI+ 7V =T+ 1/k)/T*1 + 1/2K).

Substituting the value of ¥V computed from the observations, we obtain an es-
timate of ¥, and hence can obtain an estimate of % from (8). This procedure is
facilitated by Table 1.

4, The distribution of the geometric range. From a practical standpoint
the geometric range itself is preferable to its reciprocal since it is easier to interpret
and easier to calculate from the observed extremes. We want to establish its
distribution ¢;(p). From the relation (6) of p to & and the knowledge of the dis-
tribution (4) of & we find

(10) Gilp) = 1 — G(&) = 2u"p *K.(2u*0™")

and

, %, k 4k 2k-+1 2t
(an ) = 28 g %H)T ().
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Since tables of these Bessel functions are available [2], the various probabilities
and densities may be evaluated.

The simplest way to compare geometric ranges to the theory is the use of a
probability paper (Figure 1). For its construction, consider the linear relation

(12) log p = log u + (log 2)/k — (log &)/k

obtained from (6). Consequently we plot —log £ on the abcissa and write the
corresponding values G1(p), formula (10), on a horizontal axis. An upper parallel
to the abscissa shows the return periods. The observed geometric ranges are
plotted on the ordinate in a logarithmic scale. If the theory holds, the observed
geometric ranges should be scattered about the straight line (12).

TABLE 1
The order k and the variation V of the reciprocal of the geometric range

Reciprocal Order Co‘fgzg:?otn‘)f Reciprocal Order Co‘?ﬁ;‘:g’nﬂ
1/k 14 1/k
.10 .088 .70 .556
12 .104 : .80 .632
.16 .138 .90 .709
.20 171 .98 772
.30 .251 1.00 .788
.40 .332 2.00 1.73
.50 .404 4.00 5.92
.60 .480 6.00 20.0

If less accurate estimates of u and & than those obtainable by the systematic
methods (8) and (9), or the probability paper, will suffice, quick estimates can be
obtained from the quantiles of the sample of geometric ranges. To the value
p = u corresponds, according to (6), & = 2 whence, from the tables [2], G1(x) =
2K,(2) = .27973. From N observed geometric ranges arranged in increasing
magnitude we thus may pick out the mth, p,, , with the rank m = 28 N and
use it as an estimate u = p,, . For the medians £ and 5 we get & = 1.257 from
the tables, and thus, by (6), 5° = 1.591 «*. This formula provides a quick estimate
of k. We pick out the median p of the N observed geometric ranges. Since we
have an estimate of u, we obtain an estimate of % from

1 _logp —logu _ _

6. Analogy between the geometric range and the range. A study of the various
characteristics of the geometric range for distributions of Cauchy’s type reveals
structural similarities to the range for distributions of the exponential type.
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This is not altogether surprising, since (as shown in Table 2) after the appropri-
ate transformations the probabilities of both are identical functions of the respec-
tive transformed variates.

Of course the two systems are mutually exclusive: if the observed ranges can
be reproduced by the first system we conclude that all moments in the initial
distribution exist. If on the other hand, the observed geometric ranges can be
represented by the second sytem we conclude that no moments of an order
greater than k exist.

TABLE 2
RANGES AND GEOMETRIC RANGES
T l:t:;glllgi:ial Exponential Gauchy
Variate Range Geometric Range
Definition - w =2, + (—11) p=V2zs(—z1)
Transforma- a 7 &, = Quk p—*
tion z=2exp[—§(:c,.—x1—-2u)J
Logarithm lgz=1g2— g (zn — 21 — 2u) lgt=1g2~ g (g zs
+ 1g (= z1) — 21gw)
Probability Gw) = 2K, (2) Gi(p) = & Ky (&)
2 4k %+
Distribution | g(w) = % Ko (2) g1(p) = - (%) K, (&)
Median W = 2u + .9286/a 2lg p=21gu + .9286/k
Mean W= 2u + 2v/a Igpt=—lgu+21gr(l + k)
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